Commit Graph

3 Commits

Author SHA1 Message Date
Rafael Espindola 449711cb36 Stop producing .data.rel sections.
If a section is rw, it is irrelevant if the dynamic linker will write to
it or not.

It looks like llvm implemented this because gcc was doing it. It looks
like gcc implemented this in the hope that it would put all the
relocated items close together and speed up the dynamic linker.

There are two problem with this:
* It doesn't work. Both bfd and gold will map .data.rel to .data and
  concatenate the input sections in the order they are seen.
* If we want a feature like that, it can be implemented directly in the
  linker since it knowns where the dynamic relocations are.

llvm-svn: 253436
2015-11-18 06:02:15 +00:00
Rafael Espindola 65e4902156 Drop prelink support.
The way prelink used to work was

* The compiler decides if a given section only has relocations that
are know to point to the same DSO. If so, it names it
.data.rel.ro.local<something>.
* The static linker puts all of these together.
* The prelinker program assigns addresses to each library and resolves
the local relocations.

There are many problems with this:
* It is incompatible with address space randomization.
* The information passed by the compiler is redundant. The linker
knows if a given relocation is in the same DSO or not. If could sort
by that if so desired.
* There are newer ways of speeding up DSO (gnu hash for example).
* Even if we want to implement this again in the compiler, the previous
  implementation is pretty broken. It talks about relocations that are
  "resolved by the static linker". If they are resolved, there are none
  left for the prelinker. What one needs to track is if an expression
  will require only dynamic relocations that point to the same DSO.

At this point it looks like the prelinker is an historical curiosity.
For example, fedora has retired it because it failed to build for two
releases
(http://pkgs.fedoraproject.org/cgit/prelink.git/commit/?id=eb43100a8331d91c801ee3dcdb0a0bb9babfdc1f)

This patch removes support for it. That is, it stops printing the
".local" sections.

llvm-svn: 253280
2015-11-17 00:51:23 +00:00
Chih-Hung Hsieh 1e859582d6 Implement target independent TLS compatible with glibc's emutls.c.
The 'common' section TLS is not implemented.
Current C/C++ TLS variables are not placed in common section.
DWARF debug info to get the address of TLS variables is not generated yet.

clang and driver changes in http://reviews.llvm.org/D10524

  Added -femulated-tls flag to select the emulated TLS model,
  which will be used for old targets like Android that do not
  support ELF TLS models.

Added TargetLowering::LowerToTLSEmulatedModel as a target-independent
function to convert a SDNode of TLS variable address to a function call
to __emutls_get_address.

Added into lib/Target/*/*ISelLowering.cpp to call LowerToTLSEmulatedModel
for TLSModel::Emulated. Although all targets supporting ELF TLS models are
enhanced, emulated TLS model has been tested only for Android ELF targets.
Modified AsmPrinter.cpp to print the emutls_v.* and emutls_t.* variables for
emulated TLS variables.
Modified DwarfCompileUnit.cpp to skip some DIE for emulated TLS variabls.

TODO: Add proper DIE for emulated TLS variables.
      Added new unit tests with emulated TLS.

Differential Revision: http://reviews.llvm.org/D10522

llvm-svn: 243438
2015-07-28 16:24:05 +00:00