This enabled opaque pointers by default in LLVM. The effect of this
is twofold:
* If IR that contains *neither* explicit ptr nor %T* types is passed
to tools, we will now use opaque pointer mode, unless
-opaque-pointers=0 has been explicitly passed.
* Users of LLVM as a library will now default to opaque pointers.
It is possible to opt-out by calling setOpaquePointers(false) on
LLVMContext.
A cmake option to toggle this default will not be provided. Frontends
or other tools that want to (temporarily) keep using typed pointers
should disable opaque pointers via LLVMContext.
Differential Revision: https://reviews.llvm.org/D126689
We need to explicitly query the shadow here, because it is lazily
initialized for byval arguments. Without opaque pointers this used to
mostly work out, because there would be a bitcast to `i8*` present, and
that would query, and copy in case of byval, the argument shadow.
Reviewed By: vitalybuka, eugenis
Differential Revision: https://reviews.llvm.org/D123602
We need to explicitly query the shadow here, because it is lazily
initialized for byval arguments. Without opaque pointers this used to
mostly work out, because there would be a bitcast to `i8*` present, and
that would query, and copy in case of byval, the argument shadow.
Reviewed By: vitalybuka, eugenis
Differential Revision: https://reviews.llvm.org/D123602
If function is not sanitized we must reset shadow, not copy.
Depends on D117285
Reviewed By: kda, eugenis
Differential Revision: https://reviews.llvm.org/D117286
If function has no sanitize_memory we still reset shadow for nested calls.
The first return from getShadow() correctly returned shadow for argument,
but it didn't reset shadow of byval pointee.
Depends on D117277
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D117278
It's NFC because shadow of pointer is clean so origins will not be
propagated anyway.
Depends on D117275
Reviewed By: kda, eugenis
Differential Revision: https://reviews.llvm.org/D117276
This creates a way to configure MSAN to for eager checks that will be leveraged
by the introduction of a clang flag (-fsanitize-memory-param-retval).
This is redundant with the existing flag: -mllvm -msan-eager-checks.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D116855
In D115311, we're looking to modify clang to emit i constraints rather
than X constraints for callbr's indirect destinations. Prior to doing
so, update all of the existing tests in llvm/ to match.
Reviewed By: void, jyknight
Differential Revision: https://reviews.llvm.org/D115410
To ease the deployment of KMSAN, we need a way to apply
__attribute__((no_sanitize("kernel-memory"))) to the whole source file.
Passing -msan-disable-checks=1 to the compiler will make it
treat every function in the file as if it was lacking the
sanitize_memory attribute.
Differential Revision: https://reviews.llvm.org/D115236
Small patch that changes blacklisted_global to blocked_global and a change in comments.
Reviewed By: pgousseau
Differential Revision: https://reviews.llvm.org/D113692
There's precedent for that in `CreateOr()`/`CreateAnd()`.
The motivation here is to avoid bloating the run-time check's IR
in `SCEVExpander::generateOverflowCheck()`.
Refs. https://reviews.llvm.org/D109368#3089809
Transformations may strip the attribute from the
argument, e.g. for unused, which will result in
shadow offsets mismatch between caller and
callee.
Stripping noundef for used arguments can be
a problem, as TLS is not going to be set
by caller. However this is not the goal of the
patch and I am not aware if that's even
possible.
Differential Revision: https://reviews.llvm.org/D112197
Right now when we see -O# we add the corresponding 'default<O#>' into
the list of passes to run when translating legacy -pass-name. This has
the side effect of not using the default AA pipeline.
Instead, treat -O# as -passes='default<O#>', but don't allow any other
-passes or -pass-name. I think we can keep `opt -O#` as shorthand for
`opt -passes='default<O#>` but disallow anything more than just -O#.
Tests need to be updated to not use `opt -O# -pass-name`.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D112036
This removes an abuse of ELF linker behaviors while keeping Mach-O/COFF linker
behaviors unchanged.
ELF: when module_ctor is in a comdat, this patch removes reliance on a linker
abuse (an SHT_INIT_ARRAY in a section group retains the whole group) by using
SHF_GNU_RETAIN. No linker behavior difference when module_ctor is not in a comdat.
Mach-O: module_ctor gets `N_NO_DEAD_STRIP`. No linker behavior difference
because module_ctor is already referenced by a `S_MOD_INIT_FUNC_POINTERS`
section (GC root).
PE/COFF: no-op. SanitizerCoverage already appends module_ctor to `llvm.used`.
Other sanitizers: llvm.used for local linkage is not implemented in
`TargetLoweringObjectFileCOFF::emitLinkerDirectives` (once implemented or
switched to a non-local linkage, COFF can use module_ctor in comdat (i.e.
generalize ELF-specific rL301586)).
There is no object file size difference.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D106246
On ELF targets, if a function has uwtable or personality, or does not have
nounwind (`needsUnwindTableEntry`), it marks that `.eh_frame` is needed in the module.
Then, a function gets `.eh_frame` if `needsUnwindTableEntry` or `-g[123]` is specified.
(i.e. If -g[123], every function gets `.eh_frame`.
This behavior is strange but that is the status quo on GCC and Clang.)
Let's take asan as an example. Other sanitizers are similar.
`asan.module_[cd]tor` has no attribute. `needsUnwindTableEntry` returns true,
so every function gets `.eh_frame` if `-g[123]` is specified.
This is the root cause that
`-fno-exceptions -fno-asynchronous-unwind-tables -g` produces .debug_frame
while
`-fno-exceptions -fno-asynchronous-unwind-tables -g -fsanitize=address` produces .eh_frame.
This patch
* sets the nounwind attribute on sanitizer module ctor/dtor.
* let Clang emit a module flag metadata "uwtable" for -fasynchronous-unwind-tables. If "uwtable" is set, sanitizer module ctor/dtor additionally get the uwtable attribute.
The "uwtable" mechanism is generic: synthesized functions not cloned/specialized
from existing ones should consider `Function::createWithDefaultAttr` instead of
`Function::create` if they want to get some default attributes which
have more of module semantics.
Other candidates: "frame-pointer" (https://github.com/ClangBuiltLinux/linux/issues/955https://github.com/ClangBuiltLinux/linux/issues/1238), dso_local, etc.
Differential Revision: https://reviews.llvm.org/D100251
This patch sets the default for llvm tests, with the exception of tests
under Reduce, because quite a few of them use 'FileCheck' as parameter
to a tool, and including a flag as that parameter would complicate
matters.
The rest of the patch undo-es the lit.local.cfg changes we progressively
introduced as temporary measure to avoid regressions under various
directories.
Differential Revision: https://reviews.llvm.org/D95111
As mentioned in D93793, there are quite a few places where unary `IRBuilder::CreateShuffleVector(X, Mask)` can be used
instead of `IRBuilder::CreateShuffleVector(X, Undef, Mask)`.
Let's update them.
Actually, it would have been more natural if the patches were made in this order:
(1) let them use unary CreateShuffleVector first
(2) update IRBuilder::CreateShuffleVector to use poison as a placeholder value (D93793)
The order is swapped, but in terms of correctness it is still fine.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D93923
D70365 allows us to make attributes default. This is a follow up to
actually make nosync, nofree and willreturn default. The approach we
chose, for now, is to opt-in to default attributes to avoid introducing
problems to target specific intrinsics. Intrinsics with default
attributes can be created using `DefaultAttrsIntrinsic` class.
This would be a problem if the entire instrumented function was a call
to
e.g. memcpy
Use FnPrologueEnd Instruction* instead of ActualFnStart BB*
Differential Revision: https://reviews.llvm.org/D86001
This allows us to add addtional instrumentation before the function start,
without splitting the first BB.
Differential Revision: https://reviews.llvm.org/D85985