Commit Graph

22 Commits

Author SHA1 Message Date
Tobias Grosser b94863001a [ScopInfo] Do not use the set dimension ids to carry loop information
isl does not guarantee that set dimension ids will be preserved, so using them
to carry information is not a good idea. Furthermore, the loop information can
be derived without problem from the statement itself. As this even requires
less code than propagating loop information on set dimension ids, starting from
this commit we just derive the loop information in collectSurroundingLoops
directly from the IR.

Interestingly this also results in a couple of isl sets to take a simpler
representation.

llvm-svn: 326664
2018-03-03 19:27:54 +00:00
Johannes Doerfert 323ab3975b [FIX] Adjust assumption space for zext instructions
llvm-svn: 267552
2016-04-26 12:44:01 +00:00
Johannes Doerfert 625bb1fc10 Do not add but record signed-unsigned assumptions
llvm-svn: 267528
2016-04-26 09:16:36 +00:00
Johannes Doerfert c3596284c3 Model zext-extend instructions
A zero-extended value can be interpreted as a piecewise defined signed
  value. If the value was non-negative it stays the same, otherwise it
  is the sum of the original value and 2^n where n is the bit-width of
  the original (or operand) type. Examples:
    zext i8 127 to i32 -> { [127] }
    zext i8  -1 to i32 -> { [256 + (-1)] } = { [255] }
    zext i8  %v to i32 -> [v] -> { [v] | v >= 0; [256 + v] | v < 0 }

  However, LLVM/Scalar Evolution uses zero-extend (potentially lead by a
  truncate) to represent some forms of modulo computation. The left-hand side
  of the condition in the code below would result in the SCEV
  "zext i1 <false, +, true>for.body" which is just another description
  of the C expression "i & 1 != 0" or, equivalently, "i % 2 != 0".

    for (i = 0; i < N; i++)
      if (i & 1 != 0 /* == i % 2 */)
        /* do something */

  If we do not make the modulo explicit but only use the mechanism described
  above we will get the very restrictive assumption "N < 3", because for all
  values of N >= 3 the SCEVAddRecExpr operand of the zero-extend would wrap.
  Alternatively, we can make the modulo in the operand explicit in the
  resulting piecewise function and thereby avoid the assumption on N. For the
  example this would result in the following piecewise affine function:
  { [i0] -> [(1)] : 2*floor((-1 + i0)/2) = -1 + i0;
    [i0] -> [(0)] : 2*floor((i0)/2) = i0 }
  To this end we can first determine if the (immediate) operand of the
  zero-extend can wrap and, in case it might, we will use explicit modulo
  semantic to compute the result instead of emitting non-wrapping assumptions.

  Note that operands with large bit-widths are less likely to be negative
  because it would result in a very large access offset or loop bound after the
  zero-extend. To this end one can optimistically assume the operand to be
  positive and avoid the piecewise definition if the bit-width is bigger than
  some threshold (here MaxZextSmallBitWidth).

  We choose to go with a hybrid solution of all modeling techniques described
  above. For small bit-widths (up to MaxZextSmallBitWidth) we will model the
  wrapping explicitly and use a piecewise defined function. However, if the
  bit-width is bigger than MaxZextSmallBitWidth we will employ overflow
  assumptions and assume the "former negative" piece will not exist.

llvm-svn: 267408
2016-04-25 14:01:36 +00:00
Tobias Grosser 25e8ebe29d Drop explicit -polly-delinearize parameter
Delinearization is now enabled by default and does not need to explicitly need
to be enabled in our tests.

llvm-svn: 264154
2016-03-23 13:21:02 +00:00
Michael Kruse 959a8dc39f Update to ISL 0.16.1
llvm-svn: 257898
2016-01-15 15:54:45 +00:00
Michael Kruse 5a9a65e43f Prepare unit tests for update to ISL 0.16
ISL 0.16 will change how sets are printed which breaks 117 unit tests
that text-compare printed sets. This patch re-formats most of these unit
tests using a script and small manual editing on top of that. When
actually updating ISL, most work is done by just re-running the script
to adapt to the changed output.

Some tests that compare IR and tests with single CHECK-lines that can be
easily updated manually are not included here.

The re-format script will also be committed afterwards. The per-test
formatter invocation command lines options will not be added in the near
future because it is ad hoc and would overwrite the manual edits.
Ideally it also shouldn't be required anymore because ISL's set printing
has become more stable in 0.16.

Differential Revision: http://reviews.llvm.org/D16095

llvm-svn: 257851
2016-01-15 00:48:42 +00:00
Tobias Grosser 4ea2e07a60 ScopInfo: Make printing of ScopArrayInfo more similar to declarations in C
Memory references are now printed as follows:

           Old                          New
Scalars:   i64 MemRef_val[*]            i64 MemRef_val;
Arrays:    i64 MemRef_A[*][%m][%o][8]   i64 MemRef_A[*][%m][%o];

We do not print any more information about the element size in the type. Such
information has already been available in a comment after the scalar/array
declaration. It was redundant and did not match well with what people were used
from C.

llvm-svn: 252602
2015-11-10 14:02:54 +00:00
Tobias Grosser f4ee371e60 tests: Drop -polly-detect-unprofitable and -polly-no-early-exit
These flags are now always passed to all tests and need to be disabled if
not needed. Disabling these flags, rather than passing them to almost all
tests, significantly simplfies our RUN: lines.

llvm-svn: 249422
2015-10-06 15:36:44 +00:00
Johannes Doerfert 96425c2574 Traverse the SCoP to compute non-loop-carried domain conditions
In order to compute domain conditions for conditionals we will now
  traverse the region in the ScopInfo once and build the domains for
  each block in the region. The SCoP statements can then use these
  constraints when they build their domain.

  The reason behind this change is twofold:
    1) This removes a big chunk of preprocessing logic from the
       TempScopInfo, namely the Conditionals we used to build there.
       Additionally to moving this logic it is also simplified. Instead
       of walking the dominance tree up for each basic block in the
       region (as we did before), we now traverse the region only
       once in order to collect the domain conditions.
    2) This is the first step towards the isl based domain creation.
       The second step will traverse the region similar to this step,
       however it will propagate back edge conditions. Once both are in
       place this conditional handling will allow multiple exit loops
       additional logic.

Reviewers: grosser

Differential Revision: http://reviews.llvm.org/D12428

llvm-svn: 246398
2015-08-30 21:13:53 +00:00
Tobias Grosser d46fd5ed95 Make the dimension sizes of in ScopArrayInfo available as isl_pw_affs
This makes it easier to reason about the size of an array dimension with isl.

llvm-svn: 244757
2015-08-12 15:27:16 +00:00
Tobias Grosser 173ecab705 Remove target triples from test cases
I just learned that target triples prevent test cases to be run on other
architectures. Polly test cases are until now sufficiently target independent
to not require any target triples. Hence, we drop them.

llvm-svn: 235384
2015-04-21 14:28:02 +00:00
Tobias Grosser 5483931117 Rename 'scattering' to 'schedule'
In Polly we used both the term 'scattering' and the term 'schedule' to describe
the execution order of a statement without actually distinguishing between them.
We now uniformly use the term 'schedule' for the execution order.  This
corresponds to the terminology of isl.

History: CLooG introduced the term scattering as the generated code can be used
as a sequential execution order (schedule) or as a parallel dimension
enumerating different threads of execution (placement). In Polly and/or isl the
term placement was never used, but we uniformly refer to an execution order as a
schedule and only later introduce parallelism. When doing so we do not talk
about about specific placement dimensions.

llvm-svn: 235380
2015-04-21 11:37:25 +00:00
Tobias Grosser 619190d5a7 Delinearization of expressions that contain array size parameters
This allows us to delinerize code such as:

  A[][n]

  for (i
    for (j
      A[i][n-j-1] = ...

which would previously have been delinearize to an access A[i+1][-j-1].

To recover the correct access we apply the piecewise expression:

  { A[i][j] -> A[i-1][i+N]: i < 0; A[i][j] -> A[i][i]: i >= 0}

This approach generalizes to higher dimensions.

llvm-svn: 233566
2015-03-30 17:22:28 +00:00
David Blaikie bad3ff207f Update Polly tests to handle explicitly typed gep changes in LLVM
llvm-svn: 230784
2015-02-27 19:20:19 +00:00
Johannes Doerfert f9e3462b69 [FIX] 2 broken tests
llvm-svn: 230231
2015-02-23 16:34:20 +00:00
Tobias Grosser d1e33e7061 ScopDetection: Only detect scops that have at least one read and one write
Scops that only read seem generally uninteresting and scops that only write are
most likely initializations where there is also little to optimize.  To not
waste compile time we bail early.

Differential Revision: http://reviews.llvm.org/D7735

llvm-svn: 229820
2015-02-19 05:31:07 +00:00
Johannes Doerfert 9282076ece [NFC] Drop the "scattering" tuple name
llvm-svn: 227801
2015-02-02 13:45:54 +00:00
Tobias Grosser 3f29619614 Drop all constant scheduling dimensions
Schedule dimensions that have the same constant value accross all statements do
not carry any information, but due to the increased dimensionality of the
schedule cost compile time. To not pay this cost, we remove constant dimensions
if possible.

llvm-svn: 225067
2015-01-01 23:01:11 +00:00
Tobias Grosser 5e6813d184 Derive run-time conditions for delinearization
As our delinearization works optimistically, we need in some cases run-time
checks that verify our optimistic assumptions. A simple example is the
following code:

void foo(long n, long m, long o, double A[n][m][o]) {

  for (long i = 0; i < 100; i++)
    for (long j = 0; j < 150; j++)
      for (long k = 0; k < 200; k++)
        A[i][j][k] = 1.0;
}

After clang linearized the access to A and we delinearized it again to
A[i][j][k] we need to ensure that we do not access the delinearized array
out of bounds (this information is not available in LLVM-IR). Hence, we
need to verify the following constraints at run-time:

CHECK:   Assumed Context:
CHECK:   [o, m] -> {  : m >= 150 and o >= 200 }
llvm-svn: 212198
2014-07-02 17:47:48 +00:00
Sebastian Pop 1801668af3 delinearize memory access functions
llvm-svn: 205799
2014-04-08 21:20:44 +00:00
Tobias Grosser 6a2da6b9c8 Add test cases for multi-dimensional variable lengths arrays
At the moment we can handle such arrays only by conservatively assuming that
each access to such an array may touch any element in the array. It would be
great if we could improve Polly/LLVM at some point, such that we can
recover the multi-dimensionality of the accesses.

llvm-svn: 163619
2012-09-11 14:03:19 +00:00