provide the layout of records, rather than letting Clang compute
the layout itself. LLDB provides the motivation for this feature:
because various layout-altering attributes (packed, aligned, etc.)
don't get reliably get placed into DWARF, the record layouts computed
by LLDB from the reconstructed records differ from the actual layouts,
and badness occurs. This interface lets the DWARF data drive layout,
so we don't need the attributes preserved to get the answer write.
The testing methodology for this change is fun. I've introduced a
variant of -fdump-record-layouts called -fdump-record-layouts-simple
that always has the simple C format and provides size/alignment/field
offsets. There is also a -cc1 option -foverride-record-layout=<file>
to take the output of -fdump-record-layouts-simple and parse it to
produce a set of overridden layouts, which is introduced into the AST
via a testing-only ExternalASTSource (called
LayoutOverrideSource). Each test contains a number of records to lay
out, which use various layout-changing attributes, and then dumps the
layouts. We then run the test again, using the preprocessor to
eliminate the layout-changing attributes entirely (which would give us
different layouts for the records), but supplying the
previously-computed record layouts. Finally, we diff the layouts
produced from the two runs to be sure that they are identical.
Note that this code makes the assumption that we don't *have* to
provide the offsets of bases or virtual bases to get the layout right,
because the alignment attributes don't affect it. I believe this
assumption holds, but if it does not, we can extend
LayoutOverrideSource to also provide base offset information.
Fixes the Clang side of <rdar://problem/10169539>.
llvm-svn: 149055
-fixit-recompile
applies fixits and recompiles the result
-fixit-to-temporary
applies fixits to temporary files
-fix-only-warnings">,
applies fixits for warnings only, not errors
Combining "-fixit-recompile -fixit-to-temporary" allows testing the result of fixits
without touching the original sources.
llvm-svn: 149027
specific to migrator. Use its first option to
warn migrating from GC to arc when
NSAllocateCollectable/NSReallocateCollectable is used.
// rdar://10532541
llvm-svn: 148887
module imports from -fauto-module-import to -fmodules. The new name
will eventually be used to enable modules, and the #include/#import
mapping is a crucial part of the feature.
llvm-svn: 147447
Clang driver. This involves a bunch of silly option parsing code to try
to carefully emulate GCC's options. Currently, this takes a conservative
approach, and unless all of the unsafe optimizations are enabled, none
of them are. The fine grained control doesn't seem particularly useful.
If it ever becomes useful, we can add that to LLVM first, and then
expose it here.
This also fixes a few tiny bugs in the flag management around
-fhonor-infinities and -fhonor-nans; the flags now form proper sets both
for enabling and disabling, with the last flag winning.
I've also implemented a moderately terrifying GCC feature where
a language change is also provided by the '-ffast-math' flag by defining
the __FAST_MATH__ preprocessor macro. This feature is tracked and
serialized in the frontend but it isn't used yet. A subsequent patch
will add the preprocessor macro and tests for it.
I've manually tested that codegen appears to respect this, but I've not
dug in enough to see if there is an easy way to test codegen options w/o
relying on the particulars of LLVM's optimizations.
llvm-svn: 147434
This fixes the FIXMEs in ParseAnalyzeArgs. (Also a
precursor to moving the analyzer into an AST plugin.)
For consistency, do the same with AssemblerInvocation.
llvm-svn: 147218
fails within a call to a constexpr function. Add -fconstexpr-backtrace-limit
argument to driver and frontend, to control the maximum number of notes so
produced (default 10). Fix APValue printing to be able to pretty-print all
APValue types, and move the testing for this functionality from a unittest to
a -verify test now that it's visible in clang's output.
llvm-svn: 146749
semantics and defaults as the corresponding g++ arguments. The historical g++
argument -ftemplate-depth-N is kept for compatibility, but modern g++ versions
no longer document that option.
Add -cc1 argument -fconstexpr-depth N to implement the corresponding
functionality.
The -ftemplate-depth=N part of this fixes PR9890.
llvm-svn: 145045
a bug where the reference count is copied in the copy constructor, which means that there were cases when the CompilerInvocation
objects created by ASTUnit were actually leaked. When I fixed that bug locally, it showed that a whole bunch of code assumed
that the LangOptions object that was part of CompilerInvocation was still alive. By making it heap-allocated and reference counted,
we can keep it around after the CompilerInvocation object goes away.
As part of this change, change CompilerInvocation:getLangOptions() to return a pointer, acting as another clue that this
object may outlive the CompilerInvocation object.
This commit doesn't fix the CompilerInvocation leak itself. That will come when I commit the fix to llvm::RefCountedBase<T> to
mainline LLVM.
llvm-svn: 144930
We don't actually need a separate flag for non-sysrooted paths as the
driver has to manage the sysroot anyways. The driver is not infrequently
adding paths to the header search based on their existence on the
filesystem. For that, it has to add the sysroot anyways, we should pass
it on down to CC1 already joined. More importantly, the driver cannot in
all cases distinguish between sysrooted paths and paths that are
relative to the Clang binary's installation directory. Essentially, we
always need to ignore the system root for these internal header search
options. It turns out in most of the places we were already providing
the system root in the driver, and then another one in CC1 so this fixes
several bugs.
llvm-svn: 143917
actually manage the builtin header file includes as well as the system
ones.
This one is actually debatable whether it belongs in the driver or not,
as the builtin includes are really an internal bit of implementation
goop for Clang. However, they must be included at *exactly* the right
point in the sequence of header files, which makes it essentially
impossible to have this be managed by the Frontend and the rest by the
Driver. I have terrible ideas that would "work", but I think they're
worse than putting this in the driver and making the Frontend library
even more ignorant of the environment and system on which it is being
run.
Also fix the fact that we weren't properly respecting the flags which
suppress standard system include directories.
Note that this still leaves all of the Clang tests which run CC1
directly and include builtin header files broken on Windows. I'm working
on a followup patch to address that.
llvm-svn: 143801
encode the *exact* semantics which the header search paths internally
built by the Frontend layer have had, which is both non-user-provided,
and at times adding the implicit extern "C" bit to the directory entry.
There are lots of CC1 options that are very close, but none do quite
this, and they are all already overloaded for other purposes. In some
senses this makes the command lines more clean as it clearly indicates
which flags are exclusively used to implement internal detection of
"standard" header search paths.
Lots of the implementation of this is really crufty, due to the
surrounding cruft. It doesn't seem worth investing lots of time cleaning
this up as it isn't new, and hopefully *lots* of this code will melt
away as header search inside of the frontend becomes increasingly
trivial.
llvm-svn: 143798
The motivation for this new DiagnosticConsumer is to provide a way for tools invoking the compiler
to get its diagnostics via a libclang interface, rather than textually parsing the compiler output.
This gives us flexibility to change the compiler's textual output, but have a structured data format
for clients to use to get the diagnostics via a stable API.
I have no tests for this, but llvm-bcanalyzer so far shows that the emitted file is well-formed.
More work to follow.
llvm-svn: 143259
as part of the hash rather than ignoring them. This means we'll end up
building more module variants (overall), but it allows configuration
macros such as NDEBUG to work so long as they're specified via command
line. More to come in this space.
llvm-svn: 142187
increasingly prevailing case to the point that new features
like ARC don't even support the fragile ABI anymore.
This required a little bit of reshuffling with exceptions
because a check was assuming that ObjCNonFragileABI was
only being set in ObjC mode, and that's actually a bit
obnoxious to do.
Most, though, it involved a perl script to translate a ton
of test cases.
Mostly no functionality change for driver users, although
there are corner cases with disabling language-specific
exceptions that we should handle more correctly now.
llvm-svn: 140957