Commit Graph

2563 Commits

Author SHA1 Message Date
River Riddle 7be6a40ab9 Add new indexed_accessor_range_base and indexed_accessor_range classes that simplify defining index-able ranges.
Many ranges want similar functionality from a range type(e.g. slice/drop_front/operator[]/etc.), so these classes provide a generic implementation that may be used by many different types of ranges. This removes some code duplication, and also empowers many of the existing range types in MLIR(e.g. result type ranges, operand ranges, ElementsAttr ranges, etc.). This change only updates RegionRange and ValueRange, more ranges will be updated in followup commits.

PiperOrigin-RevId: 284615679
2019-12-09 12:55:40 -08:00
Denis Khalikov 34265dad65 [spirv] Add CompositeConstruct operation.
Closes tensorflow/mlir#308

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/308 from denis0x0D:sandbox/composite_construct 9ef7180f77f9374bcd05afc4f9e6c1d2d72d02b7
PiperOrigin-RevId: 284613617
2019-12-09 12:43:53 -08:00
Lei Zhang 2c7e8ed7c6 [spirv] Add spv.IAdd, spv.ISub, and spv.IMul folders
The patterns to be folded away can be commonly generated
during lowering to SPIR-V.

PiperOrigin-RevId: 284604855
2019-12-09 11:59:10 -08:00
Nicolas Vasilache 5a48e40a65 Factor out commonly reusable names across structured ops dialects
This CL starts extracting commonalities between dialects that use the structured ops abstractions. Also fixes an OSS build issue where StringRef were incorrectly used with constexpr.

PiperOrigin-RevId: 284591114
2019-12-09 11:01:40 -08:00
Mahesh Ravishankar 4a62019eb8 Add lowering for module with gpu.kernel_module attribute.
The existing GPU to SPIR-V lowering created a spv.module for every
function with gpu.kernel attribute. A better approach is to lower the
module that the function lives in (which has the attribute
gpu.kernel_module) to a spv.module operation. This better captures the
host-device separation modeled by GPU dialect and simplifies the
lowering as well.

PiperOrigin-RevId: 284574688
2019-12-09 09:52:21 -08:00
Andy Davis 312ccb1c0f Unify vector op unrolling transformation.
Unifies vector op unrolling transformation, by using the same unrolling implementation for contraction and elementwise operations.
Removes fakefork/join operations which are non longer needed now that we have the InsertStridedSlice operation.

PiperOrigin-RevId: 284570784
2019-12-09 09:35:15 -08:00
Kazuaki Ishizaki ae05cf27c6 Minor spelling tweaks
Closes tensorflow/mlir#304

PiperOrigin-RevId: 284568358
2019-12-09 09:23:48 -08:00
Nicolas Vasilache 91c0074624 [StructuredOps][Linalg] Add a primitive pattern to rewrite the linalg.generic form of matmul to vector form.
This CL uses the newly expanded matcher support to easily detect when a linalg.generic has a multiply-accumulate body. A linalg.generic with such a body is rewritten as a vector contraction.
This CL additionally limits the rewrite to the case of matrix multiplication on contiguous and statically shaped memrefs for now.

Before expanding further, we should harden the infrastructure for expressing custom ops with the structured ops abstraction.

PiperOrigin-RevId: 284566659
2019-12-09 09:14:39 -08:00
Jacques Pienaar 70aeb4566e Add RegionRange for when need to abstract over different region iteration
Follows ValueRange in representing a generic abstraction over the different
ways to represent a range of Regions. This wrapper is not as ValueRange and only
considers the current cases of interest: MutableArrayRef<Region> and
ArrayRef<std::unique_ptr<Region>> as occurs during op construction vs op region
querying.

Note: ArrayRef<std::unique_ptr<Region>> allows for unset regions, so this range
returns a pointer to a Region instead of a Region.
PiperOrigin-RevId: 284563229
2019-12-09 08:57:56 -08:00
Uday Bondhugula a63f6e0bf9 Replace spurious SmallVector constructions with ValueRange
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>

Closes tensorflow/mlir#305

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/305 from bondhugula:value_range 21d1fae73f549e3c8e72b60876eff1b864cea39c
PiperOrigin-RevId: 284541027
2019-12-09 06:26:33 -08:00
Lei Zhang 9a4c2df480 NFC: Expose constFoldBinaryOp via a header
This allows other dialects to reuse the logic to support constant
folding binary operations and reduces code duplication.

PiperOrigin-RevId: 284428721
2019-12-08 06:25:54 -08:00
River Riddle d6ee6a0310 Update the builder API to take ValueRange instead of ArrayRef<Value *>
This allows for users to provide operand_range and result_range in builder.create<> calls, instead of requiring an explicit copy into a separate data structure like SmallVector/std::vector.

PiperOrigin-RevId: 284360710
2019-12-07 10:35:41 -08:00
River Riddle 9d1a0c72b4 Add a new ValueRange class.
This class represents a generic abstraction over the different ways to represent a range of Values: ArrayRef<Value *>, operand_range, result_range. This class will allow for removing the many instances of explicit SmallVector<Value *, N> construction. It has the same memory cost as ArrayRef, and only suffers cost from indexing(if+elsing the different underlying representations).

This change only updates a few of the existing usages, with more to be changed in followups; e.g. 'build' API.

PiperOrigin-RevId: 284307996
2019-12-06 20:07:23 -08:00
River Riddle 8904e91035 Add a flag to the IRPrinter instrumentation to only print after a pass if there is a change to the IR.
This adds an additional filtering mode for printing after a pass that checks to see if the pass actually changed the IR before printing it. This "change" detection is implemented using a SHA1 hash of the current operation and its children.

PiperOrigin-RevId: 284291089
2019-12-06 17:05:05 -08:00
Uday Bondhugula ca23bd78d4 NFC - update doc, comments, vim syntax file
- for the symbol rules, the code was updated but the doc wasn't.

Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>

Closes tensorflow/mlir#284

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/284 from bondhugula:doc 9aad8b8a715559f7ce61265f3da3f8a3c11b45ea
PiperOrigin-RevId: 284283712
2019-12-06 16:17:06 -08:00
Mahesh Ravishankar 6500b7e0c0 NFC: Separate implementation and definition in ConvertStandardToSPIRV.cpp
PiperOrigin-RevId: 284274326
2019-12-06 15:26:17 -08:00
Alex Zinenko e96150eb46 Replace custom getBody method with an ODS-generated in gpu::LaunchOp
PiperOrigin-RevId: 284262981
2019-12-06 14:29:25 -08:00
Mahesh Ravishankar 883f555726 During serialization do a walk of ops in module to find spv.module.
During lowering, spv.module might be within other modules (for example
gpu kernel module). Walk the module op to find spirv module to
serialize.

PiperOrigin-RevId: 284262550
2019-12-06 14:27:03 -08:00
Alex Zinenko 3230267d0d Move GPU::LaunchOp to ODS. NFC.
Move the definition of the GPU launch opreation from hand-rolled C++ code to
ODS framework. This only does the moves, a follow-up is necessary to clean up
users of custom functions that could be auto-generated by ODS.

PiperOrigin-RevId: 284261856
2019-12-06 14:23:37 -08:00
Aart Bik d37f27251f [VecOps] Rename vector.[insert|extract]element to just vector.[insert|extract]
Since these operations lower to [insert|extract][element|value] at LLVM
dialect level, neither element nor value would correctly reflect the meaning.

PiperOrigin-RevId: 284240727
2019-12-06 12:39:25 -08:00
Alex Zinenko be3ed14658 LLVM::GlobalOp: take address space as builder argument
Accept the address space of the global as a builder argument when constructing
an LLVM::GlobalOp instance. This decreases the reliance of LLVM::GlobalOp users
on the internal name of the attribute used for this purpose. Update several
uses of the address space in GPU to NVVM conversion.

PiperOrigin-RevId: 284233254
2019-12-06 12:01:46 -08:00
Alex Zinenko ccc767d63b Move GPU::FuncOp definition to ODS - NFC
Move the definition of the GPU function opreation from hand-rolled C++ code to
ODS framework. This only does the moves, a follow-up is necessary to clean up
users of custom functions that could be auto-generated by ODS.

PiperOrigin-RevId: 284233245
2019-12-06 12:00:32 -08:00
Aart Bik b36aaeafb1 [VectorOps] Add lowering of vector.broadcast to LLVM IR
For example, a scalar broadcast

    %0 = vector.broadcast %x : f32 to vector<2xf32>
    return %0 : vector<2xf32>

which expands scalar x into vector [x,x] by lowering
to the following LLVM IR dialect to implement the
duplication over the leading dimension.

    %0 = llvm.mlir.undef : !llvm<"<2 x float>">
    %1 = llvm.mlir.constant(0 : index) : !llvm.i64
    %2 = llvm.insertelement %x, %0[%1 : !llvm.i64] : !llvm<"<2 x float>">
    %3 = llvm.shufflevector %2, %0 [0 : i32, 0 : i32] : !llvm<"<2 x float>">, !llvm<"<2 x float>">
    return %3 : vector<2xf32>

In the trailing dimensions, the operand is simply
"passed through", unless a more elaborate "stretch"
is required.

For example

    %0 = vector.broadcast %arg0 : vector<1xf32> to vector<4xf32>
    return %0 : vector<4xf32>

becomes

    %0 = llvm.mlir.undef : !llvm<"<4 x float>">
    %1 = llvm.mlir.constant(0 : index) : !llvm.i64
    %2 = llvm.extractelement %arg0[%1 : !llvm.i64] : !llvm<"<1 x float>">
    %3 = llvm.mlir.constant(0 : index) : !llvm.i64
    %4 = llvm.insertelement %2, %0[%3 : !llvm.i64] : !llvm<"<4 x float>">
    %5 = llvm.shufflevector %4, %0 [0 : i32, 0 : i32, 0 : i32, 0 : i32] : !llvm<"<4 x float>">, !llvm<"<4 x float>">
    llvm.return %5 : !llvm<"<4 x float>">

PiperOrigin-RevId: 284219926
2019-12-06 11:02:29 -08:00
Alex Zinenko e216a72ab8 Add conversions of GPU func with memory attributions to LLVM/NVVM
GPU functions use memory attributions, a combination of Op attributes and
region arguments, to specify function-wide buffers placed in workgroup or
private memory spaces. Introduce a lowering pattern for GPU functions to be
converted to LLVM functions taking into account memory attributions. Workgroup
attributions get transformed into module-level globals with unique names
derived from function names. Private attributions get converted into
llvm.allocas inside the function body. In both cases, we inject at the
beginning of the function the IR that obtains the raw pointer to the data and
populates a MemRef descriptor based on the MemRef type of buffer, making
attributions compose with the rest of the MemRef lowering and transparent for
use with std.load and std.store. While using raw pointers instead of
descriptors might have been more efficient, it is better implemented as a
canonicalization or a separate transformation so that non-attribution memrefs
could also benefit from it.

PiperOrigin-RevId: 284208396
2019-12-06 10:08:43 -08:00
Alexandre E. Eichenberger 3c69ca1e69 fix examples in comments
Closes tensorflow/mlir#301

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/301 from AlexandreEichenberger:vect-doc-update 7e5418a9101a4bdad2357882fe660b02bba8bd01
PiperOrigin-RevId: 284202462
2019-12-06 09:40:50 -08:00
Andy Davis 41f8e105fa Unroll vector masks along with their associated vector arguments.
Updates vector ContractionOp to use proper vector masks (produced by CreateMaskOp/ConstantMaskOp).
Leverages the following canonicalizations in unrolling unit test: CreateMaskOp -> ConstantMaskOp, StridedSliceOp(ConstantMaskOp) -> ConstantMaskOp
Removes IndexTupleOp (no longer needed now that we have vector mask ops).
Updates all unit tests.

PiperOrigin-RevId: 284182168
2019-12-06 07:37:28 -08:00
Denis Khalikov 9ca53130f3 [spirv] Reorder `erase` and `emplace` to avoid "invalid iterator access".
The iterator should be erased before adding a new entry
into blockMergeInfo to avoid iterator invalidation.

Closes tensorflow/mlir#299

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/299 from denis0x0D:sandbox/reoder_erase 983be565809aa0aadfc7e92962e4d4b282f63c66
PiperOrigin-RevId: 284173235
2019-12-06 06:26:56 -08:00
Uday Bondhugula 3ade6a7d15 DimOp folding for alloc/view dynamic dimensions
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>

Closes tensorflow/mlir#253

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/253 from bondhugula:dimop a4b464f24ae63fd259114558d87e11b8ee4dae86
PiperOrigin-RevId: 284169689
2019-12-06 06:00:54 -08:00
Kazuaki Ishizaki 84a6182ddd minor spelling tweaks
Closes tensorflow/mlir#290

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/290 from kiszk:spelling_tweaks_201912 9d9afd16a723dd65754a04698b3976f150a6054a
PiperOrigin-RevId: 284169681
2019-12-06 05:59:30 -08:00
Alex Zinenko 58adf99ed1 LLVM::AddressOfOp: properly take into account the address space
The AddressOf operation in the LLVM dialect return a pointer to a global
variable. The latter may be in a non-default address space as indicated by the
"addr_space" attribute. Check that the address space of the pointer returned by
AddressOfOp matches that of the referenced GlobalOp. Update the AddressOfOp
builder to respect this constraint.

PiperOrigin-RevId: 284138860
2019-12-06 01:09:13 -08:00
Jose Ignacio Gomez f60bbb6c3b [Linalg] Add permutation information to tiling
This patch closes issue tensorflow/mlir#271.
It adds an optional permutation map to declarative tiling transformations.
The map is expressed as a list of integers.

Closes tensorflow/mlir#288

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/288 from tetuante:issue271 2df2938d6a1f01b3bc404ded08dea2dd1e10b588
PiperOrigin-RevId: 284064151
2019-12-05 15:14:59 -08:00
River Riddle da53000fb4 Refactor the IRPrinting instrumentation to take a derivable config.
This allows for more interesting behavior from users, e.g. enabling the ability to dump the IR to a separate file for each pass invocation.

PiperOrigin-RevId: 284059447
2019-12-05 14:53:01 -08:00
nmostafa daff60cd68 Add UnrankedMemRef Type
Closes tensorflow/mlir#261

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/261 from nmostafa:nmostafa/unranked 96b6e918f6ed64496f7573b2db33c0b02658ca45
PiperOrigin-RevId: 284037040
2019-12-05 13:13:20 -08:00
Denis Khalikov e67acfa468 [spirv] Add CompositeInsertOp operation
A CompositeInsertOp operation make a copy of a composite object,
while modifying one part of it.

Closes tensorflow/mlir#292

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/292 from denis0x0D:sandbox/composite_insert 2200962b9057bda53cd2f2866b461e2797196380
PiperOrigin-RevId: 284036551
2019-12-05 13:10:44 -08:00
River Riddle 33a64540ad Add support for instance specific pass statistics.
Statistics are a way to keep track of what the compiler is doing and how effective various optimizations are. It is useful to see what optimizations are contributing to making a particular program run faster. Pass-instance specific statistics take this even further as you can see the effect of placing a particular pass at specific places within the pass pipeline, e.g. they could help answer questions like "what happens if I run CSE again here".

Statistics can be added to a pass by simply adding members of type 'Pass::Statistics'. This class takes as a constructor arguments: the parent pass pointer, a name, and a description. Statistics can be dumped by the pass manager in a similar manner to how pass timing information is dumped, i.e. via PassManager::enableStatistics programmatically; or -pass-statistics and -pass-statistics-display via the command line pass manager options.

Below is an example:

struct MyPass : public OperationPass<MyPass> {
  Statistic testStat{this, "testStat", "A test statistic"};

  void runOnOperation() {
    ...
    ++testStat;
    ...
  }
};

$ mlir-opt -pass-pipeline='func(my-pass,my-pass)' foo.mlir -pass-statistics

Pipeline Display:
===-------------------------------------------------------------------------===
                         ... Pass statistics report ...
===-------------------------------------------------------------------------===
'func' Pipeline
  MyPass
    (S) 15 testStat - A test statistic
  MyPass
    (S)  6 testStat - A test statistic

List Display:
===-------------------------------------------------------------------------===
                         ... Pass statistics report ...
===-------------------------------------------------------------------------===
MyPass
  (S) 21 testStat - A test statistic

PiperOrigin-RevId: 284022014
2019-12-05 11:53:28 -08:00
Mahesh Ravishankar 4d61a79db4 Allow specification of the workgroup size for GPUToSPIRV lowering.
SPIR-V/Vulkan spec requires the workgroups size to be specified with
the spv.ExecutionMode operation. This was hard-wired to be set to a
particular value. It is now changed to be configurable by clients of
the pass or of the patterns that implement the lowering from GPU to
SPIRV.

PiperOrigin-RevId: 284017482
2019-12-05 11:31:57 -08:00
Lei Zhang 037044b0ae Add spv.AtomicCompareExchangeWeak
PiperOrigin-RevId: 283997917
2019-12-05 10:06:24 -08:00
River Riddle 780f0c043a Add a flag to dump the current stack trace when emitting a diagnostic.
It is often desirable to know where within the program that a diagnostic was emitted, without reverting to assert/unreachable which crash the program. This change adds a flag `mlir-print-stacktrace-on-diagnostic` that attaches the current stack trace as a note to every diagnostic that gets emitted.

PiperOrigin-RevId: 283996373
2019-12-05 10:00:25 -08:00
Lei Zhang c0a9de29ad [spirv] Fix nested loop (de)serialization
For serialization, when we have nested ops, the inner loop will create multiple
SPIR-V blocks. If the outer loop has block arguments (which corresponds to
OpPhi instructions), we defer the handling of OpPhi's parent block handling
until we serialized all blocks and then fix it up with the result <id>. These two
cases happening together was generating invalid SPIR-V blob because we
previously assume the parent block to be the block containing the terminator.
That is not true anymore when the block contains structured control flow ops.
If that happens, it should be fixed to use the structured control flow op's
merge block.

For deserialization, we record a map from header blocks to their corresponding
merge and continue blocks during the initial deserialization and then use the
info to construct spv.selection/spv.loop. The existing implementation will also
fall apart when we have nested loops. If so, we clone all blocks for the outer
loop, including the ones for the inner loop, to the spv.loop's region. So the map
for header blocks' merge info need to be updated; otherwise we are operating
on already deleted blocks.

PiperOrigin-RevId: 283949230
2019-12-05 04:39:37 -08:00
Mehdi Amini b14ee5a9a1 Fix MLIR Build after LLVM upstream JIT changes (getMainJITDylib removed)
The getMainJITDylib() method was removed in 4fc68b9b7f, replace it by creating a JITDylib on the fly.

PiperOrigin-RevId: 283948595
2019-12-05 04:32:46 -08:00
Tres Popp b8cd0c1486 Move ModuleManager functionality into mlir::SymbolTable.
Note for broken code, the following transformations occurred:
ModuleManager::insert(Block::iterator, Operation*) - > SymbolTable::insert(Operation*, Block::iterator)
ModuleManager::lookupSymbol -> SymbolTable::lookup
ModuleManager::getModule() -> SymbolTable::getOp()
ModuleManager::getContext() -> SymbolTable::getOp()->getContext()
ModuleManager::* -> SymbolTable::*
PiperOrigin-RevId: 283944635
2019-12-05 03:56:46 -08:00
Lei Zhang b60799b71b Add MLIRIR as a dependency to LLVM and related dialects
Fixes tensorflow/mlir#289

PiperOrigin-RevId: 283914472
2019-12-04 23:45:35 -08:00
River Riddle d9da8b647a Optimize operation ordering to support non-congruent indices.
This change adds support for non-congruent indices in the operation ordering within a basic block. This effect of this is that insertions are less likely to cause an invalidation of the ordering within a block. This has a big effect on modules that have very large basic blocks.

PiperOrigin-RevId: 283858136
2019-12-04 16:10:13 -08:00
River Riddle 2c930f8d9d Add emitOptional(Error|Warning|Remark) functions to simplify emission with an optional location.
In some situations a diagnostic may optionally be emitted by the presence of a location, e.g. attribute and type verification. These situations currently require extra 'if(loc) emitError(...); return failure()' wrappers that make verification clunky. These new overloads take an optional location and a list of arguments to the diagnostic, and return a LogicalResult. We take the arguments directly and return LogicalResult instead of returning InFlightDiagnostic because we cannot create a valid diagnostic with a null location. This creates an awkward situation where a user may try to treat the, potentially null, diagnostic as a valid one and encounter crashes when attaching notes/etc. Below is an example of how these methods simplify some existing usages:

Before:

  if (loc)
    emitError(*loc, "this is my diagnostic with argument: ") << 5;
  return failure();

After:

  return emitOptionalError(loc, "this is my diagnostic with argument: ", 5);

PiperOrigin-RevId: 283853599
2019-12-04 15:49:42 -08:00
Nicolas Vasilache b3f7cf80a7 Add a CL option to Standard to LLVM lowering to use alloca instead of malloc/free.
In the future, a more configurable malloc and free interface should be used and exposed via
extra parameters to the `createLowerToLLVMPass`. Until requirements are gathered, a simple CL flag allows generating code that runs successfully on hardware that cannot use the stdlib.

PiperOrigin-RevId: 283833424
2019-12-04 14:16:00 -08:00
Andy Davis d20d763241 Add canonicalization patterns for vector CreateMaskOp and StridedSliceOp to be used in the unroll vector op transformation.
Adds a ConstantMaskOp to the vector ops dialect.
Adds the following canonicalization patterns:
CreateMaskOp -> ConstantMaskOp
StridedSliceOp(ConstantMaskOp) -> ConstantMaskOp

PiperOrigin-RevId: 283816752
2019-12-04 13:00:43 -08:00
River Riddle 6f895bec7d [CSE] NFC: Hash the attribute dictionary pointer instead of the list of attributes.
PiperOrigin-RevId: 283810829
2019-12-04 12:32:08 -08:00
Nicolas Vasilache edfaf925cf Drop MaterializeVectorTransfers in favor of simpler declarative unrolling
Now that we have unrolling as a declarative pattern, we can drop a full pass that has gone stale. In the future we may want to add specific unrolling patterns for VectorTransferReadOp.

PiperOrigin-RevId: 283806880
2019-12-04 12:11:42 -08:00
River Riddle 31b3e2248b NFC: Fix mismatches between LangRef.md and actual parser implementation.
PiperOrigin-RevId: 283805832
2019-12-04 12:06:24 -08:00
Sean Silva 26484bc0b6 Print out large elementsattr's such that they are parseable.
I found that when running crash reproducers, the elided elementsattr's
would prevent parsing the IR repro. I found myself manually going and
replacing the "..." with some valid IR.

With this change, we now print elided attrs as `opaque<"", "0xDEADBEEF">`
to clearly delineate them as being elided while still being parseable.

PiperOrigin-RevId: 283781806
2019-12-04 10:19:54 -08:00
Uday Bondhugula 0827fa562d NFC - fix name / comments - isAccessInvariant
- the name was misleading; this is really checking if a Value being used
  to index was loop IV invariant. Update comment.

- the method is only used locally; what can be exposed in the future is
  isAccessInvariant(LoadOrStoreOp op, Value *iv)

Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>

Closes tensorflow/mlir#285

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/285 from bondhugula:quickfix fe5837abe987980c4ab469a9aa7de8e4f0007d9f
PiperOrigin-RevId: 283771923
2019-12-04 09:30:22 -08:00
Alex Zinenko 75175134d4 Loop coalescing: fix pointer chainsing in use-chain traversal
In the replaceAllUsesExcept utility function called from loop coalescing the
iteration over the use-chain is incorrect. The use list nodes (IROperands) have
next/prev links, and bluntly resetting the use would make the loop to continue
on uses of the value that was replaced instead of the original one. As a
result, it could miss the existing uses and update the wrong ones. Make sure we
increment the iterator before updating the use in the loop body.

Reported-by: Uday Bondhugula <uday@polymagelabs.com>

Closes tensorflow/mlir#291.

PiperOrigin-RevId: 283754195
2019-12-04 07:42:29 -08:00
Andy Davis 34e1f4aa51 Adds support for unrolling single-result vector operations with iterator type lists and indexing maps to a target vector size.
Adds unit tests for unrolling the vector ContractionOp with different iteration orders.

PiperOrigin-RevId: 283747503
2019-12-04 06:53:37 -08:00
Nicolas Vasilache 5c0c51a997 Refactor dependencies to expose Vector transformations as patterns - NFC
This CL refactors some of the MLIR vector dependencies to allow decoupling VectorOps, vector analysis, vector transformations and vector conversions from each other.
This makes the system more modular and allows extracting VectorToVector into VectorTransforms that do not depend on vector conversions.

This refactoring exhibited a bunch of cyclic library dependencies that have been cleaned up.

PiperOrigin-RevId: 283660308
2019-12-03 17:52:10 -08:00
Lei Zhang 50b2b26e70 [spirv] Add spv.GroupNonUniformBallot
This CL also did the following cleanup:
- Moved the test for spv.SubgroupBallotKHR to its own file
- Wrapped generated canonicalization patterns in anonymous namespace
- Updated header comments in SPVOps.td

PiperOrigin-RevId: 283650091
2019-12-03 16:44:09 -08:00
Mahesh Ravishankar c5ba37b6ae Add a pass to legalize operations before lowering to SPIR-V.
Not all StandardOps can be lowered to SPIR-V. For example, subview op
implementation requires use of pointer bitcasts which is not valid
according to SPIR-V spec (or at least is ambiguous about it). Such ops
need to be removed/transformed before lowering to SPIR-V. The
SPIRVLegalizationPass is added a place where such legalizations can be
added. Current implementation folds the subview ops with load/stores
so that the lowering itself does not have to convert a subview op.

PiperOrigin-RevId: 283642981
2019-12-03 16:06:17 -08:00
Sean Silva 82f9f9d112 Make diagnostic a bit clearer.
This prints out in case of any pass failure. Not just a crash.

PiperOrigin-RevId: 283616719
2019-12-03 14:01:25 -08:00
Andy Davis 2c13fd9f17 Add CreateMaskOp to the VectorOps dialect.
PiperOrigin-RevId: 283591888
2019-12-03 11:55:54 -08:00
Sean Silva 67515e8d7a Verifier: Better error message in case of successor operand mismatch.
In particular, print the successor number in the diagnostic.

PiperOrigin-RevId: 283585084
2019-12-03 11:24:31 -08:00
Mahesh Ravishankar 353fb2bd38 Convert MemRefType to a linearized array in SPIR-V lowering.
The SPIR-V lowering used nested !spv.arrays to represented
multi-dimensional arrays, with the hope that in-conjunction with the
layout annotations, the shape and layout of memref can be represented
directly. It is unclear though how portable this representation will
end up being. It will rely on driver compilers implementing complex
index computations faithfully. A more portable approach is to use
linearized arrays to represent memrefs and explicitly instantiate all
the index computation in SPIR-V. This gives added benefit that we can
further optimize the generated code in MLIR before generating the
SPIR-V binary.

PiperOrigin-RevId: 283571167
2019-12-03 10:21:16 -08:00
Alex Zinenko 993e79e9bd Fix ViewOp to have at most one offset operand
As described in the documentation, ViewOp is expected to take an optional
dynamic offset followed by a list of dynamic sizes. However, the ViewOp parser
did not include a check for the offset being a single value and accepeted a
list of values instead.

Furthermore, several tests have been exercising the wrong syntax of a ViewOp,
passing multiple values to the dyanmic stride list, which was not caught by the
parser. The trailing values could have been erronously interpreted as dynamic
sizes. This is likely due to resyntaxing of the ViewOp, with the previous
syntax taking the list of sizes before the offset. Update the tests to use the
syntax with the offset preceding the sizes.

Worse, the conversion of ViewOp to the LLVM dialect assumed the wrong order of
operands with offset in the trailing position, and erronously relied on the
permissive parsing that interpreted trailing dynamic offset values as leading
dynamic sizes. Fix the lowering to use the correct order of operands.

PiperOrigin-RevId: 283532506
2019-12-03 06:23:04 -08:00
Diego Caballero 330d1ff00e AffineLoopFusion: Prevent fusion of multi-out-edge producer loops
tensorflow/mlir#162 introduced a bug that
incorrectly allowed fusion of producer loops with multiple outgoing
edges. This commit fixes that problem. It also introduces a new flag to
disable sibling loop fusion so that we can test producer-consumer fusion
in isolation.

Closes tensorflow/mlir#259

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/259 from dcaballe:dcaballe/fix_multi_out_edge_producer_fusion 578d5661705fd5c56c555832d5e0528df88c5282
PiperOrigin-RevId: 283531105
2019-12-03 06:09:50 -08:00
Stephan Herhut 2125c0e3a8 Extend conversion of SubViewOp to llvm to also support cases where size and stride
are constant (i.e., there are no size and stride operands).

We recently added canonicalization that rewrites constant size and stride operands to
SubViewOp into static information in the type, so these patterns now occur during code
generation.

PiperOrigin-RevId: 283524688
2019-12-03 05:11:49 -08:00
Lei Zhang 1af9633d85 [spirv] Add spv.SubgroupBallotKHROp
PiperOrigin-RevId: 283522284
2019-12-03 04:49:56 -08:00
Alex Zinenko fdbb99cd62 Add linkage support to LLVMFuncOp
A recent commit introduced the Linkage attribute to the LLVM dialect and used
it in the Global Op. Also use it in LLVMFuncOp. As per LLVM Language Reference,
if the linkage attribute is omitted, the function is assumed to have external
linkage.

PiperOrigin-RevId: 283493299
2019-12-03 00:26:44 -08:00
Aart Bik 3126004a5a [VectorOps] Add legality rules to broadcast
PiperOrigin-RevId: 283360101
2019-12-02 09:57:27 -08:00
Lei Zhang b41162b3af [ODS] Generate builders taking unwrapped value and defaults for attributes
Existing builders generated by ODS require attributes to be passed
in as mlir::Attribute or its subclasses. This is okay foraggregate-
parameter builders, which is primarily to be used by programmatic
C++ code generation; it is inconvenient for separate-parameter
builders meant to be called in manually written C++ code because
it requires developers to wrap raw values into mlir::Attribute by
themselves.

This CL extends to generate additional builder methods that
take raw values for attributes and handles the wrapping in the
builder implementation. Additionally, if an attribute appears
late in the arguments list and has a default value, the default
value is supplied in the declaration if possible.

PiperOrigin-RevId: 283355919
2019-12-02 09:33:57 -08:00
Lei Zhang 4982eaf87c [DRR] Introduce `$_` to ignore op argument match
Right now op argument matching in DRR is position-based, meaning we need to
specify N arguments for an op with N ODS-declared argument. This can be annoying
when we don't want to capture all the arguments. `$_` is to remedy the situation.

PiperOrigin-RevId: 283339992
2019-12-02 07:54:50 -08:00
Lei Zhang 0d22a3fdc8 NFC: Update std.subview op to use AttrSizedOperandSegments
This turns a few manually written helper methods into auto-generated ones.

PiperOrigin-RevId: 283339617
2019-12-02 07:52:00 -08:00
Alexander Belyaev 9630fcbc52 Lower linalg.indexed_generic with libcall to LLVM.
PiperOrigin-RevId: 283328994
2019-12-02 06:30:52 -08:00
Alex Zinenko d5e627f84b Introduce Linkage attribute to the LLVM dialect
LLVM IR supports linkage on global objects such as global variables and
functions. Introduce the Linkage attribute into the LLVM dialect, backed by an
integer storage. Use this attribute on LLVM::GlobalOp and make it mandatory.
Implement parsing/printing of the attribute and conversion to LLVM IR.

See tensorflow/mlir#277.

PiperOrigin-RevId: 283309328
2019-12-02 03:28:10 -08:00
Jacques Pienaar 52a7415178 Fix redundant convert and use NamedAttributeList as value
* Had leftover call that would result in converting to dictionary attr before
  being implicitedly converted back to NamedAttributeList;
* NamedAttributeList is value typed, so don't use const reference;

PiperOrigin-RevId: 283072576
2019-11-29 10:26:56 -08:00
Denis Khalikov cd556f25de [spirv] Check that operand of `spirv::CompositeExtractOp` is constant while folding.
Closes tensorflow/mlir#281

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/281 from denis0x0D:sandbox/composite_ex_fold d02d73658bd1b9eaa515eb4e0aee34bc41d4252b
PiperOrigin-RevId: 282971563
2019-11-28 13:27:56 -08:00
Alex Zinenko 2f16bf7ac9 Split out FunctionLike printing/parsing into FunctionImplementation.{h,cpp}
Helper utilies for parsing and printing FunctionLike Ops are only relevant to
the implementation of the Op, not its definition. They depend on
OpImplementation.h and increase the inclusion footprint of FunctionSupport.h,
and do so only to provide some utilities in the "impl" namespace. Move them to
a separate files, similarly to OpDefinition/OpImplementation distinction, and
make only Op implementations use them while keeping headers cleaner. NFC.

PiperOrigin-RevId: 282964556
2019-11-28 11:51:23 -08:00
Lei Zhang 5810efe1f1 NFC: A few cleanups for SPIRVLowering
Updated comments and used static instead of anonymous namspace
to hide functions to be consistent with the existing codebase.

PiperOrigin-RevId: 282847784
2019-11-27 15:55:42 -08:00
Lei Zhang a4d7650230 [spirv] NFC: Add getZero() and getOne() static method to ConstantOp
Getting constant zero or one is very common so it merits a special handy
method on spirv::ConstantOp itself.

PiperOrigin-RevId: 282832572
2019-11-27 14:13:01 -08:00
Lei Zhang d4e4387fbf [spirv] Add folders for spv.IAdd and spv.IMul
Adding zero and multiplying one can be common when generating code
for index calculation.

This CL also sorted canonicalize.mlir to alphabetical order.

PiperOrigin-RevId: 282828055
2019-11-27 13:46:52 -08:00
Nicolas Vasilache 1fa8c8070b Implement Linalg to loops lowering as a pattern
This CL rewrites the linalg ops to loops transformations as patterns that can be targeted directly from Tablegen. Reliance on OpFolder is removed and to cope with it we introduce local folding patterns that are applied greedily.

PiperOrigin-RevId: 282765550
2019-11-27 07:32:13 -08:00
Aart Bik e2232fbcee [VectorOps] Refine BroadcastOp in VectorOps dialect
Since second argument is always fully overwritten and
shape is define in "to" clause, it is not needed.
Also renamed "into" to "to" now that arg is dropped.

PiperOrigin-RevId: 282686475
2019-11-26 19:52:38 -08:00
Jacques Pienaar f27ceb7261 Add create method that takes equivalent of OperationState with NamedAttributeList
This method is close to creating an OperationState first and then unpacking it
but avoids creating the OperationState and takes a NamedAttributeList for
attributes rather than array of NamedAttribute (to enable reusing an already
created NamedAttributeList).

Reuse this new method via create that takes OperationState. I'll update inferReturnTypes in follow up to also take NamedAttributeList and so a build method that uses both inferReturnTypes and create can reuse the same list.

PiperOrigin-RevId: 282651642
2019-11-26 15:30:35 -08:00
Aart Bik cf97263cb8 [VectorOps] Add a BroadcastOp to the VectorOps dialect
PiperOrigin-RevId: 282643305
2019-11-26 14:43:31 -08:00
Mahesh Ravishankar 03620fa70a Misc changes to lowering to SPIR-V.
These changes to SPIR-V lowering while adding support for lowering
SUbViewOp, but are not directly related.
- Change the lowering of MemRefType to
  !spv.ptr<!spv.struct<!spv.array<...>[offset]>, ..>
  This is consistent with the Vulkan spec.
- To enable testing a simple pattern of lowering functions is added to
  ConvertStandardToSPIRVPass. This is just used to convert the type of
  the arguments of the function. The added function lowering itself is
  not meant to be the way functions are eventually lowered into SPIR-V
  dialect.

PiperOrigin-RevId: 282589644
2019-11-26 10:11:34 -08:00
Nicolas Vasilache 109338085d Relax restriction on affine_apply dim and symbol operands
The affine_apply operation is currently "doubly" affine and conflates two things:
1. it applies an affine map to a list of values of type `index` that are defined as either dim or symbol
2. it restricts (and propagates constraints on) the provenance of dims and symbols to a small subset of ops for which more restrictive polyhedral constraints apply.

Point 2. is related to the ability to form so-called static control parts and is related to dependence analysis and legality of transformations.

Point 1. however is completely independent, the only local implication of dims and symbol for affine_apply is that dims compose while symbols concatenate as well as the structural constraint that dims may not be multiplied.

The properties of composition and canonicalization in affine_apply are more generally useful. This CL relaxes the verifier on affine_apply so it can be used more generally.

The relevant affine.for/if/load/store op verifiers already implement the dim and symbol checking.

See this thread for the related discussion: https://groups.google.com/a/tensorflow.org/g/mlir/c/HkwCbV8D9N0/m/8srUNrX6CAAJ

PiperOrigin-RevId: 282562517
2019-11-26 07:39:05 -08:00
Lei Zhang 13c6e419ca Add support for AttrSizedOperandSegments/AttrSizedResultSegments
Certain operations can have multiple variadic operands and their size
relationship is not always known statically. For such cases, we need
a per-op-instance specification to divide the operands into logical
groups or segments. This can be modeled by attributes.

This CL introduces C++ trait AttrSizedOperandSegments for operands and
AttrSizedResultSegments for results. The C++ trait just guarantees
such size attribute has the correct type (1D vector) and values
(non-negative), etc. It serves as the basis for ODS sugaring that
with ODS argument declarations we can further verify the number of
elements match the number of ODS-declared operands and we can generate
handy getter methods.

PiperOrigin-RevId: 282467075
2019-11-25 17:26:50 -08:00
Nicolas Vasilache 174076a157 Use vector.InsertStridedSlice in Vector -> Vector unrolling
This CL uses the recently added op to finish the implementation of Vector -> Vector unrolling by replacing the "fake join op" by a series of InsertStridedSliceOp.

Test is updated accordingly

PiperOrigin-RevId: 282451126
2019-11-25 15:56:37 -08:00
Nicolas Vasilache 36469f7d2a Add a vector.InsertStridedSliceOp
This new op is the counterpart of vector.StridedSliceOp and will be used for in the pattern rewrites for vector unrolling.

PiperOrigin-RevId: 282447414
2019-11-25 15:37:13 -08:00
MLIR Team 1012c492f0 Allow LLVM::ExtractElementOp to have non-i32 indices.
Also change the text format a bit, so that indices are braced by squares.

PiperOrigin-RevId: 282437095
2019-11-25 14:44:52 -08:00
Ben Vanik 38d7870ee5 Make std.divis and std.diviu support ElementsAttr folding.
PiperOrigin-RevId: 282434465
2019-11-25 14:31:43 -08:00
Mahesh Ravishankar f87b2fd41b NFC: Actually expose the implementation of createGPUToSPIRVLoweringPass.
A mismatch in the function declaration and function definition,
prevented the implementation of the createGPUToSPIRVLoweringPass from
being exposed.

PiperOrigin-RevId: 282419815
2019-11-25 13:19:53 -08:00
Mahesh Ravishankar 7fd46bf258 Add missing rule to generate SPIR-V ABI Attribute using tblgen to CMake.
PiperOrigin-RevId: 282415592
2019-11-25 12:57:16 -08:00
Andy Davis 8fc44a4d13 Update VectorContractionOp to take iterator types and index mapping attributes compatible with linalg ops.
PiperOrigin-RevId: 282412311
2019-11-25 12:40:00 -08:00
Mahesh Ravishankar bd485afda0 Introduce attributes that specify the final ABI for a spirv::ModuleOp.
To simplify the lowering into SPIR-V, while still respecting the ABI
requirements of SPIR-V/Vulkan, split the process into two
1) While lowering a function to SPIR-V (when the function is an entry
   point function), allow specifying attributes on arguments and
   function itself that describe the ABI of the function.
2) Add a pass that materializes the ABI described in the function.

Two attributes are needed.
1) Attribute on arguments of the entry point function that describe
   the descriptor_set, binding, storage class, etc, of the
   spv.globalVariable this argument will be replaced by
2) Attribute on function that specifies workgroup size, etc. (for now
   only workgroup size).

Add the pass -spirv-lower-abi-attrs to materialize the ABI described
by the attributes.

This change makes the SPIRVBasicTypeConverter class unnecessary and is
removed, further simplifying the SPIR-V lowering path.

PiperOrigin-RevId: 282387587
2019-11-25 11:19:56 -08:00
Mahesh Ravishankar 1ea231bd39 Allow memref_cast from static strides to dynamic strides.
Memref_cast supports cast from static shape to dynamic shape
memrefs. The same should be true for strides as well, i.e a memref
with static strides can be casted to a memref with dynamic strides.

PiperOrigin-RevId: 282381862
2019-11-25 11:08:56 -08:00
Nicolas Vasilache 01145544aa Add vector.insertelement op
This is the counterpart of vector.extractelement op and has the same
limitations at the moment (static I64IntegerArrayAttr to express position).
This restriction will be filterd in the future.
LLVM lowering will be added in a subsequent commit.

PiperOrigin-RevId: 282365760
2019-11-25 08:47:15 -08:00
Alex Zinenko bf4692dc49 Introduce gpu.func
Introduce a new function-like operation to the GPU dialect to provide a
placeholder for the execution semantic description and to add support for GPU
memory hierarchy.  This aligns with the overall goal of the dialect to expose
the common abstraction layer for GPU devices, in particular by providing an
MLIR unit of semantics (i.e. an operation) for memory modeling.

This proposal has been discussed in the mailing list:
https://groups.google.com/a/tensorflow.org/d/msg/mlir/RfXNP7Hklsc/MBNN7KhjAgAJ
As decided, the "convergence" aspect of the execution model will be factored
out into a new discussion and therefore is not included in this commit. This
commit only introduces the operation but does not hook it up with the remaining
flow. The intention is to develop the new flow while keeping the old flow
operational and do the switch in a simple, separately reversible commit.

PiperOrigin-RevId: 282357599
2019-11-25 08:10:37 -08:00
Ben Vanik d2284f1f0b Support folding of StandardOps with DenseElementsAttr.
PiperOrigin-RevId: 282270243
2019-11-24 19:23:38 -08:00
Lei Zhang ae821fe626 NFC: Wire up DRR settings for SPIR-V canonicalization patterns
This CL added necessary files and settings for using DRR to
write SPIR-V canonicalization patterns and also converted the
patterns for spv.Bitcast and spv.LogicalNot.

PiperOrigin-RevId: 282132786
2019-11-23 06:59:23 -08:00
Uday Bondhugula 6a101671b0 Make isValidSymbol more powerful
The check in isValidSymbol, as far as a DimOp result went, checked if
the dim op was on a top-level memref. However, any alloc'ed, view, or
subview memref would be fine as long as the corresponding dimension of
that memref is either a static one or was in turn created using a valid
symbol in the case of dynamic dimensions.

Reported-by: Jose Gomez

Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>

Closes tensorflow/mlir#252

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/252 from bondhugula:symbol 7b57dc394df9375e651f497231c6e4525a32a662
PiperOrigin-RevId: 282097114
2019-11-22 22:09:31 -08:00
River Riddle b8ee563449 NFC: Remove unnecessarily guarded tablegen includes.
Support for including a file multiple times was added in tablegen, removing the need for these extra guards. This is because we already insert c/c++ style header guards within each of the specific .td files.

PiperOrigin-RevId: 282076728
2019-11-22 18:01:57 -08:00
Nicolas Vasilache 9a62ec8c96 Fix Windows Build
PiperOrigin-RevId: 282048102
2019-11-22 15:07:31 -08:00
Denis Khalikov a5cda4763f [spirv] Add a canonicalizer for `spirv::LogicalNotOp`.
Add a canonicalizer for `spirv::LogicalNotOp`.
Converts:
* spv.LogicalNot(spv.IEqual(...)) -> spv.INotEqual(...)
* spv.LogicalNot(spv.INotEqual(...)) -> spv.IEqual(...)
* spv.LogicalNot(spv.LogicalEqual(...)) -> spv.LogicalNotEqual(...)
* spv.LogicalNot(spv.LogicalNotEqual(...)) -> spv.LogicalEqual(...)

Also moved the test for spv.IMul to arithemtic tests.

Closes tensorflow/mlir#256

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/256 from denis0x0D:sandbox/canon_logical_not 76ab5787b2c777f948c8978db061d99e76453d44
PiperOrigin-RevId: 282012356
2019-11-22 12:25:52 -08:00
Mahesh Ravishankar 6db8530c26 Add more canonicalizations for SubViewOp.
Depending on which of the offsets, sizes, or strides are constant, the
subview op can be canonicalized in different ways. Add such
canonicalizations, which generalize the existing approach of
canonicalizing subview op only if all of offsets, sizes and shapes are
constants.

PiperOrigin-RevId: 282010703
2019-11-22 12:14:18 -08:00
Jean-Michel Gorius 104777d8e6 Unify vector op names with other dialects.
Change vector op names from VectorFooOp to Vector_FooOp and from
vector::VectorFooOp to vector::FooOp.

Closes tensorflow/mlir#257

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/257 from Kayjukh:master dfc3a0e04114885aaec8740d5951d6984d6e1577
PiperOrigin-RevId: 281967461
2019-11-22 08:24:49 -08:00
Nicolas Vasilache 6755543af5 Move Linalg Transforms that are actually Conversions - NFC
PiperOrigin-RevId: 281844602
2019-11-21 15:41:32 -08:00
River Riddle c35378003c Add support for using the ODS result names as the Asm result names for multi-result operations.
This changes changes the OpDefinitionsGen to automatically add the OpAsmOpInterface for operations with multiple result groups using the provided ODS names. We currently just limit the generation to multi-result ops as most single result operations don't have an interesting name(result/output/etc.). An example is shown below:
// The following operation:
def MyOp : ... {
  let results = (outs AnyType:$first, Variadic<AnyType>:$middle, AnyType);
}

// May now be printed as:
%first, %middle:2, %0 = "my.op" ...

PiperOrigin-RevId: 281834156
2019-11-21 14:55:46 -08:00
Nicolas Vasilache 0abec2744c Fix OSS builds - NFC
PiperOrigin-RevId: 281757979
2019-11-21 09:07:51 -08:00
Nicolas Vasilache 663c2f731b Drop unused function - NFC
PiperOrigin-RevId: 281741923
2019-11-21 07:09:14 -08:00
Nicolas Vasilache 2c4985816f Split Linalg declarative patterns from specific test patterns - NFC
This will make it easier to scale out test patterns and build specific passes that do not interfere with independent testing.

PiperOrigin-RevId: 281736335
2019-11-21 06:40:17 -08:00
Alex Zinenko b5af3784a6 Don't force newline before function attributes
Due to legacy reasons, a newline character followed by two spaces was always
inserted before the attributes of the function Op in pretty form. This breaks
formatting when functions are nested in some other operations. Don't print the
newline and just put the attributes on the same line, which is also more
consistent with module Op. Line breaking aware of indentation can be introduced
separately into the parser if deemed useful.

PiperOrigin-RevId: 281721793
2019-11-21 05:08:19 -08:00
River Riddle 4ea92a0586 NFC: Use Region::getBlocks to fix build failure with drop_begin.
PiperOrigin-RevId: 281656603
2019-11-20 19:30:46 -08:00
MLIR Team 75379a684f Correctly parse empty affine maps.
Previously the test case crashes / produces an error.

PiperOrigin-RevId: 281630540
2019-11-20 18:30:15 -08:00
River Riddle fafb708b9a Merge DCE and unreachable block elimination into a new utility 'simplifyRegions'.
This moves the different canonicalizations of regions into one place and invokes them in the fixed-point iteration of the canonicalizer.

PiperOrigin-RevId: 281617072
2019-11-20 15:53:19 -08:00
Andy Davis d6a70b31be Add VectorContractionOp to the VectorOps dialect.
PiperOrigin-RevId: 281605471
2019-11-20 14:53:57 -08:00
Mahesh Ravishankar 1145cebdab Verify subview op result has dynamic shape, when sizes are specified.
If the sizes are specified as arguments to the subview op, then the
shape must be dynamic as well.

PiperOrigin-RevId: 281591608
2019-11-20 14:16:05 -08:00
Sean Silva e4f83c6c26 Add multi-level DCE pass.
This is a simple multi-level DCE pass that operates pretty generically on
the IR. Its key feature compared to the existing peephole dead op folding
that happens during canonicalization is being able to delete recursively
dead cycles of the use-def graph, including block arguments.

PiperOrigin-RevId: 281568202
2019-11-20 12:55:10 -08:00
Mahesh Ravishankar 19212105dd Changes to SubViewOp to make it more amenable to canonicalization.
The current SubViewOp specification allows for either all offsets,
shape and stride to be dynamic or all of them to be static. There are
opportunities for more fine-grained canonicalization based on which of
these are static. For example, if the sizes are static, the result
memref is of static shape. The specification of SubViewOp is modified
to allow on or more of offsets, shapes and strides to be statically
specified. The verification is updated to ensure that the result type
of the subview op is consistent with which of these are static and
which are dynamic.

PiperOrigin-RevId: 281560457
2019-11-20 12:32:51 -08:00
Nicolas Vasilache fa14d4f6ab Implement unrolling of vector ops to finer-grained vector ops as a pattern.
This CL uses the pattern rewrite infrastructure to implement a simple VectorOps -> VectorOps legalization strategy to unroll coarse-grained vector operations into finer grained ones.
The transformation is written using local pattern rewrites to allow composition with other rewrites. It proceeds by iteratively introducing fake cast ops and cleaning canonicalizing or lowering them away where appropriate.

This is an example of writing transformations as compositions of local pattern rewrites that should enable us to make them significantly more declarative.

PiperOrigin-RevId: 281555100
2019-11-20 11:49:36 -08:00
River Riddle eb418559ef Add a new OpAsmOpInterface to allow for ops to directly hook into the AsmPrinter.
This interface provides more fine-grained hooks into the AsmPrinter than the dialect interface, allowing for operations to define the asm name to use for results directly on the operations themselves. The hook is also expanded to enable defining named result "groups". Get a special name to use when printing the results of this operation.
The given callback is invoked with a specific result value that starts a
result "pack", and the name to give this result pack. To signal that a
result pack should use the default naming scheme, a None can be passed
in instead of the name.

For example, if you have an operation that has four results and you want
to split these into three distinct groups you could do the following:

  setNameFn(getResult(0), "first_result");
  setNameFn(getResult(1), "middle_results");
  setNameFn(getResult(3), ""); // use the default numbering.

This would print the operation as follows:

  %first_result, %middle_results:2, %0 = "my.op" ...

PiperOrigin-RevId: 281546873
2019-11-20 10:45:45 -08:00
Alexander Belyaev e50261657f Fix 'the the' typo.
PiperOrigin-RevId: 281501234
2019-11-20 05:38:14 -08:00
Stephan Herhut abb626686d Extend kernel outlining to also consider dim worth inlining.
PiperOrigin-RevId: 281483447
2019-11-20 02:59:35 -08:00
Christian Sigg f868adafee Make type and rank explicit in mcuMemHostRegister function.
Fix registered size of indirect MemRefType kernel arguments.

PiperOrigin-RevId: 281362940
2019-11-19 13:13:02 -08:00
Nicolas Vasilache ee95f6f259 Add VectorOps.StridedSliceOp
The `vector.strided_slice` takes an n-D vector, k-D `offsets` integer array attribute, a
k-D `sizes` integer array attribute, a k-D `strides` integer array attribute and extracts
the n-D subvector at the proper offset.

Returns an n-D vector where the first k-D dimensions match the `sizes` attribute.
The returned subvector contains the elements starting at offset `offsets` and ending at
`offsets + sizes`.

Example:
```
  %1 = vector.strided_slice %0
      {offsets : [0, 2], sizes : [2, 4], strides : [1, 1]}:
    vector<4x8x16xf32> // returns a vector<2x4x16xf32>
```

This op will be useful for progressive lowering within the VectorOp dialect.

PiperOrigin-RevId: 281352749
2019-11-19 12:22:34 -08:00
Diego Caballero dd5a7cb488 Add getRemappedValue to ConversionPatternRewriter
This method is needed for N->1 conversion patterns to retrieve remapped
Values used in the original N operations.

Closes tensorflow/mlir#237

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/237 from dcaballe:dcaballe/getRemappedValue 1f64fadcf2b203f7b336ff0c5838b116ae3625db
PiperOrigin-RevId: 281321881
2019-11-19 11:09:39 -08:00
Eric Schweitz 06fb797b40 Add '*' and '?' and optional brace parse calls to the Parser
Closes tensorflow/mlir#245

PiperOrigin-RevId: 281321459
2019-11-19 10:14:15 -08:00
Alex Zinenko 8961d8e32f Change conversion CLI flag from -lower-to-llvm to -convert-std-to-llvm
The command-line flag name `lower-to-llvm` for the pass performing dialect
conversion from the Standard dialect to the LLVM dialect is misleading and
inconsistent with most of the conversion passses. It leads the user to believe
that there are no restrictions on what can be converted, while in fact only a
subset of the Standard dialect can be converted (with operations from other
dialects converted by separate passes). Use `convert-std-to-llvm` that better
reflects what the pass does and is consistent with most other conversions.

PiperOrigin-RevId: 281238797
2019-11-19 00:34:51 -08:00
Hanhan Wang c614c92fdc Support SPIR-V constant op to take DenseElementsAttr as input.
Iterates each element to build the array. This includes a little refactor to
combine bool/int/float into a function, since they are similar. The only
difference is calling different function in the end.

PiperOrigin-RevId: 281210288
2019-11-18 20:02:05 -08:00
Tian Jin d8563c0e3a Use SmallVectorImpl instead of SmallVector for function parameters (NFC)
Closes tensorflow/mlir#247

PiperOrigin-RevId: 281185661
2019-11-18 16:59:03 -08:00
Alexander Belyaev 8c6a5233d5 Lower linalg.indexed_generic to loops.
PiperOrigin-RevId: 281169885
2019-11-18 16:55:15 -08:00
Andy Davis a6a287335d Fix SubViewOp stride calculation in constant folding.
Adds unit tests for subview offset and stride argument constant folding.

PiperOrigin-RevId: 281161041
2019-11-18 15:01:08 -08:00
Denis Khalikov 6c77e59bfd [spirv] Add a canonicalizer for BitcastOp.
Convert chained `spirv::BitcastOp` operations into
one `spirv::BitcastOp` operation.

Closes tensorflow/mlir#238

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/238 from denis0x0D:sandbox/canon_bitcast 4352ed4f81b959ec92f849c599e733b62a99c010
PiperOrigin-RevId: 281129234
2019-11-18 12:37:00 -08:00
Jing Pu 563b5910a8 Also elide large array attribute in OpGraph Dump
PiperOrigin-RevId: 281114034
2019-11-18 11:27:43 -08:00
Alex Zinenko 062dd406b1 ConvertStandardToLLVM: replace assertion with graceful failure
The assertion was introduced in the early days of dialect conversion
infrastructure when we had the matching function separate from the rewriting
function. The infrastructure evolved to have a common matchAndRewrite function
and the separate matching function was dropped without chaning the rewriting
that became matchAndRewrite. This has led to assertion being triggered. Return
a matchFailure instead of failing an assertion on unsupported types.

Closes tensorflow/mlir#230

PiperOrigin-RevId: 281113741
2019-11-18 11:26:24 -08:00
Andy Davis 68a8da4a93 Fix Affine Loop Fusion test case reported on github.
This CL utilizies the more robust fusion feasibility analysis being built out in LoopFusionUtils, which will eventually be used to replace the current affine loop fusion pass.

PiperOrigin-RevId: 281112340
2019-11-18 11:20:37 -08:00
Nicolas Vasilache 9732bb533c Standardize all VectorOps class names to be prefixed by Vector - NFC
This improves consistency and will concretely avoid collisions between VectorExtractElementOp and ExtractElementOp when they are included in the same transforms / rewrites.

PiperOrigin-RevId: 281101588
2019-11-18 10:39:07 -08:00
Stephan Herhut f0f3b71d67 Implement folding of pattern dim(subview(_)[...][s1, ..., sn][...], i) -> si.
PiperOrigin-RevId: 281042016
2019-11-18 04:31:33 -08:00
Alex Zinenko b8dc3fd812 Rename CLI flags -lower-gpu-ops-to-*-ops to -convert-gpu-to-*
This makes the flags consistent with the naming scheme used elsewhere in the
codebase for dialect conversions.

PiperOrigin-RevId: 281027517
2019-11-18 02:43:10 -08:00
Denis Khalikov 68e48ba111 [spirv] Add bit ops
This CL added op definitions for a few bit operations:

* OpBitFieldInsert
* OpBitFieldSExtract
* OpBitFieldUExtract

Closes tensorflow/mlir#233

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/233 from denis0x0D:sandbox/bit_field_ops e7fd85b00d72d483d7992dc42b9cc4d673903455
PiperOrigin-RevId: 280691816
2019-11-15 11:03:19 -08:00
Lei Zhang a0986bf43d NFC: Convert CmpIPredicate in StandardOps to use EnumAttr
This turns several hand-written functions to auto-generated ones.

PiperOrigin-RevId: 280684326
2019-11-15 10:17:31 -08:00
Nicolas Vasilache 615b9ccdf0 Fix build warnings
Delete unused constexpr ints in LowerToLLVMDialect.
Add (void)toStringRef for non-debug builds.

Fixes tensorflow/mlir#232.

PiperOrigin-RevId: 280671014
2019-11-15 09:06:08 -08:00
Nicolas Vasilache 264a4635c8 Templatize linalg::LowerToLoops - NFC
This modification will allow to easily plug lowering of linalg ops to different types of loops (affine, loop.for and other future constructs).
This is purely NFC for now.

PiperOrigin-RevId: 280652186
2019-11-15 07:12:51 -08:00
Nicolas Vasilache 0b271b7dfe Refactor the LowerVectorTransfers pass to use the RewritePattern infra - NFC
This is step 1/n in refactoring infrastructure along the Vector dialect to make it ready for retargetability and composable progressive lowering.

PiperOrigin-RevId: 280529784
2019-11-14 15:40:07 -08:00
Mahesh Ravishankar a78bd84cf8 NFC: Refactor Dialect Conversion targeting SPIR-V.
Refactoring the conversion from StandardOps/GPU dialect to SPIR-V
dialect:
1) Move the SPIRVTypeConversion and SPIRVOpLowering class into SPIR-V
   dialect.
2) Add header files that expose functions to add patterns for the
   dialects to SPIR-V lowering, as well as a pass that does the
   dialect to SPIR-V lowering.
3) Make SPIRVOpLowering derive from OpLowering class.
PiperOrigin-RevId: 280486871
2019-11-14 12:34:54 -08:00
Andy Davis a4669cd3b4 Adds canonicalizer to SubViewOp which folds constants from base memref and operands into the subview result memref type.
Changes SubViewOp to support zero operands case, when offset, strides and sizes are all constant.

PiperOrigin-RevId: 280485075
2019-11-14 12:23:04 -08:00
Alex Zinenko e0a0ac4b00 Add CMakeLists.txt for AffineToStandard conversion
PiperOrigin-RevId: 280470142
2019-11-14 11:28:29 -08:00
Lei Zhang 796ca609eb [ODS] Fix operation argument population to avoid crash
The `Operator` class keeps an `arguments` field, which contains pointers
to `operands` and `attributes` elements. Thus it must be populated after
`operands` and `attributes` are finalized so to have stable pointers.
SmallVector may re-allocate when still having new elements added, which
will invalidate pointers.

PiperOrigin-RevId: 280466896
2019-11-14 11:03:29 -08:00
Alex Zinenko 971b8dd4d8 Move Affine to Standard conversion to lib/Conversion
This is essentially a dialect conversion and conceptually belongs to
conversions.

PiperOrigin-RevId: 280460034
2019-11-14 10:35:21 -08:00
Alex Zinenko b34a861d5a Make positions of elements in MemRef descriptor private
Previous commits removed all uses of LLVMTypeConverter::k*PosInMemRefDescriptor
outside of the MemRefDescriptor class. These numbers are an implementation
detail and can be hidden under a layer of more semantic APIs.

PiperOrigin-RevId: 280442444
2019-11-14 09:17:38 -08:00
Alex Zinenko bf5916e7a4 Use MemRefDescriptor in Vector-to-LLVM convresion
Following up on the consolidation of MemRef descriptor conversion, update
Vector-to-LLVM conversion to use the helper class that abstracts away the
implementation details of the MemRef descriptor. This also makes the types of
the attributes in emitted llvm.insert/extractelement operations consistently
i64 instead of a mix of index and i64.

PiperOrigin-RevId: 280441451
2019-11-14 09:05:42 -08:00
MLIR Team 62d5b1de45 Adapt code to LLVM API updates.
PiperOrigin-RevId: 280431812
2019-11-14 08:27:19 -08:00
Nicolas Vasilache f2b6ae9991 Move VectorOps to Tablegen - (almost) NFC
This CL moves VectorOps to Tablegen and cleans up the implementation.

This is almost NFC but 2 changes occur:
  1. an interface change occurs in the padding value specification in vector_transfer_read:
     the value becomes non-optional. As a shortcut we currently use %f0 for all paddings.
     This should become an OpInterface for vectorization in the future.
  2. the return type of vector.type_cast is trivial and simplified to `memref<vector<...>>`

Relevant roundtrip and invalid tests that used to sit in core are moved to the vector dialect.

The op documentation is moved to the .td file.

PiperOrigin-RevId: 280430869
2019-11-14 08:15:23 -08:00
Alex Zinenko 7c28de4aef Use MemRefDescriptor in Linalg-to-LLVM conversion
Following up on the consolidation of MemRef descriptor conversion, update
Linalg-to-LLVM conversion to use the helper class that abstracts away the
implementation details of the MemRef descriptor. This required MemRefDescriptor
to become publicly visible. Since this conversion is heavily EDSC-based,
introduce locally an additional wrapper that uses builder and location pointed
to by the EDSC context while emitting descriptor manipulation operations.

PiperOrigin-RevId: 280429228
2019-11-14 08:04:10 -08:00
Alex Zinenko ee5c2256ef Concentrate memref descriptor manipulation logic in one place
Memref descriptor is becoming increasingly complex. Memrefs are manipulated by
multiple standard instructions, each of which has a non-trivial lowering to the
LLVM dialect. This leads to verbose code that manipulates the descriptors
exposing the internals of insert/extractelement opreations. Implement a wrapper
class that contains a memref descriptor and provides semantically named methods
that build the primitive IR operations instead.

PiperOrigin-RevId: 280371225
2019-11-14 00:49:12 -08:00
Jacques Pienaar d1c99e10d0 Do not emit aliases when printing local form
Expand local scope printing to skip printing aliases as aliases are printed out at the top of a module and may not be part of the output generated by local scope print.

PiperOrigin-RevId: 280278617
2019-11-13 14:21:49 -08:00
Nicolas Vasilache 8abda15b3f Replace explicit concatenation by llvm::concat
PiperOrigin-RevId: 280258938
2019-11-13 12:54:29 -08:00
Nicolas Vasilache 0bd6390b54 Deprecate linalg.subview in favor of std.subview
This CL uses the now standard std.subview in linalg.
Two shortcuts are currently taken to allow this port:
1. the type resulting from a view is currently degraded to fully dynamic to pass the SubViewOp verifier.
2. indexing into SubViewOp may access out of bounds since lowering to LLVM does not currently enforce it by construction.

These will be fixed in subsequent commits after discussions.

PiperOrigin-RevId: 280250129
2019-11-13 12:10:09 -08:00
Sean Silva 486f2122cd Add FuncOp::eraseArgument
This is a quite complex operation that users are likely to attempt to write
themselves and get wrong (citation: users=me).

Ideally, we could pull this into FunctionLike, but for now, the
FunctionType rewriting makes it FuncOp specific. We would need some hook
for rewriting the function type (which for LLVM's func op, would need to
rewrite the underlying LLVM type).

PiperOrigin-RevId: 280234164
2019-11-13 10:59:55 -08:00
River Riddle d985c74883 NFC: Refactor block signature conversion to not erase the original arguments.
This refactors the implementation of block signature(type) conversion to not insert fake cast operations to perform the type conversion, but to instead create a new block containing the proper signature. This has the benefit of enabling the use of pre-computed analyses that rely on mapping values. It also leads to a much cleaner implementation overall. The major user facing change is that applySignatureConversion will now replace the entry block of the region, meaning that blocks generally shouldn't be cached over calls to applySignatureConversion.

PiperOrigin-RevId: 280226936
2019-11-13 10:27:53 -08:00
River Riddle 6df8369941 Rename the current parseSymbolName to parseOptionalSymbolName
The current implementation silently fails if the '@' identifier isn't present, making it similar to the 'optional' parse methods. This change renames the current implementation to 'Optional' and adds a new 'parseSymbolName' that emits an error.

PiperOrigin-RevId: 280214610
2019-11-13 09:32:20 -08:00
Hanhan Wang 85d7fb3324 Make VariableOp instructions be in the first block in the function.
Since VariableOp is serialized during processBlock, we add two more fields,
`functionHeader` and `functionBody`, to collect instructions for a function.
After all the blocks have been processed, we append them to the `functions`.

Also, fix a bug in processGlobalVariableOp. The global variables should be
encoded into `typesGlobalValues`.

PiperOrigin-RevId: 280105366
2019-11-12 18:59:15 -08:00
Mahesh Ravishankar 2be53603e9 Add operations needed to support lowering of AffineExpr to SPIR-V.
Lowering of CmpIOp, DivISOp, RemISOp, SubIOp and SelectOp to SPIR-V
dialect enables the lowering of operations generated by AffineExpr ->
StandardOps conversion into the SPIR-V dialect.

PiperOrigin-RevId: 280039204
2019-11-12 13:20:06 -08:00
River Riddle 8082e3a687 NFC: Change DictionaryAttr::get(StringRef) to use binary search instead of a linear scan.
The elements of a DictionaryAttr are guaranteed to be sorted by name, so we can use a more efficient lookup when searching for an attribute.

PiperOrigin-RevId: 280035488
2019-11-12 13:04:14 -08:00
Mahesh Ravishankar 9d985141ef Make legality check in GPU->SPIR-V lowering of FuncOp kernel specific.
Existing check that sets FuncOp to be dynamically legal was just
checking that the types of the argument are SPIR-V compatible. Since
the current conversion from GPU to SPIR-V does not handle lowering
non-kernel functions, change the legality check to verify that the
FuncOp has the gpu.kernel attribute and has void(void) return type.

PiperOrigin-RevId: 280032782
2019-11-12 12:52:53 -08:00
Lei Zhang b259c26eb0 Add support for OpPhi in loop header block
During deserialization, the loop header block will be moved into the
spv.loop's region. If the loop header block has block arguments,
we need to make sure it is correctly carried over to the block where
the new spv.loop resides.

During serialization, we need to make sure block arguments from the
spv.loop's entry block are not silently dropped.

PiperOrigin-RevId: 280021777
2019-11-12 12:00:28 -08:00
River Riddle 626e1fd95e Add an option to print an operation if a diagnostic is emitted on it
It is often helpful to inspect the operation that the error/warning/remark/etc. originated from, especially in the context of debugging or in the case of a verifier failure. This change adds an option 'mlir-print-op-on-diagnostic' that attaches the operation as a note to any diagnostic that is emitted on it via Operation::emit(Error|Warning|Remark). In the case of an error, the operation is printed in the generic form.

PiperOrigin-RevId: 280021438
2019-11-12 11:59:19 -08:00
Lei Zhang aa9dc9446e Expose an isSubclassOf() method on AttrConstraint
PiperOrigin-RevId: 280021408
2019-11-12 11:58:10 -08:00
Mahesh Ravishankar 104af84f4c Add Conversion to lower loop::ForOp to spirv::LoopOp.
loop::ForOp can be lowered to the structured control flow represented
by spirv::LoopOp by making the continue block of the spirv::LoopOp the
loop latch and the merge block the exit block. The resulting
spirv::LoopOp has a single back edge from the continue to header
block, and a single exit from header to merge.
PiperOrigin-RevId: 280015614
2019-11-12 11:33:27 -08:00
River Riddle c4a0883a92 Add a printer flag to use local scope when printing IR.
This causes the AsmPrinter to use a local value numbering when printing the IR, allowing for the printer to be used safely in a local context, e.g. to ensure thread-safety when printing the IR. This means that the IR printing instrumentation can also be used during multi-threading when module-scope is disabled. Operation::dump and DiagnosticArgument(Operation*) are also updated to always print local scope, as this is the most common use case when debugging.

PiperOrigin-RevId: 279988203
2019-11-12 09:37:11 -08:00
Nicolas Vasilache 51de3f688e Add LLVM lowering of std.subview
A followup CL will replace usage of linalg.subview by std.subview.

PiperOrigin-RevId: 279961981
2019-11-12 07:23:18 -08:00
Andy Davis 82d2c43eca Adds affine.min operation which returns the minimum value from a multi-result affine map. This operation is useful for things like computing the dynamic value of affine loop bounds, and is trivial to constant fold.
PiperOrigin-RevId: 279959714
2019-11-12 07:08:49 -08:00
Nicolas Vasilache f51a155337 Add support for alignment attribute in std.alloc.
This CL adds an extra pointer to the memref descriptor to allow specifying alignment.

In a previous implementation, we used 2 types: `linalg.buffer` and `view` where the buffer type was the unit of allocation/deallocation/alignment and `view` was the unit of indexing.

After multiple discussions it was decided to use a single type, which conflates both, so the memref descriptor now needs to carry both pointers.

This is consistent with the [RFC-Proposed Changes to MemRef and Tensor MLIR Types](https://groups.google.com/a/tensorflow.org/forum/#!searchin/mlir/std.view%7Csort:date/mlir/-wKHANzDNTg/4K6nUAp8AAAJ).

PiperOrigin-RevId: 279959463
2019-11-12 07:06:54 -08:00
River Riddle 6582489219 Restructure comment lexing to not recurse.
In some files that have large amounts of comments, this can lead to a stack overflow.

PiperOrigin-RevId: 279867330
2019-11-11 19:15:13 -08:00
River Riddle 9b9c647cef Add support for nested symbol references.
This change allows for adding additional nested references to a SymbolRefAttr to allow for further resolving a symbol if that symbol also defines a SymbolTable. If a referenced symbol also defines a symbol table, a nested reference can be used to refer to a symbol within that table. Nested references are printed after the main reference in the following form:

  symbol-ref-attribute ::= symbol-ref-id (`::` symbol-ref-id)*

Example:

  module @reference {
    func @nested_reference()
  }

  my_reference_op @reference::@nested_reference

Given that SymbolRefAttr is now more general, the existing functionality centered around a single reference is moved to a derived class FlatSymbolRefAttr. Followup commits will add support to lookups, rauw, etc. for scoped references.

PiperOrigin-RevId: 279860501
2019-11-11 18:18:31 -08:00
Andy Davis 5cf6e0ce7f Adds std.subview operation which takes dynamic offsets, sizes and strides and returns a memref type which represents sub/reduced-size view of its memref argument.
This operation is a companion operation to the std.view operation added as proposed in "Updates to the MLIR MemRefType" RFC.

PiperOrigin-RevId: 279766410
2019-11-11 10:33:27 -08:00
MLIR Team 9fbf52e330 Look for SymbolRefAttr in KernelOutlining instead of hard-coding CallOp
This code should be exercised using the existing kernel outlining unit test, but
let me know if I should add a dedicated unit test using a fake call instruction
as well.

PiperOrigin-RevId: 279436321
2019-11-08 19:13:13 -08:00
Jacques Pienaar bcfb3d4cd6 Explicitly initialize isRecursivelyLegal
This also previously triggered the warning:

warning: missing field 'isRecursivelyLegal' initializer [-Wmissing-field-initializers]
  legalOperations[op] = {action};
                               ^
PiperOrigin-RevId: 279399175
2019-11-08 15:06:34 -08:00
Denis Khalikov 4697d657b7 [spirv] Add bit ops
This CL added op definitions for a few bit operations:

* OpShiftLeftLogical
* OpShiftRightArithmetic
* OpShiftRightLogical
* OpBitCount
* OpBitReverse
* OpNot

Also moved the definition of spv.BitwiseAnd to follow the
lexicographical order.

Closes tensorflow/mlir#215

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/215 from denis0x0D:sandbox/bit_ops d9b0852b689ac6c4879a9740b1740a2357f44d24
PiperOrigin-RevId: 279350470
2019-11-08 11:17:05 -08:00
Alex Zinenko 09e8e7107a mlir-translate: support -verify-diagnostics
MLIR translation tools can emit diagnostics and we want to be able to check if
it is indeed the case in tests. Reuse the source manager error handlers
provided for mlir-opt to support the verification in mlir-translate. This
requires us to change the signature of the functions that are registered to
translate sources to MLIR: it now takes a source manager instead of a memory
buffer.

PiperOrigin-RevId: 279132972
2019-11-07 11:42:46 -08:00
Uday Bondhugula eb47d5ee66 Fix asm printer for affine expr
- fixes tensorflow/mlir#201

Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>

Closes tensorflow/mlir#204

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/204 from bondhugula:printfix 3f8a5b65391f45598258b2735fecaa409fbde848
PiperOrigin-RevId: 279115720
2019-11-07 10:27:27 -08:00
Andy Davis 8f00b4494d Swap operand order in std.view operation so that offset appears before dynamic sizes in the operand list.
PiperOrigin-RevId: 279114236
2019-11-07 10:20:23 -08:00
Andy Davis 5fbdb67b0a Add canonicalizer for ViewOp which folds constants into the ViewOp memref shape and layout map strides and offset.
PiperOrigin-RevId: 279088023
2019-11-07 08:05:03 -08:00
Nicolas Vasilache 72040bf7c8 Update Linalg to use std.view
Now that a view op has graduated to the std dialect, we can update Linalg to use it and remove ops that have become obsolete. As a byproduct, the linalg buffer and associated ops can also disappear.

PiperOrigin-RevId: 279073591
2019-11-07 06:33:10 -08:00
Alexander Belyaev eee9cbdeb7 Add IndexedGenericOp to Linalg.
PiperOrigin-RevId: 279013404
2019-11-06 22:36:25 -08:00
Sean Silva f6188b5b07 Replace some remnant uses of "inst" with "op".
PiperOrigin-RevId: 278961676
2019-11-06 16:09:23 -08:00
Nicolas Vasilache 7f6c6084b5 Add lowering of std.view to LLVM
This CL ports the lowering of linalg.view to the newly introduced std.view.
Differences in implementation relate to std.view having slightly different semantics:
1. a static or dynamic offset can be specified.
2. the size of the (contiguous) shape is passed instead of a range.
3. static size and stride information is extracted from the memref type rather than the range.

Besides these differences, lowering behaves the same.
A future CL will update Linalg to use this unified infrastructure.

PiperOrigin-RevId: 278948853
2019-11-06 15:06:16 -08:00
Ben Vanik 68bd355505 Adding an m_NonZero constant integer matcher.
This is useful for making matching cases where a non-zero value is required more readable, such as the results of a constant comparison that are expected to be equal.

PiperOrigin-RevId: 278932874
2019-11-06 14:01:55 -08:00
Andy Davis b5654d1311 Add ViewOp verification for dynamic strides, and address some comments from previous change.
PiperOrigin-RevId: 278903187
2019-11-06 11:25:54 -08:00
Andy Davis c38dca7f4b Add ViewOp to the StandardOps dialect, which casts a 1D/i8 element type memref type to an N-D memref type.
Proposed in RFC: https://groups.google.com/a/tensorflow.org/forum/#!searchin/mlir/std.view%7Csort:date/mlir/-wKHANzDNTg/4K6nUAp8AAAJ

Supports creating the N-D memref type with dynamic sizes and at a dynamic offset within the 1D base memref.
This change contains op definition/parsing/printing and tests. Follow up changes will handle constant shape/layout map folding and llvm lowering.

PiperOrigin-RevId: 278869990
2019-11-06 08:54:12 -08:00
River Riddle 146f7de50d NFC: Remove an extra space when printing the 'attributes' prefix before a dictionary.
PiperOrigin-RevId: 278795313
2019-11-05 23:39:52 -08:00
River Riddle 8e0f4860cd Add (parse|print)OptionalAttrDictWithKeyword hooks to simplify parsing attribute dictionaries with regions.
Many operations with regions add an additional 'attributes' prefix when printing the attribute dictionary to differentiate it from the region body. This leads to duplicated logic for detecting when to actually print the attribute dictionary.

PiperOrigin-RevId: 278747681
2019-11-05 17:58:48 -08:00
James Molloy 250a11ae0f [llvm] Allow GlobalOp to take a region for complex initializers
This allows GlobalOp to either take a value attribute (for simple constants) or a region that can
contain IR instructions (that must be constant-foldable) to create a ConstantExpr initializer.

Example:
  // A complex initializer is constructed with an initializer region.
  llvm.mlir.global constant @int_gep() : !llvm<"i32*"> {
    %0 = llvm.mlir.addressof @g2 : !llvm<"i32*">
    %1 = llvm.mlir.constant(2 : i32) : !llvm.i32
    %2 = llvm.getelementptr %0[%1] : (!llvm<"i32*">, !llvm.i32) -> !llvm<"i32*">
    llvm.return %2 : !llvm<"i32*">
  }
PiperOrigin-RevId: 278717836
2019-11-05 15:11:01 -08:00
James Molloy 6b534ecbcb [llvm] Add initial import of LLVM modules to mlir-translate
This adds an importer from LLVM IR or bitcode to the LLVM dialect. The importer is registered with mlir-translate.

Known issues exposed by this patch but not yet fixed:
  * Globals' initializers are attributes, which makes it impossible to represent a ConstantExpr. This will be fixed in a followup.
  * icmp returns i32 rather than i1.
  * select and a couple of other instructions aren't implemented.
  * llvm.cond_br takes its successors in a weird order.

The testing here is known to be non-exhaustive.

I'd appreciate feedback on where this functionality should live. It looks like the translator *from MLIR to LLVM* lives in Target/, but the SPIR-V deserializer lives in Dialect/ which is why I've put this here too.

PiperOrigin-RevId: 278711683
2019-11-05 14:41:38 -08:00
River Riddle 8fa9d82606 NFC: Rename parseOptionalAttributeDict -> parseOptionalAttrDict to match the name of the print method.
PiperOrigin-RevId: 278696668
2019-11-05 13:32:47 -08:00
River Riddle 2366561a39 Add a PatternRewriter hook to merge blocks, and use it to support for folding branches.
A pattern rewriter hook, mergeBlock, is added that allows for merging the operations of one block into the end of another. This is used to support a canonicalization pattern for branch operations that folds the branch when the successor has a single predecessor(the branch block).

Example:
  ^bb0:
    %c0_i32 = constant 0 : i32
    br ^bb1(%c0_i32 : i32)
  ^bb1(%x : i32):
    return %x : i32

becomes:
  ^bb0:
    %c0_i32 = constant 0 : i32
    return %c0_i32 : i32
PiperOrigin-RevId: 278677825
2019-11-05 11:57:38 -08:00
MLIR Team 1f43d0d000 [NVVM] Add mma.sync operation.
PiperOrigin-RevId: 278440547
2019-11-04 12:36:37 -08:00
River Riddle e4a912eb5a Update the SPV dialect type parser to use the methods on DialectAsmParser directly.
This simplifies the implementation quite a bit, and removes the need for explicit string munging. One change is made to some of the enum elements of SPV_DimAttr to ensure that they are proper identifiers; The string form is now prefixed with 'Dim'.

PiperOrigin-RevId: 278027132
2019-11-01 16:55:25 -07:00
Nicolas Vasilache 9fc1772776 Drop spurious debug spew.
PiperOrigin-RevId: 278023371
2019-11-01 16:32:02 -07:00
River Riddle 68cfc89a0d Refactor LinalgDialect::parseType to use the DialectAsmParser methods directly.
This simplifies the implementation, and removes the need to do explicit string manipulation. A utility method 'parseDimensionList' is added to the DialectAsmParser to simplify defining types and attributes that contain shapes.

PiperOrigin-RevId: 278020604
2019-11-01 16:14:10 -07:00
River Riddle e94a8bfca8 Refactor QuantOps TypeParser to use the DialectAsmParser methods directly.
This greatly simplifies the implementation and removes custom parser functionality. The necessary methods are added to the DialectAsmParser.

PiperOrigin-RevId: 278015983
2019-11-01 15:47:03 -07:00
River Riddle 2ba4d802e0 Remove the need for passing a location to parseAttribute/parseType.
Now that a proper parser is passed to these methods, there isn't a need to explicitly pass a source location. The source location can be recovered from the parser as necessary. This removes the need to explicitly decode an SMLoc in the case where we don't need to, which can be expensive.

This requires adding some basic nesting support to the parser for supporting nested parsers to allow for remapping source locations of the nested parsers to the top level parser for accurate diagnostics. This is due to the fact that the attribute and type parsers use different source buffers than the top level parser, as they may be represented in string form.

PiperOrigin-RevId: 278014858
2019-11-01 15:40:16 -07:00
River Riddle 445cc3f6dd Add DialectAsmParser/Printer classes to simplify dialect attribute and type parsing.
These classes are functionally similar to the OpAsmParser/Printer classes and provide hooks for parsing attributes/tokens/types/etc. This change merely sets up the base infrastructure and updates the parser hooks, followups will add hooks as needed to simplify existing handrolled dialect parsers.

This has various different benefits:
*) Attribute/Type parsing is much simpler to define.
*) Dialect attributes/types that contain other attributes/types can now use aliases.
*) It provides a 'spec' with which we may use in the future to auto-generate parsers/printers.
*) Error messages emitted by attribute/type parsers can provide character exact locations rather than "beginning of the string"

PiperOrigin-RevId: 278005322
2019-11-01 14:48:16 -07:00
Lei Zhang 2fa865719b Move BitEnumAttr from SPIRVBase.td to OpBase.td
BitEnumAttr is a mechanism for modelling attributes whose value is
a bitfield. It should not be scoped to the SPIR-V dialect and can
be used by other dialects too.

This CL is mostly shuffling code around and adding tests and docs.
Functionality changes are:

* Fixed to use `getZExtValue()` instead of `getSExtValue()` when
  getting the value from the underlying IntegerAttr for a case.
* Changed to auto-detect whether there is a case whose value is
  all bits unset (i.e., zero). If so handle it specially in all
  helper methods.

PiperOrigin-RevId: 277964926
2019-11-01 11:18:19 -07:00
Mahesh Ravishankar 9cbbd8f4df Support lowering of imperfectly nested loops into GPU dialect.
The current lowering of loops to GPU only supports lowering of loop
nests where the loops mapped to workgroups and workitems are perfectly
nested. Here a new lowering is added to handle lowering of imperfectly
nested loop body with the following properties
1) The loops partitioned to workgroups are perfectly nested.
2) The loop body of the inner most loop partitioned to workgroups can
contain one or more loop nests that are to be partitioned across
workitems. Each individual loops nests partitioned to workitems should
also be perfectly nested.
3) The number of workgroups and workitems are not deduced from the
loop bounds but are passed in by the caller of the lowering as values.
4) For statements within the perfectly nested loop nest partitioned
across workgroups that are not loops, it is valid to have all threads
execute that statement. This is NOT verified.

PiperOrigin-RevId: 277958868
2019-11-01 10:52:06 -07:00
Nicolas Vasilache bd94a10c02 Add Linalg pattern for producer-consumer fusion
This CL adds a simple pattern for specifying producer-consumer fusion on Linalg operations.

Implementing such an extension reveals some interesting properties.
Since Linalg operates on a buffer abstraction, the output buffers are specified as in/out parameters to the ops. As a consequence, there are no SSA use-def chains and one cannot specify complex dag input patterns with the current infrastructure.

Instead this CL uses constraints based on the existing linalg dependence analysis to focus the pattern and refine patterns based on the type of op that last wrote in a buffer.

This is a very local property and is less powerful than the generic dag specification based on SSA use-def chains.

This will be generalized in the future.

PiperOrigin-RevId: 277931503
2019-11-01 08:30:38 -07:00
Lei Zhang 7432234f3c NFC: Use #ifndef in various .td files instead of #ifdef and #else
Upstream LLVM gained support for #ifndef with https://reviews.llvm.org/D61888

This is changed mechanically via the following command:

find . -name "*.td" -exec sed -i -e ':a' -e 'N' -e '$!ba' -e 's/#ifdef \([A-Z_]*\)\n#else/#ifndef \1/g' {} \;

PiperOrigin-RevId: 277789427
2019-10-31 13:29:50 -07:00
Alex Zinenko f9a4d3bdb0 LinalgDependenceGraph: add const modifiers to accessors
MLIR const-correctness policy is to avoid having `const` on IR objects.
LinalgDependenceGraph is not an IR object but an auxiliary data structure.
Furthermore, it is not updated once constructed unlike IR objects. Add const
qualifiers to get* and find* methods of LinalgDependenceGraph since they are
not modifying the graph. This allows transformation functions that require the
dependence graph to take it by const-reference, clearly indicating that they
are not modifying it (and that the graph may have to be recomputed after the
transformation).

PiperOrigin-RevId: 277731608
2019-10-31 08:59:12 -07:00
Denis Khalikov d423d4a338 [spirv] Add cast operations
This CL added op definitions for a few cast operations:

* OpConvertFToU
* OpConvertFToS
* OpConvertSToF
* OpConvertUToF
* OpUConvert
* OpSConvert
* OpFConvert

Also moved the definition of spv.Bitcast to the new file.

Closes tensorflow/mlir#208 and tensorflow/mlir#174

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/208 from denis0x0D:sandbox/cast_ops 79bc9b37398aafddee6cf6beb301807988fe67f9
PiperOrigin-RevId: 277587891
2019-10-30 14:53:04 -07:00
Jing Pu 736ad2061c Dump op location in createPrintOpGraphPass for easier debugging.
PiperOrigin-RevId: 277546527
2019-10-30 11:22:22 -07:00
River Riddle a32f0dcb5d Add support to GreedyPatternRewriter for erasing unreachable blocks.
Rewrite patterns may make modifications to the CFG, including dropping edges between blocks. This change adds a simple unreachable block elimination run at the end of each iteration to ensure that the CFG remains valid.

PiperOrigin-RevId: 277545805
2019-10-30 11:19:24 -07:00
River Riddle 0568e952b6 Add a utility accessor 'has_single_element' for ranges.
This provides an easy way to check if a range has a single element.

PiperOrigin-RevId: 277544647
2019-10-30 11:14:30 -07:00
Lei Zhang cb40e36d3b Fix segfault when no symbol is given to an constraint operand
This fixed the segfault when we see the following pattern:
  Pat<(...), (...), [(... 1, 2, 3), ...]>

PiperOrigin-RevId: 277544300
2019-10-30 11:12:57 -07:00
Nicolas Vasilache 05a5a41416 Add basic support for declarative Linalg transformations
Linalg ops provide a good anchor for pattern matching/rewriting transformations.
This CL adds a simple example of how multi-level tiling may be specified by attaching a simple StringAttr to ops as they are transformed so we can easily specify partial lowering to control transformation application.

This is a first stab at taking advantage of higher-level information contained in Linalg ops and will evolve in the future.

PiperOrigin-RevId: 277497958
2019-10-30 07:12:33 -07:00
Lei Zhang 80213ba5f0 [spirv] Fix gen_spirv_dialect.py and add spv.Unreachable
This CL fixed gen_spirv_dialect.py to support nested delimiters when
chunking existing ODS entries in .td files and to allow ops without
correspondence in the spec. This is needed to pull in the definition
of OpUnreachable.

PiperOrigin-RevId: 277486465
2019-10-30 05:41:18 -07:00
Diego Caballero c87c7f5732 Bugfix: Keep worklistMap in sync with worklist in GreedyPatternRewriter
When we removed a pattern, we removed it from worklist but not from
worklistMap. Then, when we tried to add a new pattern on the same Operation
again, the pattern wasn't added since it already existed in the
worklistMap (but not in the worklist).

Closes tensorflow/mlir#211

PiperOrigin-RevId: 277319669
2019-10-29 10:58:31 -07:00
Lei Zhang 8656af1e82 [spirv] Use LLVM graph traversal utility for PrettyBlockOrderVisitor
This removes a bunch of special tailored DFS code in favor of the common
LLVM utility. Besides, we avoid recursion with system stack given that
llvm::depth_first_ext is iterator based and maintains its own stack.
PiperOrigin-RevId: 277272961
2019-10-29 07:04:00 -07:00
Mahesh Ravishankar 61225d678e Add a convenient operation build method for spirv::SelectOp
The SelectOp always has the same result type as its true/false
value. Add a builder method that uses the operand type to get the
result type.

PiperOrigin-RevId: 277217978
2019-10-28 23:04:36 -07:00
Lei Zhang ca2538e9a7 [spirv] Support OpPhi using block arguments
This CL adds another control flow instruction in SPIR-V: OpPhi.
It is modelled as block arguments to be idiomatic with MLIR.
See the rationale.md doc for "Block Arguments vs PHI nodes".
Serialization and deserialization is updated to convert between
block arguments and SPIR-V OpPhi instructions.

PiperOrigin-RevId: 277161545
2019-10-28 15:58:42 -07:00
Sean Silva 66ec24d833 Parse locations in parseGenericOperation
For ops that recursively re-enter the parser to parse an operation (such as
ops with a "wraps" pretty form), this ensures that the wrapped op will parse
its location, which can then be used for the locations of the wrapping op
and any other implicit ops.

PiperOrigin-RevId: 277152636
2019-10-28 15:11:26 -07:00
Nicolas Vasilache 98226e62ec Standardize Linalg transformations to take an OpBuilder and an OperationFolder - NFC
This will be used to specify declarative Linalg transformations in a followup CL. In particular, the PatternRewrite mechanism does not allow folding and has its own way of tracking erasure.

PiperOrigin-RevId: 277149158
2019-10-28 14:56:20 -07:00
River Riddle 2f4d0c085a Add support for marking an operation as recursively legal.
In some cases, it may be desirable to mark entire regions of operations as legal. This provides an additional granularity of context to the concept of "legal". The `ConversionTarget` supports marking operations, that were previously added as `Legal` or `Dynamic`, as `recursively` legal. Recursive legality means that if an operation instance is legal, either statically or dynamically, all of the operations nested within are also considered legal. An operation can be marked via `markOpRecursivelyLegal<>`:

```c++
ConversionTarget &target = ...;

/// The operation must first be marked as `Legal` or `Dynamic`.
target.addLegalOp<MyOp>(...);
target.addDynamicallyLegalOp<MySecondOp>(...);

/// Mark the operation as always recursively legal.
target.markOpRecursivelyLegal<MyOp>();
/// Mark optionally with a callback to allow selective marking.
target.markOpRecursivelyLegal<MyOp, MySecondOp>([](Operation *op) { ... });
/// Mark optionally with a callback to allow selective marking.
target.markOpRecursivelyLegal<MyOp>([](MyOp op) { ... });
```

PiperOrigin-RevId: 277086382
2019-10-28 10:04:34 -07:00
Christian Sigg e38fe4a7af Print reason why dynamic library could not be loaded during execution.
PiperOrigin-RevId: 277037138
2019-10-28 04:25:15 -07:00
Alexander Belyaev 663f9e0c9f Lookup function declaration in SymbolTable not ModuleOp.
PiperOrigin-RevId: 277033167
2019-10-28 03:45:53 -07:00
Alexander Belyaev 780a108d31 Fix include guards and add tests for OpToFuncCallLowering.
PiperOrigin-RevId: 276859463
2019-10-26 08:21:36 -07:00
River Riddle b69e8ee049 Add support for parsing multiple result name groups.
This allows for parsing things like:

%name_1, %name_2:5, %name_3:2 = "my.op" ...

This is useful for operations that have groups of variadic result values. The
total number of results is expected to match the number of results defined by
the operation.

PiperOrigin-RevId: 276703280
2019-10-25 09:34:02 -07:00
Denis Khalikov dd2e444325 [spirv] AccessChainOp canonicalization.
Combine chained `spirv::AccessChainOp` operations into one
`spirv::AccessChainOp` operation.

Closes tensorflow/mlir#198

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/198 from denis0x0D:sandbox/canon_access_chain 0cb87955a85511071143d62637ff939d0dabc2bd
PiperOrigin-RevId: 276609345
2019-10-24 18:41:34 -07:00
River Riddle 2b61b7979e Convert the Canonicalize and CSE passes to generic Operation Passes.
This allows for them to be used on other non-function, or even other function-like, operations. The algorithms are already generic, so this is simply changing the derived pass type. The majority of this change is just ensuring that the nesting of these passes remains the same, as the pass manager won't auto-nest them anymore.

PiperOrigin-RevId: 276573038
2019-10-24 15:01:09 -07:00
River Riddle ef43b56538 Add support for replacing all uses of a symbol.
This requires reconstructing the attribute dictionary of each operation containing a use.

PiperOrigin-RevId: 276520544
2019-10-24 10:47:27 -07:00
Mehdi Amini f56d8187fa Add missing dependency on MLIRIR on MLIREDSCInterface
MLIRIR includes generated header for interfaces, including these headers require
an extra dependency to ensure these headers are generated before we attempt to
build MLIREDSCInterface.

PiperOrigin-RevId: 276518255
2019-10-24 10:37:56 -07:00
Alexander Belyaev d2ce435dba Add custom lowering of ExpOp for NVVM and ROCM.
PiperOrigin-RevId: 276440911
2019-10-24 01:41:57 -07:00
Alexander Belyaev 9a18ff3d62 Wrap ODS to 80 lines and remove const qualifier for local `int` variable (NFC)
This addresses post-submit comments on 00d2a37e32

PiperOrigin-RevId: 276419770
2019-10-23 22:30:33 -07:00
River Riddle 21ee4e987f Add @below and @above directives to verify-diagnostics.
This simplifies defining expected-* directives when there are multiple that apply to the next or previous line. @below applies the directive to the next non-designator line, i.e. the next line that does not contain an expected-* designator. @above applies to the previous non designator line.

Examples:

// Expect an error on the next line that does not contain a designator.
// expected-remark@below {{remark on function below}}
// expected-remark@below {{another remark on function below}}
func @bar(%a : f32)

// Expect an error on the previous line that does not contain a designator.
func @baz(%a : f32)
// expected-remark@above {{remark on function above}}
// expected-remark@above {{another remark on function above}}

PiperOrigin-RevId: 276369085
2019-10-23 15:56:29 -07:00
Alex Zinenko edffbbcdae Fix "set-but-unused" warning in DialectConversion
The variable in question is only used in an assertion,
leading to a warning in opt builds.

PiperOrigin-RevId: 276352259
2019-10-23 14:32:13 -07:00
Alex Zinenko 0d33703f2a Drop MemRefUtils from the ExecutionEngine
The ExecutionEngine was updated recently to only take the LLVM dialect as
input. Memrefs are no longer expected in the signature of the entry point
function by the executor so there is no need to allocate and free them. The
code in MemRefUtils is therefore dead and furthermore out of sync with the
recent evolution of memref type to support strides. Drop it.

PiperOrigin-RevId: 276272302
2019-10-23 07:43:06 -07:00
Uday Bondhugula ad6925f479 Update loop.for verifier message
fix: nonnegative -> positive

Closes tensorflow/mlir#206

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/206 from bondhugula:bondhugula-patch-1 9a47ca7dfd230180a9df33e9a64b33d02252d30a
PiperOrigin-RevId: 276060885
2019-10-22 07:34:56 -07:00
River Riddle 057ee97c73 NFC: Add support for parsing attributes programmatically via mlir::parseAttribute.
This matches the behavior of the public mlir::parseType, and even uses the internal implementation.

PiperOrigin-RevId: 275989777
2019-10-21 21:34:51 -07:00
Lei Zhang 020f9eb68c [DRR] Allow interleaved operands and attributes
Previously DRR assumes attributes to appear after operands. This was the
previous requirements on ODS, but that has changed some time ago. Fix
DRR to also support interleaved operands and attributes.

PiperOrigin-RevId: 275983485
2019-10-21 20:48:17 -07:00
Lei Zhang d9fe892e42 [spirv] Allow block arguments on spv.Branch(Conditional)
We will use block arguments as the way to model SPIR-V OpPhi in
the SPIR-V dialect.

This CL also adds a few useful helper methods to both ops to
get the block arguments.

Also added tests for branch weight (de)serialization.

PiperOrigin-RevId: 275960797
2019-10-21 17:32:00 -07:00
Christian Sigg b74af4aa5c Unify GPU op definition names with other dialects.
Rename GPU op names from gpu_Foo to GPU_FooOp.

PiperOrigin-RevId: 275882232
2019-10-21 11:10:56 -07:00
River Riddle 03d7be2aca NFC: Elide the value of a UnitAttr within nested attribute dictionaries.
This matches the behavior of the top level attribute dictionary.

PiperOrigin-RevId: 275879828
2019-10-21 11:02:07 -07:00
River Riddle 9ac459e871 Add a Symbol trait to simplify defining operations that represent symbols.
This trait provides accessors for the name, symbol use list methods, verification, with more to be added.

PiperOrigin-RevId: 275864554
2019-10-21 09:58:59 -07:00
Kazuaki Ishizaki 8bfedb3ca5 Fix minor spelling tweaks (NFC)
Closes tensorflow/mlir#177

PiperOrigin-RevId: 275692653
2019-10-20 00:11:34 -07:00
Jacques Pienaar 305dafd3b1 Add missing include to StringMap in Verifier and DialectConversion.
PiperOrigin-RevId: 275656416
2019-10-19 13:39:02 -07:00
Mehdi Amini 5b1345ff76 Add missing include to llvm Allocator.h
This header is not self-contained otherwise.

PiperOrigin-RevId: 275651582
2019-10-19 12:11:01 -07:00
Geoffrey Martin-Noble bc577eaf44 Use new eraseOp instead of replaceOp with empty values
PiperOrigin-RevId: 275631166
2019-10-19 06:04:18 -07:00
Christian Sigg c3e56cd12c Get active source lane predicate from shuffle instruction.
nvvm.shfl.sync.bfly optionally returns a predicate whether source lane was active. Support for this was added to clang in https://reviews.llvm.org/D68892.

Add an optional 'pred' unit attribute to the instruction to return this predicate. Specify this attribute in the partial warp reduction so we don't need to manually compute the predicate.

PiperOrigin-RevId: 275616564
2019-10-19 01:53:25 -07:00
River Riddle 5f6bdd144a NFC: Cleanup the implementation of walkSymbolUses.
Refactor the implementation to be much cleaner by adding a `make_second_range` utility to walk the `second` value of a range of pairs.

PiperOrigin-RevId: 275598985
2019-10-18 21:29:15 -07:00
Lei Zhang c5b9fefddc NFC: Rename SPIR-V serializer find*ID() to get*ID() to be consistent
We use get*() in deserizer and other places across the codebase.

PiperOrigin-RevId: 275582390
2019-10-18 18:16:05 -07:00
Sean Silva 9c9a7e9268 Add support for function result attributes.
This allows dialect-specific attributes to be attached to func results. (or more specifically, FunctionLike ops).

For example:

```
func @f() -> (i32 {my_dialect.some_attr = 3})
```

This attaches my_dialect.some_attr with value 3 to the first result of func @f.

Another more complex example:

```
func @g() -> (i32, f32 {my_dialect.some_attr = "foo", other_dialect.some_other_attr = [1,2,3]}, i1)
```

Here, the second result has two attributes attached.

PiperOrigin-RevId: 275564165
2019-10-18 16:03:28 -07:00
Nicolas Vasilache 9e7e297da3 Lower vector transfer ops to loop.for operations.
This allows mixing linalg operations with vector transfer operations (with additional modifications to affine ops) and is a step towards solving tensorflow/mlir#189.

PiperOrigin-RevId: 275543361
2019-10-18 14:10:10 -07:00
Nicolas Vasilache 2823b68580 Implement lowering of VectorTypeCastOp to LLVM
A VectorTypeCastOp can only be used to lower between statically sized contiguous memrefs of scalar and matching vector type. The sizes and strides are thus fully static and easy to determine.

A relevant test is added.

This is a step towards solving tensorflow/mlir#189.

PiperOrigin-RevId: 275538981
2019-10-18 14:00:06 -07:00
Nicolas Vasilache 151e7e61e8 Automated rollback of commit 575405f4d6
PiperOrigin-RevId: 275461067
2019-10-18 06:45:06 -07:00