The job of the CompactUnwind pass is to turn __compact_unwind data (and
__eh_frame) into the compressed final form in __unwind_info. After it's done,
the original atoms are no longer relevant and should be deleted (they cause
problems during actual execution, quite apart from the fact that they're not
needed).
llvm-svn: 221301
The darwin linker has the -demangle option which directs it to demangle C++
(and soon Swift) mangled symbol names. Long term we need some Diagnostics object
for formatting errors and warnings. But for now we have the Core linker just
writing messages to llvm::errs(). So, to enable demangling, I changed the
Resolver to call a LinkingContext method on the symbol name.
To make this more interesting, the demangling code is done via __cxa_demangle()
which is part of the C++ ABI, which is only supported on some platforms, so I
had to conditionalize the code with the config generated HAVE_CXXABI_H.
llvm-svn: 218718
COFF supports a feature similar to ELF's section groups. This
patch implements it.
In ELF, section groups are identified by their names, and they are
treated somewhat differently from regular symbols. In COFF, the
feature is realized in a more straightforward way. A section can
have an annotation saying "if Nth section is linked, link this
section too."
I added a new reference type, kindAssociate. If a target atom is
coalesced away, the referring atom is removed by Resolver, so that
they are treated as a group.
Differential Revision: http://reviews.llvm.org/D4028
llvm-svn: 211106
isCoalescedAway(x) is faster than replacement(x) != x as the former
does not follow the replacement atom chain. Also it's easier to use.
llvm-svn: 210242
Previously section groups are doubly linked to their children.
That is, an atom representing a group has group-child references
to its group contents, and content atoms also have group-parent
references to the group atom. That relationship was invariant;
if X has a group-child edge to Y, Y must have a group-parent
edge to X.
However we were not using group-parent references at all. The
resolver only needs group-child edges.
This patch simplifies the section group by removing the unused
reverse edge. No functionality change intended.
Differential Revision: http://reviews.llvm.org/D3945
llvm-svn: 210066
Layout-before edges are no longer used for layout, but they are
still there for dead-stripping. If we would just remove them
from code, LLD would wrongly remove live atoms that were
referenced by layout-befores.
This patch fixes the issue. Before dead-stripping, it scans all
atoms to construct a reverse map for layout-after edges. Dead-
stripping pass uses the map to traverse the graph.
Differential Revision: http://reviews.llvm.org/D3986
llvm-svn: 210057
Reference::target() never returns a nullptr, so NULL check
is not needed and is more harmful than doing nothing.
No functionality change.
llvm-svn: 210008
In r205566, I made a change to Resolver so that Resolver revisit
only archive files in --start-group and --end-group pair. That's
not correct, as it also has to revisit DSO files.
This patch is to fix the issue.
Added a test to demonstrate the fix. I confirmed that it succeeded
before r205566, failed after r205566, and is ok with this patch.
Differential Revision: http://reviews.llvm.org/D3734
llvm-svn: 208797
Seems getSomething() is more common naming scheme than just a noun
to get something, so renaming these members.
Differential Revision: http://llvm-reviews.chandlerc.com/D3285
llvm-svn: 205589
Atoms with deadStripNever attribute has already been added to the
dead strip root set at end of Resolver::doDefinedAtom, so no need
to check it for each atom again.
Differential Revision: http://llvm-reviews.chandlerc.com/D3282
llvm-svn: 205575
ELFLinkingContext has a method addUndefinedAtomsFromSharedLibrary().
The method is being used to skip a shared library within --start-group
and --end-group if it's not the first iteration of the group.
We have the same, incomplete mechanism to skip a shared library within
a group too. That's implemented in ELFFileNode. It's intended to not
return a shared library on the second or further iterations in the
first place. This mechanism is preferred over
addUndefinedAtomsFromSharedLibrary because the policy is implemented
in Input Graph -- that's what Input Graph is for.
This patch removes the dupluicate feature and fixes ELFFileNode.
Differential Revision: http://llvm-reviews.chandlerc.com/D3280
llvm-svn: 205566
"x.empty()" is more idiomatic than "x.size() == 0". This patch is to
add such method and use it in LLD.
Differential Revision: http://llvm-reviews.chandlerc.com/D3279
llvm-svn: 205558
Resolver is sending too much information to Input Graph than Input
Graph actually needs. In order to collect the detailed information,
which wouldn't be consumed by anyone, we have a good amount of code
in Resolver, Input Graph and Input Elements. This patch is to
simplify it. No functionality change.
Specifically, this patch replaces ResolverState enum with a boolean
value. The enum defines many bits to notify the progress about
linking to Input Graph using bit masks, however, what Input Graph
actually does is to compare a given value with 0. The details of
the bit mask is simply being ignored, so the efforts to collect
such data is wasted.
This patch also changes the name of the notification interface from
setResolverState to notifyProgress, to make it sounds more like
message passing style. It's not a setter but something to notify of
an update, so the new name should be more appropriate than before.
Differential Revision: http://llvm-reviews.chandlerc.com/D3267
llvm-svn: 205463
LinkingContext and InputGraph are unnecessarily entangled. Most linker
input file data, e.g. the vector containing input files, the next index
of the input file, etc. are managed by InputGraph, but only the current
input file is for no obvious reason managed by LinkingContext.
This patch is to move code from LinkingContext to InputGraph to fix it.
It's now clear who's reponsible for managing input file state, which is
InputGraph, and LinkingContext is now free from that responsibility.
It improves the readability as we now have fewer dependencies between
classes. No functionality change.
Differential Revision: http://llvm-reviews.chandlerc.com/D3259
llvm-svn: 205394
.gnu.linkonce sections are similar to section groups.
They were supported before section groups existed and provided a way
to resolve COMDAT sections using a different design.
There are few implementations that use .gnu.linkonce sections
to store simple floating point constants which doesnot require complex section
group support but need a way to store only one copy of the floating point
constant in a binary.
.gnu.linkonce based symbol resolution achieves that.
Review : http://llvm-reviews.chandlerc.com/D3242
llvm-svn: 205280
This reverts commit 5d5ca72a7876c3dd3dd1db83dc6a0d74be9e2cd1.
Discuss on a better design to raise error when there is a similar group with Gnu
linkonce sections and COMDAT sections.
llvm-svn: 205224
.gnu.linkonce sections are similar to section groups. They were supported before
section groups existed and provided a way to resolve COMDAT sections using a
different design. There are few implementations that use .gnu.linkonce sections
to store simple floating point constants which doesnot require complex section
group support but need a way to store only one copy of the floating point
constant. .gnu.linkonce based symbol resolution achieves that.
llvm-svn: 205163
There was a bug that the linker does not report an error if symbols specified
by -u (or /include on Windows) are not resolved. This patch fixes it by adding
such symbols to the dead strip root.
llvm-svn: 198041