Summary:
Do three things to help with that:
- Add AttributeList::FirstArgIndex, which is an enumerator currently set
to 1. It allows us to change the indexing scheme with fewer changes.
- Add addParamAttr/removeParamAttr. This just shortens addAttribute call
sites that would otherwise need to spell out FirstArgIndex.
- Remove some attribute-specific getters and setters from Function that
take attribute list indices. Most of these were only used from
BuildLibCalls, and doesNotAlias was only used to test or set if the
return value is malloc-like.
I'm happy to split the patch, but I think they are probably easier to
review when taken together.
This patch should be NFC, but it sets the stage to change the indexing
scheme to this, which is more convenient when indexing into an array:
0: func attrs
1: retattrs
2...: arg attrs
Reviewers: chandlerc, pete, javed.absar
Subscribers: david2050, llvm-commits
Differential Revision: https://reviews.llvm.org/D32811
llvm-svn: 302060
This avoids the confusing 'CS.paramHasAttr(ArgNo + 1, Foo)' pattern.
Previously we were testing return value attributes with index 0, so I
introduced hasReturnAttr() for that use case.
llvm-svn: 300367
The tests were failing due to an occasional deadlock in SerializationTraits
for Error: Both serializers and deserializers were protected by a single
mutex and in the unit test (where both ends of the RPC are in the same
process) one side might obtain the mutex, then block waiting for input,
leaving the other side of the connection unable to obtain the mutex to
write the data the first side was waiting for. Splitting the mutex into
two (one for serialization, one for deserialization) appears to have fixed the
issue.
llvm-svn: 300286
This patch allows Error and Expected types to be passed to and returned from
RPC functions.
Serializers and deserializers for custom error types (types deriving from the
ErrorInfo class template) can be registered with the SerializationTraits for
a given channel type (see registerStringError in RPCSerialization.h for an
example), allowing a given custom type to be sent/received. Unregistered types
will be serialized/deserialized as StringErrors using the custom type's log
message as the error string.
llvm-svn: 300167
When the ProcessAllSections flag (introduced in r204398) is set RuntimeDyld is
supposed to make a call to the client's memory manager for every section in each
object that is loaded. Due to some missing checks, this was not happening in all
cases. This patch adds the missing cases, and fixes the Orc unit test that
verifies correct behavior for ProcessAllSections (The unit test had been
silently bailing out due to an ordering issue: a change in the test order meant
that this unit-test was running before the native target was registered. This
issue has also been fixed in this patch).
This fixes <rdar://problem/22789965>
llvm-svn: 299449
Summary:
This class is a list of AttributeSetNodes corresponding the function
prototype of a call or function declaration. This class used to be
called ParamAttrListPtr, then AttrListPtr, then AttributeSet. It is
typically accessed by parameter and return value index, so
"AttributeList" seems like a more intuitive name.
Rename AttributeSetImpl to AttributeListImpl to follow suit.
It's useful to rename this class so that we can rename AttributeSetNode
to AttributeSet later. AttributeSet is the set of attributes that apply
to a single function, argument, or return value.
Reviewers: sanjoy, javed.absar, chandlerc, pete
Reviewed By: pete
Subscribers: pete, jholewinski, arsenm, dschuff, mehdi_amini, jfb, nhaehnle, sbc100, void, llvm-commits
Differential Revision: https://reviews.llvm.org/D31102
llvm-svn: 298393
The current ObjectLinkingLayer (now RTDyldObjectLinkingLayer) links objects
in-process using MCJIT's RuntimeDyld class. In the near future I hope to add new
object linking layers (e.g. a remote linking layer that links objects in the JIT
target process, rather than the client), so I'm renaming this class to be more
descriptive.
llvm-svn: 295636
handler args.
The specialization just inherits from the std::decay'd response handler type.
This allows member functions (via MemberFunctionWrapper) to be used as async
handlers.
llvm-svn: 295151
Launch policies provided a mechanism for running RPC handlers on a background
thread (unblocking the main RPC receiver thread). Async handlers generalize
this by passing the responder function (the function that sends the RPC return
value) as an argument to the handler. The handler can optionally do its work on
a background thread (the same way launch policies do), but can also (a) can
inspect the call arguments before deciding to run the work on a different
thread, or (b) can use the responder in a subsequent RPC call (e.g. in the
handler of a callAsync), allowing the handler to call back to the originator (or
to a 3rd party) without blocking the listener thread, and without launching a
new thread.
llvm-svn: 295030
LLVM defines `PTHREAD_LIB` which is used by AddLLVM.cmake and various projects
to correctly link the threading library when needed. Unfortunately
`PTHREAD_LIB` is defined by LLVM's `config-ix.cmake` file which isn't installed
and therefore can't be used when configuring out-of-tree builds. This causes
such builds to fail since `pthread` isn't being correctly linked.
This patch attempts to fix that problem by renaming and exporting
`LLVM_PTHREAD_LIB` as part of`LLVMConfig.cmake`. I renamed `PTHREAD_LIB`
because It seemed likely to cause collisions with downstream users of
`LLVMConfig.cmake`.
llvm-svn: 294690
This refactor allows parallel calls to be made via an arbitrary async call
dispatcher. In particular, this allows ParallelCallGroup to be used with
derived RPC classes that expose custom async RPC call operations.
llvm-svn: 292891
APICalls allows groups of functions to be composed into an API that can be
registered as a unit with an RPC endpoint. Doing registration on a-whole API
basis (rather than per-function) allows missing API functions to be detected
early.
APICalls also allows Function membership to be tested at compile-time. This
allows clients to write static assertions that functions to be called are
members of registered APIs.
llvm-svn: 291380
multiple asynchronous RPC calls.
ParallelCallGroup allows multiple asynchronous calls to be dispatched,
and provides a wait method that blocks until all asynchronous calls have
been executed on the remote and all return value handlers run on the
local machine.
This will allow, for example, the JIT client to issue memory allocation calls
for all sections in parallel, then block until all memory has been allocated
on the remote and the allocated addresses registered with the client, at which
point the JIT client can proceed to applying relocations.
llvm-svn: 290523
After r289755, the AssumptionCache is no longer needed. Variables affected by
assumptions are now found by using the new operand-bundle-based scheme. This
new scheme is more computationally efficient, and also we need much less
code...
llvm-svn: 289756
This unit test infinite-looped on s390x due to a thread_yield being optimized
out. I've updated the QueueChannel class (where thread_yield was called) to use
a condition variable instead. This should cause the unit test to behave
correctly.
llvm-svn: 287121
This broke s390x due to a bug in the QueueChannel implementation that led to it
infinite-looping. Disabling it while I look into a fix.
llvm-svn: 286917
return types.
This class allows user provided handlers to return either error-wrapped types
or plain types. In the latter case, the plain type is wrapped with a success
value of Error or Expected<T> type to fit it into the rest of the serialization
machinery.
This patch allows us to remove the RPC unit-test workaround added in r286646.
llvm-svn: 286701
return type.
This should be fixed permanently by having the RPCUtils header recognize the
ErrorSuccess type. I'll commit that in a follow up patch.
llvm-svn: 286646
(1) Add support for function key negotiation.
The previous version of the RPC required both sides to maintain the same
enumeration for functions in the API. This means that any version skew between
the client and server would result in communication failure.
With this version of the patch functions (and serializable types) are defined
with string names, and the derived function signature strings are used to
negotiate the actual function keys (which are used for efficient call
serialization). This allows clients to connect to any server that supports a
superset of the API (based on the function signatures it supports).
(2) Add a callAsync primitive.
The callAsync primitive can be used to install a return value handler that will
run as soon as the RPC function's return value is sent back from the remote.
(3) Launch policies for RPC function handlers.
The new addHandler method, which installs handlers for RPC functions, takes two
arguments: (1) the handler itself, and (2) an optional "launch policy". When the
RPC function is called, the launch policy (if present) is invoked to actually
launch the handler. This allows the handler to be spawned on a background
thread, or added to a work list. If no launch policy is used, the handler is run
on the server thread itself. This should only be used for short-running
handlers, or entirely synchronous RPC APIs.
(4) Zero cost cross type serialization.
You can now define serialization from any type to a different "wire" type. For
example, this allows you to call an RPC function that's defined to take a
std::string while passing a StringRef argument. If a serializer from StringRef
to std::string has been defined for the channel type this will be used to
serialize the argument without having to construct a std::string instance.
This allows buffer reference types to be used as arguments to RPC calls without
requiring a copy of the buffer to be made.
llvm-svn: 286620
This reverts commit r280016, and the followups of r280017, r280027,
r280051, r280058, and r280059.
MSVC's implementation of std::promise does not get along with
llvm::Error. It uses its promised value too much like a normal value
type.
llvm-svn: 280100
behaviors, and add a callB (blacking call) primitive.
callB is a blocking call primitive for threaded code where the RPC responses are
being processed on a separate thread. (For single threaded code callST should
continue to be used instead).
No unit test yet: Last time I commited a threaded unit test it deadlocked on
one of the s390x builders. I'll try to re-enable that test first, and add a new
test if I can sort out the deadlock issue.
llvm-svn: 280051
Optional.
For void functions the return type of a nonblocking call changes from
Expected<future<Optional<bool>>> to Expected<future<Error>>, and for functions
returning T the return type changes from Expected<future<Optional<T>>> to
Expected<future<Expected<T>>>.
Inner results need to be checked (since the RPC connection may have dropped
out before a result came back) and Error/Expected provide stronger checking
requirements. It also allows us drop the crufty 'optionalToError' function and
just collapse Errors in the single-threaded call primitives.
llvm-svn: 280016
switch to using one indirect stub manager per logical dylib rather than one per
input module.
LogicalDylib is a helper class used by the CompileOnDemandLayer to manage
symbol resolution between modules during lazy compilation. In particular, it
ensures that internal symbols resolve correctly even in the case where multiple
input modules contain the same internal symbol name (which must to be promoted
to external hidden linkage so that functions in any given module can be split
out by lazy compilation). LogicalDylib's resolution scheme (before this commit)
required one stub-manager per input module. This made recompilation of functions
(by adding a module containing a new definition) difficult, as the stub manager
for any given symbol was bound to the module that supplied the original
definition. By using one stubs manager for the whole logical dylib symbols can
be more easily replaced, although support for doing this is not included in this
patch (it will be implemented in a follow up).
llvm-svn: 279952
RTDyldMemoryManager::getSymbolAddressInProcess()
This should allow JIT'd code for win32 to find in-process symbols. See
http://llvm.org/PR28699 .
Patch by James Holderness. Thanks James!
llvm-svn: 279016
This patch replaces RuntimeDyld::SymbolInfo with JITSymbol: A symbol class
that is capable of lazy materialization (i.e. the symbol definition needn't be
emitted until the address is requested). This can be used to support common
and weak symbols in the JIT (though this is not implemented in this patch).
For consistency, RuntimeDyld::SymbolResolver is renamed to JITSymbolResolver.
For space efficiency a new class, JITEvaluatedSymbol, is introduced that
behaves like the old RuntimeDyld::SymbolInfo - i.e. it is just a pair of an
address and symbol flags. Instances of JITEvaluatedSymbol can be used in
symbol-tables to avoid paying the space cost of the materializer.
llvm-svn: 277386
Doing "I++" inside of an EXPECT_* triggers
warning: expression with side effects has no effect in an unevaluated context
because EXPECT_* partially expands to
EqHelper<(sizeof(::testing::internal::IsNullLiteralHelper(MockObjects[I++] + 1)) == 1)>
which is an unevaluated context.
llvm-svn: 275293
This tidies up some code that was manually constructing RuntimeDyld::SymbolInfo
instances from JITSymbols. It will save more mess in the future when
JITSymbol::getAddress is extended to return an Expected<TargetAddress> rather
than just a TargetAddress, since we'll be able to embed the error checking in
the conversion.
llvm-svn: 271350
This replaces use of std::error_code and ErrorOr in the ORC RPC support library
with Error and Expected. This required updating the OrcRemoteTarget API, Client,
and server code, as well as updating the Orc C API.
This patch also fixes several instances where Errors were dropped.
llvm-svn: 267457
Three problems:
1. <future> can't be easily used. If you must use it, see
include/Support/ThreadPool.h for how.
2. constexpr problems, even after 266588.
3. Move assignment operators can't be defaulted in MSVC2013.
llvm-svn: 266615
asynchronous call/handle. Also updates the ORC remote JIT API to use the new
scheme.
The previous version of the RPC tools only supported void functions, and
required the user to manually call a paired function to return results. This
patch replaces the Procedure typedef (which only supported void functions) with
the Function typedef which supports return values, e.g.:
Function<FooId, int32_t(std::string)> Foo;
The RPC primitives and channel operations are also expanded. RPC channels must
support four new operations: startSendMessage, endSendMessage,
startRecieveMessage and endRecieveMessage, to handle channel locking. In
addition, serialization support for tuples to RPCChannels is added to enable
multiple return values.
The RPC primitives are expanded from callAppend, call, expect and handle, to:
appendCallAsync - Make an asynchronous call to the given function.
callAsync - The same as appendCallAsync, but calls send on the channel when
done.
callSTHandling - Blocking call for single-threaded code. Wraps a call to
callAsync then waits on the result, using a user-supplied
handler to handle any callbacks from the remote.
callST - The same as callSTHandling, except that it doesn't handle
callbacks - it expects the result to be the first return.
expect and handle - as before.
handleResponse - Handle a response from the remote.
waitForResult - Wait for the response with the given sequence number to arrive.
llvm-svn: 266581
At the same time, fixes InstructionsTest::CastInst unittest: yes
you can leave the IR in an invalid state and exit when you don't
destroy the context (like the global one), no longer now.
This is the first part of http://reviews.llvm.org/D19094
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266379
Some Include What You Use suggestions were used too.
Use anonymous namespaces in source files.
Differential revision: http://reviews.llvm.org/D18778
llvm-svn: 265454
The RTDyldMemoryManager::getSymbolAddressInProcess method accepts a
linker-mangled symbol name, but it calls through to dlsym to do the lookup (via
DynamicLibrary::SearchForAddressOfSymbol), and dlsym expects an unmangled
symbol name.
Historically we've attempted to "demangle" by removing leading '_'s on all
platforms, and fallen back to an extra search if that failed. That's broken, as
it can cause symbols to resolve incorrectly on platforms that don't do mangling
if you query '_foo' and the process also happens to contain a 'foo'.
Fix this by demangling conditionally based on the host platform. That's safe
here because this function is specifically for symbols in the host process, so
the usual cross-process JIT looking concerns don't apply.
M unittests/ExecutionEngine/ExecutionEngineTest.cpp
M lib/ExecutionEngine/RuntimeDyld/RTDyldMemoryManager.cpp
llvm-svn: 262657
This patch adds a new class, OrcI386, which contains the hooks needed to
support lazy-JITing on i386 (currently only for Pentium 2 or above, as the JIT
re-entry code uses the FXSAVE/FXRSTOR instructions).
Support for i386 is enabled in the LLI lazy JIT and the Orc C API, and
regression and unit tests are enabled for this architecture.
llvm-svn: 260338
Summary:
This patch is provided in preparation for removing autoconf on 1/26. The proposal to remove autoconf on 1/26 was discussed on the llvm-dev thread here: http://lists.llvm.org/pipermail/llvm-dev/2016-January/093875.html
"I felt a great disturbance in the [build system], as if millions of [makefiles] suddenly cried out in terror and were suddenly silenced. I fear something [amazing] has happened."
- Obi Wan Kenobi
Reviewers: chandlerc, grosbach, bob.wilson, tstellarAMD, echristo, whitequark
Subscribers: chfast, simoncook, emaste, jholewinski, tberghammer, jfb, danalbert, srhines, arsenm, dschuff, jyknight, dsanders, joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D16471
llvm-svn: 258861
Summary:
Update ObjectTransformLayer::addObjectSet to take the object set by
value rather than reference and pass it to the base layer with move
semantics rather than copy, to match r258185's changes to
ObjectLinkingLayer.
Update the unit test to verify that ObjectTransformLayer's signature stays
in sync with ObjectLinkingLayer's.
Reviewers: lhames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D16414
llvm-svn: 258630
they're needed.
Prior to this patch objects were loaded (via RuntimeDyld::loadObject) when they
were added to the ObjectLinkingLayer, but were not relocated and finalized until
a symbol address was requested. In the interim, another object could be loaded
and finalized with the same memory manager, causing relocation/finalization of
the first object to fail (as the first finalization call may have marked the
allocated memory for the first object read-only).
By deferring the loadObject call (and subsequent memory allocations) until an
object file is needed we can avoid prematurely finalizing memory.
llvm-svn: 258185
Previously these were Darwin-only. Since the switch to direct binary emission
of stubs, trampolines and resolver blocks, these should work on other *nix
platforms too.
These tests can be enabled on Windows once known issues with ORC's handling of
Windows symbol mangling (see e.g. https://llvm.org/PR25940) have been fixed.
llvm-svn: 258031
This patch adds utilities to ORC for managing a remote JIT target. It consists
of:
1. A very primitive RPC system for making calls over a byte-stream. See
RPCChannel.h, RPCUtils.h.
2. An RPC API defined in the above system for managing memory, looking up
symbols, creating stubs, etc. on a remote target. See OrcRemoteTargetRPCAPI.h.
3. An interface for creating high-level JIT components (memory managers,
callback managers, stub managers, etc.) that operate over the RPC API. See
OrcRemoteTargetClient.h.
4. A helper class for building servers that can handle the RPC calls. See
OrcRemoteTargetServer.h.
The system is designed to work neatly with the existing ORC components and
functionality. In particular, the ORC callback API (and consequently the
CompileOnDemandLayer) is supported, enabling lazy compilation of remote code.
Assuming this doesn't trigger any builder failures, a follow-up patch will be
committed which tests these utilities by using them to replace LLI's existing
remote-JITing demo code.
llvm-svn: 257305
RuntimeDyld::MemoryManager.
The RuntimeDyld::MemoryManager::reserveAllocationSpace method is called when
object files are loaded, and gives clients a chance to pre-allocate memory for
all segments. Previously only the size of each segment (code, ro-data, rw-data)
was supplied but not the alignment. This hasn't caused any problems so far, as
most clients allocate via the MemoryBlock interface which returns page-aligned
blocks. Adding alignment arguments enables finer grained allocation while still
satisfying alignment restrictions.
llvm-svn: 257294
llvm\unittests\ExecutionEngine\Orc\ObjectLinkingLayerTest.cpp(115) : error C2327: 'llvm::OrcExecutionTest::TM' : is not a type name, static, or enumerator
llvm\unittests\ExecutionEngine\Orc\ObjectLinkingLayerTest.cpp(115) : error C2065: 'TM' : undeclared identifier
FYI, "this->TM" was valid even before moving class SectionMemoryManagerWrapper.
llvm-svn: 257290
managers.
Prior to this patch, recursive finalization (where finalization of one
RuntimeDyld instance triggers finalization of another instance on which the
first depends) could trigger memory access failures: When the inner (dependent)
RuntimeDyld instance and its memory manager are finalized, memory allocated
(but not yet relocated) by the outer instance is locked, and relocation in the
outer instance fails with a memory access error.
This patch adds a latch to the RuntimeDyld::MemoryManager base class that is
checked by a new method: RuntimeDyld::finalizeWithMemoryManagerLocking, ensuring
that shared memory managers are only finalized by the outermost RuntimeDyld
instance.
This allows ORC clients to supply the same memory manager to multiple calls to
addModuleSet. In particular it enables the use of user-supplied memory managers
with the CompileOnDemandLayer which must reuse the supplied memory manager for
each function that is lazily compiled.
llvm-svn: 257263
Type specific declarations have been moved to Type.h and error handling
routines have been moved to ErrorHandling.h. Both are included in Core.h
so nothing should change for projects directly including the headers,
but transitive dependencies may be affected.
llvm-svn: 255965
This class is turning into a useful interface, rather than an implementation
detail, so I'm dropping the 'Base' suffix.
No functional change.
llvm-svn: 254693
Bypassing LLVM for this has a number of benefits:
1) Laziness support becomes asm-syntax agnostic (previously lazy jitting didn't
work on Windows as the resolver block was in Darwin asm).
2) For cross-process JITs, it allows resolver blocks and trampolines to be
emitted directly in the target process, reducing cross process traffic.
3) It should be marginally faster.
llvm-svn: 251933
with the new pass manager, and no longer relying on analysis groups.
This builds essentially a ground-up new AA infrastructure stack for
LLVM. The core ideas are the same that are used throughout the new pass
manager: type erased polymorphism and direct composition. The design is
as follows:
- FunctionAAResults is a type-erasing alias analysis results aggregation
interface to walk a single query across a range of results from
different alias analyses. Currently this is function-specific as we
always assume that aliasing queries are *within* a function.
- AAResultBase is a CRTP utility providing stub implementations of
various parts of the alias analysis result concept, notably in several
cases in terms of other more general parts of the interface. This can
be used to implement only a narrow part of the interface rather than
the entire interface. This isn't really ideal, this logic should be
hoisted into FunctionAAResults as currently it will cause
a significant amount of redundant work, but it faithfully models the
behavior of the prior infrastructure.
- All the alias analysis passes are ported to be wrapper passes for the
legacy PM and new-style analysis passes for the new PM with a shared
result object. In some cases (most notably CFL), this is an extremely
naive approach that we should revisit when we can specialize for the
new pass manager.
- BasicAA has been restructured to reflect that it is much more
fundamentally a function analysis because it uses dominator trees and
loop info that need to be constructed for each function.
All of the references to getting alias analysis results have been
updated to use the new aggregation interface. All the preservation and
other pass management code has been updated accordingly.
The way the FunctionAAResultsWrapperPass works is to detect the
available alias analyses when run, and add them to the results object.
This means that we should be able to continue to respect when various
passes are added to the pipeline, for example adding CFL or adding TBAA
passes should just cause their results to be available and to get folded
into this. The exception to this rule is BasicAA which really needs to
be a function pass due to using dominator trees and loop info. As
a consequence, the FunctionAAResultsWrapperPass directly depends on
BasicAA and always includes it in the aggregation.
This has significant implications for preserving analyses. Generally,
most passes shouldn't bother preserving FunctionAAResultsWrapperPass
because rebuilding the results just updates the set of known AA passes.
The exception to this rule are LoopPass instances which need to preserve
all the function analyses that the loop pass manager will end up
needing. This means preserving both BasicAAWrapperPass and the
aggregating FunctionAAResultsWrapperPass.
Now, when preserving an alias analysis, you do so by directly preserving
that analysis. This is only necessary for non-immutable-pass-provided
alias analyses though, and there are only three of interest: BasicAA,
GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is
preserved when needed because it (like DominatorTree and LoopInfo) is
marked as a CFG-only pass. I've expanded GlobalsAA into the preserved
set everywhere we previously were preserving all of AliasAnalysis, and
I've added SCEVAA in the intersection of that with where we preserve
SCEV itself.
One significant challenge to all of this is that the CGSCC passes were
actually using the alias analysis implementations by taking advantage of
a pretty amazing set of loop holes in the old pass manager's analysis
management code which allowed analysis groups to slide through in many
cases. Moving away from analysis groups makes this problem much more
obvious. To fix it, I've leveraged the flexibility the design of the new
PM components provides to just directly construct the relevant alias
analyses for the relevant functions in the IPO passes that need them.
This is a bit hacky, but should go away with the new pass manager, and
is already in many ways cleaner than the prior state.
Another significant challenge is that various facilities of the old
alias analysis infrastructure just don't fit any more. The most
significant of these is the alias analysis 'counter' pass. That pass
relied on the ability to snoop on AA queries at different points in the
analysis group chain. Instead, I'm planning to build printing
functionality directly into the aggregation layer. I've not included
that in this patch merely to keep it smaller.
Note that all of this needs a nearly complete rewrite of the AA
documentation. I'm planning to do that, but I'd like to make sure the
new design settles, and to flesh out a bit more of what it looks like in
the new pass manager first.
Differential Revision: http://reviews.llvm.org/D12080
llvm-svn: 247167
This reverts commit r241962, as it was breaking all ARM buildbots.
It also reverts the two subsequent related commits:
r241974: "[ExecutionEngine] Add a static cast to the unittest for r241962 to suppress a warning."
r241973: "[ExecutionEngine] Remove cruft and fix a couple of warnings in the test case for r241962."
llvm-svn: 241983
Summary:
This is a utility for clients that want to insert a layer that modifies
each ObjectFile and then passes it along to the next layer.
Reviewers: lhames
Reviewed By: lhames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10456
llvm-svn: 240640
Summary: This adds FindGlobalVariableNamed to ExecutionEngine
(plus implementation in MCJIT), which is an analog of
FindFunctionNamed for GlobalVariables.
Reviewers: lhames
Reviewed By: lhames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10421
llvm-svn: 240202
Add support for resolving MIPS64r2 and MIPS64r6 relocations in MCJIT.
Patch by Vladimir Radosavljevic.
Differential Revision: http://reviews.llvm.org/D9667
llvm-svn: 238424
the function body.
This is necessary for correctness when lazily compiling.
Also, flesh out the Orc unit test infrastructure slightly, and add a unit test
for this.
llvm-svn: 235347
The patch is generated using clang-tidy misc-use-override check.
This command was used:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py \
-checks='-*,misc-use-override' -header-filter='llvm|clang' \
-j=32 -fix -format
http://reviews.llvm.org/D8925
llvm-svn: 234679
This patch fixes MCJIT::addGlobalMapping by changing the implementation of the
ExecutionEngineState class. The new implementation maintains a bidirectional
mapping between symbol names (std::strings) and addresses (uint64_ts), rather
than a mapping between Value*s and void*s.
This has fix has been made for backwards compatibility, however the strongly
preferred way to resolve unknown symbols is by writing a custom
RuntimeDyld::SymbolResolver (formerly RTDyldMemoryManager) and overriding the
findSymbol method. The addGlobalMapping method is a hangover from the legacy JIT
(which has was removed in 3.6), and may be deprecated in a future release as
part of a clean-up of the ExecutionEngine interface.
Patch by Murat Bolat. Thanks Murat!
llvm-svn: 233747
MCJIT.
This patch decouples the two responsibilities of the RTDyldMemoryManager class,
memory management and symbol resolution, into two new classes:
RuntimeDyld::MemoryManager and RuntimeDyld::SymbolResolver.
The symbol resolution interface is modified slightly, from:
uint64_t getSymbolAddress(const std::string &Name);
to:
RuntimeDyld::SymbolInfo findSymbol(const std::string &Name);
The latter passes symbol flags along with symbol addresses, allowing RuntimeDyld
and others to reason about non-strong/non-exported symbols.
The memory management interface removes the following method:
void notifyObjectLoaded(ExecutionEngine *EE,
const object::ObjectFile &) {}
as it is not related to memory management. (Note: Backwards compatibility *is*
maintained for this method in MCJIT and OrcMCJITReplacement, see below).
The RTDyldMemoryManager class remains in-tree for backwards compatibility.
It inherits directly from RuntimeDyld::SymbolResolver, and indirectly from
RuntimeDyld::MemoryManager via the new MCJITMemoryManager class, which
just subclasses RuntimeDyld::MemoryManager and reintroduces the
notifyObjectLoaded method for backwards compatibility).
The EngineBuilder class retains the existing method:
EngineBuilder&
setMCJITMemoryManager(std::unique_ptr<RTDyldMemoryManager> mcjmm);
and includes two new methods:
EngineBuilder&
setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM);
EngineBuilder&
setSymbolResolver(std::unique_ptr<RuntimeDyld::SymbolResolver> SR);
Clients should use EITHER:
A single call to setMCJITMemoryManager with an RTDyldMemoryManager.
OR (exclusive)
One call each to each of setMemoryManager and setSymbolResolver.
This patch should be fully compatible with existing uses of RTDyldMemoryManager.
If it is not it should be considered a bug, and the patch either fixed or
reverted.
If clients find the new API to be an improvement the goal will be to deprecate
and eventually remove the RTDyldMemoryManager class in favor of the new classes.
llvm-svn: 233509
I made my best guess at the Makefile, since I don't have a make build.
I'm not sure if it should be valid to add an empty list of things, but
it seemed the sort of degenerate case.
llvm-svn: 230196
This has wider implications than I expected when I reviewed the patch: It can
cause JIT crashes where clients have used the default value for AbortOnFailure
during symbol lookup. I'm currently investigating alternative approaches and I
hope to have this back in tree soon.
llvm-svn: 227287
Support weak symbols by first looking up if there is an externally visible symbol we can find,
and only if that fails using the one in the object file we're loading.
Reviewed By: lhames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6950
llvm-svn: 227228
Summary:
Basically all other methods that look up functions by name skip them if they are mere declarations.
Do the same in FindFunctionNamed.
Reviewers: lhames
Reviewed By: lhames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7068
llvm-svn: 227227
Avoid using unions for storing the return value from
LLVMGetGlobalValueAddress() and LLVMGetFunctionAddress() and accessing it as
a pointer through another pointer member. This causes problems on 32-bit big
endian machines since the pointer gets the higher part of the return value of
the aforementioned functions.
llvm-svn: 226170
MCJIT::getPointerForFunction adds the resulting address to the global mapping.
This should be done via updateGlobalMapping rather than addGlobalMapping, since
the latter asserts if a mapping already exists.
MCJIT::getPointerToFunction is actually deprecated - hopefully we can remove it
(or more likely re-task it) entirely soon. In the mean time it should at least
work as advertised.
<rdar://problem/18727946>
llvm-svn: 220444
member of RTDyldMemoryManager (and rename to getSymbolAddressInProcess).
The functionality this provides is very specific to RTDyldMemoryManager, so it
makes sense to keep it in that class to avoid accidental re-use.
No functional change.
llvm-svn: 218741
The contract of this function seems problematic (fallback in either
direction seems like it could produce bugs in one client or another),
but here's some tests for its current behavior, at least. See the
commit/review thread of r218187 for more discussion.
llvm-svn: 218626
Owning the buffer is somewhat inflexible. Some Binaries have sub Binaries
(like Archive) and we had to create dummy buffers just to handle that. It is
also a bad fit for IRObjectFile where the Module wants to own the buffer too.
Keeping this ownership would make supporting IR inside native objects
particularly painful.
This patch focuses in lib/Object. If something elsewhere used to own an Binary,
now it also owns a MemoryBuffer.
This patch introduces a few new types.
* MemoryBufferRef. This is just a pair of StringRefs for the data and name.
This is to MemoryBuffer as StringRef is to std::string.
* OwningBinary. A combination of Binary and a MemoryBuffer. This is needed
for convenience functions that take a filename and return both the
buffer and the Binary using that buffer.
The C api now uses OwningBinary to avoid any change in semantics. I will start
a new thread to see if we want to change it and how.
llvm-svn: 216002
* Use StringRef instead of std::string&
* Return a std::unique_ptr<Module> instead of taking an optional module to write
to (was not really used).
* Use current comment style.
* Use current naming convention.
llvm-svn: 215989
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)
Changes made by clang-tidy with minor tweaks.
llvm-svn: 215558
Remove the MinGW32 and Cygwin types from the OSType enumeration. These values
are represented via environments of Windows. It is a source of confusion and
needlessly clutters the code. The cost of doing this is that we must sink the
check for them into the normalization code path along with the spelling.
Addresses PR20592.
llvm-svn: 215303
be deleted. This will be reapplied as soon as possible and before
the 3.6 branch date at any rate.
Approved by Jim Grosbach, Lang Hames, Rafael Espindola.
This reverts commits r215111, 215115, 215116, 215117, 215136.
llvm-svn: 215154
I am sure we will be finding bits and pieces of dead code for years to
come, but this is a good start.
Thanks to Lang Hames for making MCJIT a good replacement!
llvm-svn: 215111
string_ostream is a safe and efficient string builder that combines opaque
stack storage with a built-in ostream interface.
small_string_ostream<bytes> additionally permits an explicit stack storage size
other than the default 128 bytes to be provided. Beyond that, storage is
transferred to the heap.
This convenient class can be used in most places an
std::string+raw_string_ostream pair or SmallString<>+raw_svector_ostream pair
would previously have been used, in order to guarantee consistent access
without byte truncation.
The patch also converts much of LLVM to use the new facility. These changes
include several probable bug fixes for truncated output, a programming error
that's no longer possible with the new interface.
llvm-svn: 211749
Sometimes a LLVM compilation may take more time then a client would like to
wait for. The problem is that it is not possible to safely suspend the LLVM
thread from the outside. When the timing is bad it might be possible that the
LLVM thread holds a global mutex and this would block any progress in any other
thread.
This commit adds a new yield callback function that can be registered with a
context. LLVM will try to yield by calling this callback function, but there is
no guaranteed frequency. LLVM will only do so if it can guarantee that
suspending the thread won't block any forward progress in other LLVM contexts
in the same process.
Once the client receives the call back it can suspend the thread safely and
resume it at another time.
Related to <rdar://problem/16728690>
llvm-svn: 208945
This commit provides the necessary C/C++ APIs and infastructure to enable fine-
grain progress report and safe suspension points after each pass in the pass
manager.
Clients can provide a callback function to the pass manager to call after each
pass. This can be used in a variety of ways (progress report, dumping of IR
between passes, safe suspension of threads, etc).
The run listener list is maintained in the LLVMContext, which allows a multi-
threaded client to be only informed for it's own thread. This of course assumes
that the client created a LLVMContext for each thread.
This fixes <rdar://problem/16728690>
llvm-svn: 207430
- take->release: LLVM has moved to C++11. MockWrapper became an instance of unique_ptr.
- method symbol_iterator::increment disappeared recently, in this revision:
r200442 | rafael | 2014-01-29 20:49:50 -0600 (Wed, 29 Jan 2014) | 9 lines
Simplify the handling of iterators in ObjectFile.
None of the object file formats reported error on iterator increment. In
retrospect, that is not too surprising: no object format stores symbols or
sections in a linked list or other structure that requires chasing pointers.
As a consequence, all error checking can be done on begin() and end().
This reduces the text segment of bin/llvm-readobj in my machine from 521233 to
518526 bytes.
My change mimics the change that the revision made to lib/DebugInfo/DWARFContext.cpp .
- const_cast: Shut up a warning from gcc.
I ran unittests/ExecutionEngine/JIT/Debug+Asserts/JITTests to make sure it worked.
- Arch
llvm-svn: 205689
Cygwin is now a proper environment rather than an OS. This updates the MCJIT
tests to avoid execution on Cygwin. This fixes native cygwin tests.
llvm-svn: 205266
This compiles with no changes to clang/lld/lldb with MSVC and includes
overloads to various functions which are used by those projects and llvm
which have OwningPtr's as parameters. This should allow out of tree
projects some time to move. There are also no changes to libs/Target,
which should help out of tree targets have time to move, if necessary.
llvm-svn: 203083
See
<rdar://16149106> [MCJIT] provide a platform-independent way to communicate callee-save frame info.
<rdar://16149279> [MCJIT] get the host OS version from a runtime check, not a configure-time check.
llvm-svn: 202082
should not be marked nounwind.
Marking them nounwind caused crashes in the WebKit FTL JIT, because if we enable
sufficient optimizations, LLVM starts eliding compact_unwind sections (or any unwind
data for that matter), making deoptimization via stackmaps impossible.
This changes the stackmap intrinsic to be may-throw, adds a test for exactly the
sympton that WebKit saw, and fixes TableGen to handle un-attributed intrinsics.
Thanks to atrick and philipreames for reviewing this.
llvm-svn: 201826
required for all sections in a module. This can be useful when targets or
code-models place strict requirements on how sections must be laid out
in memory.
If RTDyldMemoryManger::needsToReserveAllocationSpace() is overridden to return
true then the JIT will call the following method on the memory manager, which
can be used to preallocate the necessary memory.
void RTDyldMemoryManager::reserveAllocationSpace(uintptr_t CodeSize,
uintptr_t DataSizeRO,
uintptr_t DataSizeRW)
Patch by Vaidas Gasiunas. Thanks very much Viadas!
llvm-svn: 201259
are part of the core IR library in order to support dumping and other
basic functionality.
Rename the 'Assembly' include directory to 'AsmParser' to match the
library name and the only functionality left their -- printing has been
in the core IR library for quite some time.
Update all of the #includes to match.
All of this started because I wanted to have the layering in good shape
before I started adding support for printing LLVM IR using the new pass
infrastructure, and commandline support for the new pass infrastructure.
llvm-svn: 198688