Summary:
The previous path reworked some handling of temporary files which
exposed some bugs related to capturing local state by reference in the
callback labmda. Squashing this by copying in everything instead. There
was also a problem where the argument name was changed for
`--bitcode-library=` but clang still used `--target-library=`.
Summary:
This patch reworks the command line argument handling in the linker
wrapper from using the LLVM `cl` interface to using the `Option`
interface with TableGen. This has several benefits compared to the old
method.
We use arguments from the linker arguments in the linker
wrapper, such as the libraries and input files, this allows us to
properly parse these. Additionally we can now easily set up aliases to
the linker wrapper arguments and pass them in the linker input directly.
That is, pass an option like `cuda-path=` as `--offload-arg=cuda-path=`
in the linker's inputs. This will allow us to handle offloading
compilation in the linker itself some day. Finally, this is also a much
cleaner interface for passing arguments to the individual device linking
jobs.
Summary:
A previous patch added a new ELF section type for LLVM offloading. We
should use this when extracting the offloading sections rather than
checking the string. This pach also removes the implicit support for
COFF and MACH-O because we don't support those currently and should not
be included.
Currently we use the `embedBufferInModule` function to store binary
strings containing device offloading data inside the host object to
create a fatbinary. In the case of LTO, we need to extract this object
from the LLVM-IR. This patch adds a metadata node for the embedded
objects containing the embedded pointers and the sections they were
stored at. This should create a cleaner interface for identifying these
values.
In the future it may be worthwhile to also encode an `ID` in the
metadata corresponding to the object's special section type if relevant.
This would allow us to extract the data from an object file and LLVM-IR
using the same ID.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D129033
We use LLD to perform AMDGPU linking. This linker accepts some arguments
through the `-plugin-opt` facilities. These options match what `Clang`
will output when given the same input.
Reviewed By: yaxunl
Differential Revision: https://reviews.llvm.org/D128923
When doing CTU analysis setup you pre-compile .cpp to .ast and then
you run clang-extdef-mapping on the .cpp file as well. This is a
pretty slow process since we have to recompile the file each time.
With this patch you can now run clang-extdef-mapping directly on
the .ast file. That saves a lot of time.
I tried this on llvm/lib/AsmParser/Parser.cpp and running
extdef-mapping on the .cpp file took 5.4s on my machine.
While running it on the .ast file it took 2s.
This can save a lot of time for the setup phase of CTU analysis.
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D128704
Summary:
Currently we just check the extension to set the image kind. This
incorrectly labels the `.o` files created during LTO as object files.
This patch simply adds a check for the bitcode magic bytes instead.
This patch gives basic parsing and semantic support for
"parallel masked taskloop simd" construct introduced in
OpenMP 5.1 (section 2.16.10)
Differential Revision: https://reviews.llvm.org/D128946
This patch gives basic parsing and semantic support for
"parallel masked taskloop" construct introduced in
OpenMP 5.1 (section 2.16.9)
Differential Revision: https://reviews.llvm.org/D128834
Summary:
We don't currently support other variable types, like managed or
surface. This patch simply adds code that checks the flags and does
nothing. This prevents us from registering a surface as a variable as we
do now. In the future, registering these will require adding the flags
to the entry struct.
This patch gives basic parsing and semantic support for
"masked taskloop simd" construct introduced in OpenMP 5.1 (section 2.16.8)
Differential Revision: https://reviews.llvm.org/D128693
In interactive C++ it is convenient to roll back to a previous state of the
compiler. For example:
clang-repl> int x = 42;
clang-repl> %undo
clang-repl> float x = 24 // not an error
To support this, the patch extends the functionality used to recover from
errors and adds functionality to recover the low-level execution infrastructure.
The current implementation is based on watermarks. It exploits the fact that
at each incremental input the underlying compiler infrastructure is in a valid
state. We can only go N incremental inputs back to a previous valid state. We do
not need and do not do any further dependency tracking.
This patch was co-developed with V. Vassilev, relies on the past work of Purva
Chaudhari in clang-repl and is inspired by the past work on the same feature
in the Cling interpreter.
Co-authored-by: Purva-Chaudhari <purva.chaudhari02@gmail.com>
Co-authored-by: Vassil Vassilev <v.g.vassilev@gmail.com>
Signed-off-by: Jun Zhang <jun@junz.org>
This patch mainly handles treating `begin` as block openers.
While and for statements will be handled in another patch.
Reviewed By: HazardyKnusperkeks
Differential Revision: https://reviews.llvm.org/D123450
This patch gives basic parsing and semantic support for "masked taskloop"
construct introduced in OpenMP 5.1 (section 2.16.7)
Differential Revision: https://reviews.llvm.org/D128478
This patch implements soft reset and adds tests for soft reset success of the
diagnostics engine. This allows us to recover from errors in clang-repl without
resetting the pragma handlers' state.
Differential revision: https://reviews.llvm.org/D126183
Summary:
This patch adds some new sanity checks to make sure that the sizes of
the offsets are within the bounds of the file or what is expected by the
binary. This also improves the error handling of the version structure
to be built into the binary itself so we can change it easier.
The target features are necessary for correctly compiling most programs
in LTO mode. Currently, these are derived in clang at link time and
passed as an arguemnt to the linker wrapper. This is problematic because
it requires knowing the required toolchain at link time, which should
not be necessry. Instead, these features should be embedded into the
offloading binary so we can unify them in the linker wrapper for LTO.
This also required changing the offload packager to interpret multiple
arguments as concatenation with a comma. This is so we can still use the
`,` separator for the argument list.
Depends on D127246
Reviewed By: tra
Differential Revision: https://reviews.llvm.org/D127686
Summary:
Currently we use temporary files to write the intermediate results to.
However, these are stored as regular strings and we do a few unnecessary
copies and conversions of them. This patch simply replaces these strings
with a reference to the filename stored in the list of temporary files.
The temporary files will stay alive during the whole linking phase and
have stable pointers, so we should be able to cheaply pass references to
them rather than copying them every time.
Summary:
A recent patch added some new code paths to the linker wrapper. Older
compilers seem to have problems with returning errors wrapped in
an Excepted type without explicitly moving them. This caused failures in
some of the buildbots. This patch fixes that.
The linker wrapper currently eagerly extracts all identified offloading
binaries to a file. This isn't ideal because we will soon open these
files again to examine their symbols for LTO and other things.
Additionally, we may not use every extracted file in the case of static
libraries. This would be very noisy in the case of static libraries that
may contain code for several targets not participating in the current
link.
Recent changes allow us to treat an Offloading binary as a standard
binary class. So that allows us to use an OwningBinary to model the
file. Now we keep it in memory and only write it once we know which
files will be participating in the final link job. This also reworks a
lot of the structure around how we handle this by removing the old
DeviceFile class.
The main benefit from this is that the following doesn't output 32+ files and
instead will only output a single temp file for the linked module.
```
$ clang input.c -fopenmp --offload-arch=sm_70 -foffload-lto -save-temps
```
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D127246
Previously, omitting unnecessary DWARF unwinds was only done in two
cases:
* For Darwin + aarch64, if no DWARF unwind info is needed for all the
functions in a TU, then the `__eh_frame` section would be omitted
entirely. If any one function needed DWARF unwind, then MC would emit
DWARF unwind entries for all the functions in the TU.
* For watchOS, MC would omit DWARF unwind on a per-function basis, as
long as compact unwind was available for that function.
This diff makes it so that we omit DWARF unwind on a per-function basis
for Darwin + aarch64 as well. In addition, we introduce the flag
`--emit-dwarf-unwind=` which can toggle between `always`,
`no-compact-unwind` (only emit DWARF when CU cannot be emitted for a
given function), and the target platform `default`. `no-compact-unwind`
is particularly useful for newer x86_64 platforms: we don't want to omit
DWARF unwind for x86_64 in general due to possible backwards compat
issues, but we should make it possible for people to opt into this
behavior if they are only targeting newer platforms.
**Motivation:** I'm working on adding support for `__eh_frame` to LLD,
but I'm concerned that we would suffer a perf hit. Processing compact
unwind is already expensive, and that's a simpler format than EH frames.
Given that MC currently produces one EH frame entry for every compact
unwind entry, I don't think processing them will be cheap. I tried to do
something clever on LLD's end to drop the unnecessary EH frames at parse
time, but this made the code significantly more complex. So I'm looking
at fixing this at the MC level instead.
**Addendum:** It turns out that there was a latent bug in the X86
backend when `OmitDwarfIfHaveCompactUnwind` is naively enabled, which is
not too surprising given that this combination has not been heretofore
used.
For functions that have unwind info that cannot be encoded with CU, MC
would end up dropping both the compact unwind entry (OK; existing
behavior) as well as the DWARF entries (not OK). This diff fixes things
so that we emit the DWARF entry, as well as a CU entry with encoding
`UNWIND_X86_MODE_DWARF` -- this basically tells the unwinder to look for
the DWARF entry. I'm not 100% sure the `UNWIND_X86_MODE_DWARF` CU entry
is necessary, this was the simplest fix. ld64 seems to be able to handle
both the absence and presence of this CU entry. Ultimately ld64 (and
LLD) will synthesize `UNWIND_X86_MODE_DWARF` if it is absent, so there
is no impact to the final binary size.
Reviewed By: davide, lhames
Differential Revision: https://reviews.llvm.org/D122258
When running scan-build-py's analyze-build script with output format set
to sarif & html it wants to print a message on how to look at the
defects mentioning the directory name twice.
But the path argument was only given once to the logging function,
causing "TypeError: not enough arguments for format string" exception.
Differential Revision: https://reviews.llvm.org/D126974
Building on D126796, this commit adds the infrastructure for being able
to print out descriptions of what each warning does.
Differential Revision: https://reviews.llvm.org/D126832
Summary:
The OffloadingBinary uses a convenience struct to help manage the memory
that will be serialized using the binary format. This currently uses a
reference to an existing buffer, but this should own the memory instead
so it is easier to work with seeing as its only current use requires
saving the buffer anyway.
This patch adds an llvm-driver multicall tool that can combine multiple
LLVM-based tools. The build infrastructure is enabled for a tool by
adding the GENERATE_DRIVER option to the add_llvm_executable CMake
call, and changing the tool's main function to a canonicalized
tool_name_main format (i.e. llvm_ar_main, clang_main, etc...).
As currently implemented llvm-driver contains dsymutil, llvm-ar,
llvm-cxxfilt, llvm-objcopy, and clang (if clang is included in the
build).
llvm-driver can be enabled from builds by setting
LLVM_TOOL_LLVM_DRIVER_BUILD=On.
There are several limitations in the current implementation, which can
be addressed in subsequent patches:
(1) the multicall binary cannot currently properly handle
multi-dispatch tools. This means symlinking llvm-ranlib to llvm-driver
will not properly result in llvm-ar's main being called.
(2) the multicall binary cannot be comprised of tools containing
conflicting cl::opt options as the global cl::opt option list cannot
contain duplicates.
These limitations can be addressed in subsequent patches.
Differential revision: https://reviews.llvm.org/D109977