This is causing compilation timeouts on code with long sequences of
local values and calls (i.e. foo(1); foo(2); foo(3); ...). It turns out
that code coverage instrumentation is a great way to create sequences
like this, which how our users ran into the issue in practice.
Intel has a tool that detects these kinds of non-linear compile time
issues, and Andy Kaylor reported it as PR37010.
The current sinking code scans the whole basic block once per local
value sink, which happens before emitting each call. In theory, local
values should only be introduced to be used by instructions between the
current flush point and the last flush point, so we should only need to
scan those instructions.
llvm-svn: 329822
Summary:
Local values are constants, global addresses, and stack addresses that
can't be folded into the instruction that uses them. For example, when
storing the address of a global variable into memory, we need to
materialize that address into a register.
FastISel doesn't want to materialize any given local value more than
once, so it generates all local value materialization code at
EmitStartPt, which always dominates the current insertion point. This
allows it to maintain a map of local value registers, and it knows that
the local value area will always dominate the current insertion point.
The downside is that local value instructions are always emitted without
a source location. This is done to prevent jumpy line tables, but it
means that the local value area will be considered part of the previous
statement. Consider this C code:
call1(); // line 1
++global; // line 2
++global; // line 3
call2(&global, &local); // line 4
Today we end up with assembly and line tables like this:
.loc 1 1
callq call1
leaq global(%rip), %rdi
leaq local(%rsp), %rsi
.loc 1 2
addq $1, global(%rip)
.loc 1 3
addq $1, global(%rip)
.loc 1 4
callq call2
The LEA instructions in the local value area have no source location and
are treated as being on line 1. Stepping through the code in a debugger
and correlating it with the assembly won't make much sense, because
these materializations are only required for line 4.
This is actually problematic for the VS debugger "set next statement"
feature, which effectively assumes that there are no registers live
across statement boundaries. By sinking the local value code into the
statement and fixing up the source location, we can make that feature
work. This was filed as https://bugs.llvm.org/show_bug.cgi?id=35975 and
https://crbug.com/793819.
This change is obviously not enough to make this feature work reliably
in all cases, but I felt that it was worth doing anyway because it
usually generates smaller, more comprehensible -O0 code. I measured a
0.12% regression in code generation time with LLC on the sqlite3
amalgamation, so I think this is worth doing.
There are some special cases worth calling out in the commit message:
1. local values materialized for phis
2. local values used by no-op casts
3. dead local value code
Local values can be materialized for phis, and this does not show up as
a vreg use in MachineRegisterInfo. In this case, if there are no other
uses, this patch sinks the value to the first terminator, EH label, or
the end of the BB if nothing else exists.
Local values may also be used by no-op casts, which adds the register to
the RegFixups table. Without reversing the RegFixups map direction, we
don't have enough information to sink these instructions.
Lastly, if the local value register has no other uses, we can delete it.
This comes up when fastisel tries two instruction selection approaches
and the first materializes the value but fails and the second succeeds
without using the local value.
Reviewers: aprantl, dblaikie, qcolombet, MatzeB, vsk, echristo
Subscribers: dotdash, chandlerc, hans, sdardis, amccarth, javed.absar, zturner, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D43093
llvm-svn: 327581
Summary:
Implements fastLowerArguments() to avoid the need to fall back on
SelectionDAG for 0-4 argument functions that don't do tricky things like
passing double in a pair of i32's.
This allows us to move all except one test to -fast-isel-abort=3. The
remaining one has function prototypes of the form 'i32 (i32, double, double)'
which requires floats to be passed in GPR's.
The previous commit had an uninitialized variable that caused the incoming
argument region to have undefined size. This has been fixed.
Reviewers: sdardis
Subscribers: dsanders, llvm-commits, sdardis
Differential Revision: https://reviews.llvm.org/D22680
llvm-svn: 277136
Summary:
Implements fastLowerArguments() to avoid the need to fall back on
SelectionDAG for 0-4 argument functions that don't do tricky things like
passing double in a pair of i32's.
This allows us to move all except one test to -fast-isel-abort=3. The
remaining one has function prototypes of the form 'i32 (i32, double, double)'
which requires floats to be passed in GPR's.
Reviewers: sdardis
Subscribers: dsanders, llvm-commits, sdardis
Differential Revision: https://reviews.llvm.org/D22680
llvm-svn: 276982
Summary:
It's always zero for SelectionDAG and is never read by the MIPS backend so
do the same for FastISel.
Reviewers: sdardis
Subscribers: dsanders, llvm-commits, sdardis
Differential Revision: http://reviews.llvm.org/D19863
llvm-svn: 268386
Summary:
This hidden option would disable code generation through FastISel by
default. It was removed from the available options and from the
Fast-ISel tests that required it in order to run the tests.
Reviewers: dsanders
Subscribers: qcolombet, llvm-commits
Differential Revision: http://reviews.llvm.org/D11610
llvm-svn: 243638
Summary: Allow calls with non legal integer types based on i8 and i16 to be processed by mips fast-isel.
Based on a patch by Reed Kotler.
Test Plan:
"Make check" test forthcoming.
Test-suite passes at O0/O2 and with mips32 r1/r2
Reviewers: rkotler, dsanders
Subscribers: llvm-commits, rfuhler
Differential Revision: http://reviews.llvm.org/D6770
llvm-svn: 237121
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
llvm-svn: 230794
Summary:
Currently fast-isel-abort will only abort for regular instructions,
and just warn for function calls, terminators, function arguments.
There is already fast-isel-abort-args but nothing for calls and
terminators.
This change turns the fast-isel-abort options into an integer option,
so that multiple levels of strictness can be defined.
This will help no being surprised when the "abort" option indeed does
not abort, and enables the possibility to write test that verifies
that no intrinsics are forgotten by fast-isel.
Reviewers: resistor, echristo
Subscribers: jfb, llvm-commits
Differential Revision: http://reviews.llvm.org/D7941
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 230775
Now that `Metadata` is typeless, reflect that in the assembly. These
are the matching assembly changes for the metadata/value split in
r223802.
- Only use the `metadata` type when referencing metadata from a call
intrinsic -- i.e., only when it's used as a `Value`.
- Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode`
when referencing it from call intrinsics.
So, assembly like this:
define @foo(i32 %v) {
call void @llvm.foo(metadata !{i32 %v}, metadata !0)
call void @llvm.foo(metadata !{i32 7}, metadata !0)
call void @llvm.foo(metadata !1, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{metadata !3}, metadata !0)
ret void, !bar !2
}
!0 = metadata !{metadata !2}
!1 = metadata !{i32* @global}
!2 = metadata !{metadata !3}
!3 = metadata !{}
turns into this:
define @foo(i32 %v) {
call void @llvm.foo(metadata i32 %v, metadata !0)
call void @llvm.foo(metadata i32 7, metadata !0)
call void @llvm.foo(metadata i32* @global, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{!3}, metadata !0)
ret void, !bar !2
}
!0 = !{!2}
!1 = !{i32* @global}
!2 = !{!3}
!3 = !{}
I wrote an upgrade script that handled almost all of the tests in llvm
and many of the tests in cfe (even handling many `CHECK` lines). I've
attached it (or will attach it in a moment if you're speedy) to PR21532
to help everyone update their out-of-tree testcases.
This is part of PR21532.
llvm-svn: 224257
Summary:
This has most of what is needed for mips fast-isel call lowering for O32.
What is missing I will add on the next patch because this patch is already too large.
It should not be doing anything wrong but it will punt on some cases that it is basically
capable of doing.
The mechanism is there for parameters to be passed on the stack but I have not enabled it because it serves as a way for now to prevent some of the strange cases of O32 register passing that I have not fully checked yet and have some issues.
The Mips O32 abi rules are very complicated as far how data is passed in floating and integer registers.
However there is a way to think about this all very simply and this implementation reflects that.
Basically, the ABI rules are written as if everything is passed on the stack and aligned as such.
Once that is conceptually done, it is nearly trivial to reassign those locations to registers and
then all the complexity disappears.
So I have told tablegen that all the data is passed on the stack and during the lowering I fix
this by assigning to registers as per the ABI doc.
This has been my approach and you can line up what I did with the ABI document and see 1 to 1 what
is going on.
Test Plan: callabi.ll
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: jholewinski, echristo, ahatanak, llvm-commits, rfuhler
Differential Revision: http://reviews.llvm.org/D5714
llvm-svn: 221948