This is the simplest form of bit-math based blending which only fires
when we are blending with zero and is relatively profitable. I've only
enabled this path on very specific lowering strategies. I'm planning to
widen its applicability in subsequent patches, but so far you'll notice
that even though we get fewer shufps instructions, we *still* do the bit
math in the FP execution port. I'm looking into why this is still
happening.
llvm-svn: 228124
Specifically, the existing patterns were scalar-only. These cover the
packed vector bitwise operations when specifically requested with pseudo
instructions. This is particularly important in SSE1 where we can't
actually emit a logical operation on a v2i64 as that isn't a legal type.
This will be tested in subsequent patches which form the floating point
and patterns in more places.
llvm-svn: 228123
__declspec(restrict) and __attribute(malloc) are both handled
identically by clang: they are allowed to the noalias LLVM attribute.
Seeing as how noalias models the C99 notion of 'restrict', rename the
internal clang attribute to Restrict from Malloc.
llvm-svn: 228120
When the condition is a vector, OpenCL specifies additional
requirements on the operand types, and also the operations
required to determine the result type of the operator. This is a
combination of OpenCL v1.1 s6.3.i and s6.11.6, and the semantics
remain unchanged in later versions of OpenCL.
llvm-svn: 228118
Some standard header files from MSVC2012 use 'mutable' on references, though it is directly prohibited by the standard.
Fix for http://llvm.org/PR22444
Differential Revision: http://reviews.llvm.org/D7370
llvm-svn: 228113
The ARM assembler allows register alias redefinitions as long as it
targets the same register. r222319 broke that. In the AArch64 case
it would just produce a new warning, but in the ARM case it would
error out on previously accepted assembler.
llvm-svn: 228109
update_llc_test_checks.py.
The exact format of the checks has changed over time. This includes
different indenting rules, new shuffle comments that have been added,
and more operand hiding behind regular expressions.
No functional change to the tests are expected here, but this will make
subsequent patches have a clean diff as they change shuffle lowering.
llvm-svn: 228097
update_llc_test_checks.py script uses, and refresh the checks in this
test.
No functionality changed here, just bringing this test up to work with
automated updates using the python script.
llvm-svn: 228096
This will make it easy to update as I change some parts of the X86
backend, makes it more clear what instruction differences are
introduced, and I find it makes it a bit easier to read as well.
llvm-svn: 228095
This pass is responsible for figuring out where to place call safepoints and safepoint polls. It doesn't actually make the relocations explicit; that's the job of the RewriteStatepointsForGC pass (http://reviews.llvm.org/D6975).
Note that this code is not yet finalized. Its moving in tree for incremental development, but further cleanup is needed and will happen over the next few days. It is not yet part of the standard pass order.
Planned changes in the near future:
- I plan on restructuring the statepoint rewrite to use the functions add to the IRBuilder a while back.
- In the current pass, the function "gc.safepoint_poll" is treated specially but is not an intrinsic. I plan to make identifying the poll function a property of the GCStrategy at some point in the near future.
- As follow on patches, I will be separating a collection of test cases we have out of tree and submitting them upstream.
- It's not explicit in the code, but these two patches are introducing a new state for a statepoint which looks a lot like a patchpoint. There's no a transient form which doesn't yet have the relocations explicitly represented, but does prevent reordering of memory operations. Once this is in, I need to update actually make this explicit by reserving the 'unused' argument of the statepoint as a flag, updating the docs, and making the code explicitly check for such a thing. This wasn't really planned, but once I split the two passes - which was done for other reasons - the intermediate state fell out. Just reminds us once again that we need to merge statepoints and patchpoints at some point in the not that distant future.
Future directions planned:
- Identifying more cases where a backedge safepoint isn't required to ensure timely execution of a safepoint poll.
- Tweaking the insertion process to generate easier to optimize IR. (For example, investigating making SplitBackedge) the default.
- Adding opt-in flags for a GCStrategy to use this pass. Once done, add this pass to the actual pass ordering.
Differential Revision: http://reviews.llvm.org/D6981
llvm-svn: 228090
Previously, when the following piece of code was compiled, clang would
incorrectly warn that the size of "wide_two" does not match register size
specified by the constraint and modifier":
long wide_two = two;
asm ("%w0 %1" : "+r" (one), "+r"(wide_two));
This was caused by a miscalculation of ConstraintIdx in Sema::ActOnGCCAsmStmt.
This commit fixes PR21270 and rdar://problem/18668354.
llvm-svn: 228089
The llvm-level tests for coverage mapping need a binary input file,
which means they're hard to understand, hard to update, and it's
difficult to add new ones. By adding some unit tests that build up the
coverage data structures in C++, we can write more meaningful and
targeted tests.
llvm-svn: 228084
This preserves the handy functionality of force-enabling the MachineVerifier, without the need to embed usage of environment variables in LLVM client applications.
llvm-svn: 228079
This may be a little bit inefficient than the original code
but that should be okay as this is not really in a performance
critical pass.
http://reviews.llvm.org/D7393
llvm-svn: 228077