Some use cases (e.g. kernel devs) have strict requirements to only enable
features available with -march=armv8-a, e.g. no armv8.1-a. Enabling RAS 1.1 in
all AArch64 means they can consider to support it.
Bear in mind that the first versions of the Armv8 architecture still do not
support RAS 1.1. This patch only lets devs write code with the user-friendly
register mnemonic instead of the ugly generic S<op0>_<op1>_<Cn>_<Cm>_<op2>.
They still need to place runtime checks to make sure that the CPU to run on
supports RAS 1.1.
Differential Revision: https://reviews.llvm.org/D90594
The LoopDistribute pass is missing from the LTO pipeline, so
-enable-loop-distribute has no effect during post-link. The pre-link
loop distribution doesn't seem to survive the LTO pipeline either.
With this patch (and -flto -mllvm -enable-loop-distribute) we see a 43%
uplift on SPEC 2006 hmmer for AArch64. The rest of SPECINT 2006 is
unaffected.
Differential Revision: https://reviews.llvm.org/D89896
Interfaces changed to take `ElementCount` as parameters:
* LoopVectorizationPlanner::buildVPlans
* LoopVectorizationPlanner::buildVPlansWithVPRecipes
* LoopVectorizationCostModel::selectVectorizationFactor
This patch is NFC for fixed-width vectors.
Reviewed By: dmgreen, ctetreau
Differential Revision: https://reviews.llvm.org/D90879
Make category-specifying files visible. There is really no good reason
to keep them hidden, and having them visible increases the chances
that someone will actually spot them.
Differential Revision: https://reviews.llvm.org/D91065
Replace the plethora of ObjC-implied 'skipUnlessDarwin' decorators
with marking tests as 'objc' category (whenever missing), and skip all
ObjC tests on non-Darwin platforms. I have used '.categories' file
wherever it was present already or all (>1) tests were relying on ObjC,
and explicit add_test_categories() where there was only one test.
Differential Revision: https://reviews.llvm.org/D91056
Part 2 of a fix for JITed code debugging. This has been a regression from 5.0 to 6.0 and it's still reproducible on current master: https://bugs.llvm.org/show_bug.cgi?id=36209 Part 1 was D61611 a while ago.
The in-memory object files we obtain from JITLoaderGDB are not yet relocated. It looks like this used to happen on the LLDB side and my guess is that it broke with D38142. (However, it's hard to tell because the whole thing was broken already due to the bug in part 1.) The patch moved relocation resolution to a later point in time and didn't apply it to in-memory objects. I am not aware of any reason why we wouldn't resolve relocations per-se, so I made it unconditional here. On Debian, it fixes the bug for me and all tests in `check-lldb` are still fine.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D90769
We can use KnownBitsAnalysis to cover cases when mask is not trivial. It can
also help with cases when mask is not constant but can still be folded into
one. Since 'and' is comutative we should treat both operands as possible
replacements.
Differential Revision: https://reviews.llvm.org/D90674
This sequence of instructions can be simplified if they are single use and
some operands are constants. Additional combines may be applied afterwards.
Differential Revision: https://reviews.llvm.org/D90223
Sequence of same shift instructions with constant operands can be combined into
a single shift instruction.
Differential Revision: https://reviews.llvm.org/D90217
This covers a few cases that aren't otherwise tested:
1) Non-ascii symbol names are ordered.
2) Comments, whitespace and blank lines are trimmed.
3) Missing order files result in an error.
Reviewed by: MaskRay, grimar
Differential Revision: https://reviews.llvm.org/D90933
I noticed when running a large link with the --time-trace option that
there were several areas which were missing any specific time trace
categories (aside from the generic link/ExecuteLinker categories). This
patch adds new categories to fill most of the "gaps", or to provide more
detail than was previously provided.
Reviewed by: MaskRay, grimar, russell.gallop
Differential Revision: https://reviews.llvm.org/D90686
Introduce an ODS/Tablegen backend producing Op wrappers for Python bindings
based on the ODS operation definition. Usage:
mlir-tblgen -gen-python-op-bindings -Iinclude <path/to/Ops.td> \
-bind-dialect=<dialect-name>
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D90960
Slicing, that is element access with `[being🔚step]` structure, is
a common Python idiom for sequence-like containers. It is also necessary
to support custom accessor for operations with variadic operands and
results (an operation an return a slice of its operands that correspond
to the given variadic group).
Add generic utility to support slicing in Python bindings and use it
for operation operands and results.
Depends On D90923
Reviewed By: stellaraccident, mehdi_amini
Differential Revision: https://reviews.llvm.org/D90936
https://reviews.llvm.org/D89670 changed the Ref structure, we need to
bump the version to invalidate all stored stale data, otherwise we will
get ` Error while reading shard: malformed or truncated refs` when
building the background index.
Differential Revision: https://reviews.llvm.org/D91131
* Even though remote index is still somewhat experimental, it can now be
used withing clangd itself: this should be the primary way of trying
it out
* Remove `protobuf-compiler` from list of needed Debian packages as it
`protobuf-compiler-grpc` already depends on it
* Bump recommended gRPC version to 1.32.3
We plan to eliminate error-prone and obsolete Clang-Rename API from Clangd. To
do that, we will introduce Decl canonicalization rules that will make renaming
code simpler and easier to maintain (D71880).
To ensure smooth transition to the new implementation, many Clang-Rename tests
will be adopted in Clangd to prevent any possible regressions. This patch is
the first in the chain of test migration patches. It improves existing tests
and adopts tests from Clang-Rename's alias, class and enum testing files.
Reviewed By: hokein
Differential Revision: https://reviews.llvm.org/D91102
VectorInsertDynamicOp in SPIRV dialect
conversion from vector.insertelement to spirv VectorInsertDynamicOp
Differential Revision: https://reviews.llvm.org/D90927
With this patch, we reject the rename if the new name would conflict with
any other decls in the decl context of the renamed decl.
Differential Revision: https://reviews.llvm.org/D89790
Summary: This patch try to do the following transformation if the multiplier doen't fit int16:
(mul X, c1 << c2) -> (rldicr (mulli X, c1) c2)
Reviewed By: jsji, steven.zhang
Differential Revision: https://reviews.llvm.org/D87384
mangling support for non-type template parameters of class type and
template parameter objects.
The Itanium side of this follows the approach I proposed in
https://github.com/itanium-cxx-abi/cxx-abi/issues/47 on 2020-09-06.
The MSVC side of this was determined empirically by observing MSVC's
output.
Differential Revision: https://reviews.llvm.org/D89998
Locations often get very long and clutter up operations when printed inline with them. This revision adds support for using aliases with trailing operation locations, and makes printing with aliases the default behavior. Aliases in the trailing location take the form `loc(<alias>)`, such as `loc(#loc0)`. As with all aliases, using `mlir-print-local-scope` can be used to disable them and get the inline behavior.
Differential Revision: https://reviews.llvm.org/D90652
This revision refactors the way that attributes/types are considered when generating aliases. Instead of considering all of the attributes/types of every operation, we perform a "fake" print step that prints the operations using a dummy printer to collect the attributes and types that would actually be printed during the real process. This removes a lot of attributes/types from consideration that generally won't end up in the final output, e.g. affine map attributes in an `affine.apply`/`affine.for`.
This resolves a long standing TODO w.r.t aliases, and helps to have a much cleaner textual output format. As a datapoint to the latter, as part of this change several tests were identified as testing for the presence of attributes aliases that weren't actually referenced by the custom form of any operation.
To ensure that this wouldn't cause a large degradation in compile time due to the second full print, I benchmarked this change on a very large module with a lot of operations(The file is ~673M/~4.7 million lines long). This file before this change take ~6.9 seconds to print in the custom form, and ~7 seconds after this change. In the custom assembly case, this added an average of a little over ~100 miliseconds to the compile time. This increase was due to the way that argument attributes on functions are structured and how they get printed; i.e. with a better representation the negative impact here can be greatly decreased. When printing in the generic form, this revision had no observable impact on the compile time. This benchmarking leads me to believe that the impact of this change on compile time w.r.t printing is closely related to `print` methods that perform a lot of additional/complex processing outside of the OpAsmPrinter.
Differential Revision: https://reviews.llvm.org/D90512
Our range computation methods benefit from no-wrap flags. But if the ranges
were first computed before the flags were set, the cached range will be too
pessimistic.
We need to drop cached ranges whenever we sharpen AddRec's no wrap flags.
Differential Revision: https://reviews.llvm.org/D89847
Reviewed By: fhahn
Excluded folders in scan build is turned to absolute path before
comapre to 'file' in cdb. 'file' in cdb might be a path relative
to 'directory', so we need to turn it to absolute path before
comparison.
Patch by Yu Shan
Differential Revision: https://reviews.llvm.org/D90362
If the source of S_MOV_{B32,B64}_term is an immediate then it
cannot be lowered to a COPY.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D90451
This patch adds three intrinsics compatible to x86's SSE 4.1 on PowerPC
target, with tests:
- _mm_insert_epi8
- _mm_insert_epi32
- _mm_insert_epi64
The intrinsics implementation is contributed by Paul Clarke.
Reviewed By: jsji
Differential Revision: https://reviews.llvm.org/D89242
For consistency with the IRBuilder, OpenMPIRBuilder has method names starting with 'Create'. However, the LLVM coding style has methods names starting with lower case letters, as all other OpenMPIRBuilder already methods do. The clang-tidy configuration used by Phabricator also warns about the naming violation, adding noise to the reviews.
This patch renames all `OpenMPIRBuilder::CreateXYZ` methods to `OpenMPIRBuilder::createXYZ`, and updates all in-tree callers.
I tested check-llvm, check-clang, check-mlir and check-flang to ensure that I did not miss a caller.
Reviewed By: mehdi_amini, fghanim
Differential Revision: https://reviews.llvm.org/D91109
This patch simplifies BranchProbabilityInfo by changing the type of
Probs.
Without this patch:
DenseMap<Edge, BranchProbability> Probs
maps an ordered pair of a BasicBlock* and a successor index to an edge
probability.
With this patch:
DenseMap<const BasicBlock *, SmallVector<BranchProbability, 2>> Probs
maps a BasicBlock* to a vector of edge probabilities.
BranchProbabilityInfo has a property that for a given basic block, we
either have edge probabilities for all successors or do not have any
edge probability at all. This property combined with the current map
type leads to a somewhat complicated algorithm in eraseBlock to erase
map entries one by one while increasing the successor index.
The new map type allows us to remove the all edge probabilities for a
given basic block in a more intuitive manner, namely:
Probs.erase(BB);
Differential Revision: https://reviews.llvm.org/D91017
Prior to D89768, any alloca that's used after suspension points will be put on to the coroutine frame, and hence they will always be reloaded in the resume function.
However D89768 introduced a more precise way to determine whether an alloca should live on the frame. Allocas that are only used within one suspension region (hence does not need to live across suspension points) will not be put on the frame. They will remain local to the resume function.
When creating the new entry for the .resume function, the existing logic only moved all the allocas from the old entry to the new entry. This covers every alloca from the old entry. However allocas that's defined afer coro.begin are put into a separate basic block during CoroSplit (the PostSpill basic block). We need to make sure these allocas are moved to the new entry as well if they are used.
This patch walks through all allocas, and check if they are still used but are not reachable from the new entry, if so, we move them to the new entry.
Differential Revision: https://reviews.llvm.org/D90977