This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString. Integers are stringified and
a `\0` character is used as a separator.
Part of PR17891.
Note: I've attached my testcases upgrade scripts to the PR. If I've
just broken your out-of-tree testcases, they might help.
llvm-svn: 218914
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
Note: I accidentally committed a bogus older version of this patch previously.
llvm-svn: 218787
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
llvm-svn: 218778
The grammar for LLVM IR is not well specified in any document but seems
to obey the following rules:
- Attributes which have parenthesized arguments are never preceded by
commas. This form of attribute is the only one which ever has
optional arguments. However, not all of these attributes support
optional arguments: 'thread_local' supports an optional argument but
'addrspace' does not. Interestingly, 'addrspace' is documented as
being a "qualifier". What constitutes a qualifier? I cannot find a
definition.
- Some attributes use a space between the keyword and the value.
Examples of this form are 'align' and 'section'. These are always
preceded by a comma.
- Otherwise, the attribute has no argument. These attributes do not
have a preceding comma.
Sometimes an attribute goes before the instruction, between the
instruction and it's type, or after it's type. 'atomicrmw' has
'volatile' between the instruction and the type while 'call' has 'tail'
preceding the instruction.
With all this in mind, it seems most consistent for 'inalloca' on an
'inalloca' instruction to occur before between the instruction and the
type. Unlike the current formulation, there would be no preceding
comma. The combination 'alloca inalloca' doesn't look particularly
appetizing, perhaps a better spelling of 'inalloca' is down the road.
llvm-svn: 203376
It disturbs the layout of the parameters in memory and registers,
leading to problems in the backend.
The plan for optimizing internal inalloca functions going forward is to
essentially SROA the argument memory and demote any captured arguments
(things that aren't trivially written by a load or store) to an indirect
pointer to a static alloca.
llvm-svn: 200717
We are going to drop debug info without a version number or with a different
version number, to make sure we don't crash when we see bitcode files with
different debug info metadata format.
llvm-svn: 195504
If a function seen at compile time is not necessarily the one linked to
the binary being built, it is illegal to change the actual arguments
passing to it.
e.g.
--------------------------
void foo(int lol) {
// foo() has linkage satisifying isWeakForLinker()
// "lol" is not used at all.
}
void bar(int lo2) {
// xform to foo(undef) is illegal, as compiler dose not know which
// instance of foo() will be linked to the the binary being built.
foo(lol2);
}
-----------------------------
Such functions can be captured by isWeakForLinker(). NOTE that
mayBeOverridden() is insufficient for this purpose as it dosen't include
linkage types like AvailableExternallyLinkage and LinkOnceODRLinkage.
Take link_odr* as an example, it indicates a set of *EQUIVALENT* globals
that can be merged at link-time. However, the semantic of
*EQUIVALENT*-functions includes parameters. Changing parameters breaks
the assumption.
Thank John McCall for help, especially for the explanation of subtle
difference between linkage types.
rdar://11546243
llvm-svn: 192302
Field 2 of DIType (Context), field 9 of DIDerivedType (TypeDerivedFrom),
field 12 of DICompositeType (ContainingType), fields 2, 7, 12 of DISubprogram
(Context, Type, ContainingType).
llvm-svn: 190205
DICompositeType will have an identifier field at position 14. For now, the
field is set to null in DIBuilder.
For DICompositeTypes where the template argument field (the 13th field)
was optional, modify DIBuilder to make sure the template argument field is set.
Now DICompositeType has 15 fields.
Update DIBuilder to use NULL instead of "i32 0" for null value of a MDNode.
Update verifier to check that DICompositeType has 15 fields and the last
field is null or a MDString.
Update testing cases to include an extra field for DICompositeType.
The identifier field will be used by type uniquing so a front end can
genearte a DICompositeType with a unique identifer.
llvm-svn: 189282
- Instead of setting the suffixes in a bunch of places, just set one master
list in the top-level config. We now only modify the suffix list in a few
suites that have one particular unique suffix (.ml, .mc, .yaml, .td, .py).
- Aside from removing the need for a bunch of lit.local.cfg files, this enables
4 tests that were inadvertently being skipped (one in
Transforms/BranchFolding, a .s file each in DebugInfo/AArch64 and
CodeGen/PowerPC, and one in CodeGen/SI which is now failing and has been
XFAILED).
- This commit also fixes a bunch of config files to use config.root instead of
older copy-pasted code.
llvm-svn: 188513
Also remove checking of llvm.dbg.sp since it is not used in generating dwarf.
Current state of Finder:
DebugInfoFinder tries to list all debug info MDNodes used in a module. To
list debug info MDNodes used by an instruction, DebugInfoFinder provides
processDeclare, processValue and processLocation to handle DbgDeclareInst,
DbgValueInst and DbgLoc attached to instructions. processModule will go
through all DICompileUnits in llvm.dbg.cu and list debug info MDNodes
used by the CUs.
TODO:
1> Finder has a list of CUs, SPs, Types, Scopes and global variables. We
need to add a list of variables that are used by DbgDeclareInst and
DbgValueInst.
2> MDString fields should be null or isa<MDString> and MDNode fields should be
null or isa<MDNode>. We currently use empty string or int 0 to represent null.
3> Go though Verify functions and make sure that they check field types.
4> Clean up existing testing cases to remove llvm.dbg.sp and make sure each
testing case has a llvm.dbg.cu.
Re-apply r187609 with fix to pass ocaml binding. vmcore.ml generates a debug
location with scope being metadata !{}, in verifier we treat this as a null
scope.
llvm-svn: 187812
Also remove checking of llvm.dbg.sp since it is not used in generating dwarf.
Current state of Finder:
DebugInfoFinder tries to list all debug info MDNodes used in a module. To
list debug info MDNodes used by an instruction, DebugInfoFinder provides
processDeclare, processValue and processLocation to handle DbgDeclareInst,
DbgValueInst and DbgLoc attached to instructions. processModule will go
through all DICompileUnits in llvm.dbg.cu and list debug info MDNodes
used by the CUs.
TODO:
1> Finder has a list of CUs, SPs, Types, Scopes and global variables. We
need to add a list of variables that are used by DbgDeclareInst and
DbgValueInst.
2> MDString fields should be null or isa<MDString> and MDNode fields should be
null or isa<MDNode>. We currently use empty string or int 0 to represent null.
3> Go though Verify functions and make sure that they check field types.
4> Clean up existing testing cases to remove llvm.dbg.sp and make sure each
testing case has a llvm.dbg.cu.
llvm-svn: 187609
This conversion was done with the following bash script:
find test/Transforms -name "*.ll" | \
while read NAME; do
echo "$NAME"
if ! grep -q "^; *RUN: *llc" $NAME; then
TEMP=`mktemp -t temp`
cp $NAME $TEMP
sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \
while read FUNC; do
sed -i '' "s/;\(.*\)\([A-Za-z0-9_]*\):\( *\)define\([^@]*\)@$FUNC\([( ]*\)\$/;\1\2-LABEL:\3define\4@$FUNC(/g" $TEMP
done
mv $TEMP $NAME
fi
done
llvm-svn: 186269
This update was done with the following bash script:
find test/Transforms -name "*.ll" | \
while read NAME; do
echo "$NAME"
if ! grep -q "^; *RUN: *llc" $NAME; then
TEMP=`mktemp -t temp`
cp $NAME $TEMP
sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \
while read FUNC; do
sed -i '' "s/;\(.*\)\([A-Za-z0-9_]*\):\( *\)@$FUNC\([( ]*\)\$/;\1\2-LABEL:\3@$FUNC(/g" $TEMP
done
mv $TEMP $NAME
fi
done
llvm-svn: 186268
This pass was assuming that if hasAddressTaken() returns false for a
function, the function's only uses are call sites. That's not true
because there can be references by BlockAddresses too.
Fix the pass to handle this case. Fix
BlockAddress::replaceUsesOfWithOnConstant() to allow a function's type
to be changed by RAUW'ing the function with a bitcast of the recreated
function.
Patch by Mark Seaborn.
llvm-svn: 183933
This reverts commit r179840 with a fix to test/DebugInfo/two-cus-from-same-file.ll
I'm not sure why that test only failed on ARM & MIPS and not X86 Linux, even
though the debug info was clearly invalid on all of them, but this ought to fix
it.
llvm-svn: 179996
Adding another CU-wide list, in this case of imported_modules (since they
should be relatively rare, it seemed better to add a list where each element
had a "context" value, rather than add a (usually empty) list to every scope).
This takes care of DW_TAG_imported_module, but to fully address PR14606 we'll
need to expand this to cover DW_TAG_imported_declaration too.
llvm-svn: 179836
This reverts commit 342d92c7a0adeabc9ab00f3f0d88d739fe7da4c7.
Turns out we're going with a different schema design to represent
DW_TAG_imported_modules so we won't need this extra field.
llvm-svn: 178215
This is just the basic groundwork for supporting DW_TAG_imported_module but I
wanted to commit this before pushing support further into Clang or LLVM so that
this rather churny change is isolated from the rest of the work. The major
churn here is obviously adding another field (within the common DIScope prefix)
to all DIScopes (files, classes, namespaces, lexical scopes, etc). This should
be the last big churny change needed for DW_TAG_imported_module/using directive
support/PR14606.
llvm-svn: 178099
This is the first step to making all DIScopes have a common metadata prefix (so
that things (using directives, for example) that can appear in any scope can be
added to that common prefix). DIFile is itself a DIScope so the common prefix
of all DIScopes cannot be a DIFile - instead it's the raw filename/directory
name pair.
llvm-svn: 177239
This is the next step towards making the metadata for DIScopes have a common
prefix rather than having to delegate based on their tag type.
llvm-svn: 176913
This could be 'null' or the empty string, DIDescriptor::getStringField
coalesces the two cases anyway so it's just a matter of legible/efficient
representation.
The change in behavior of the DICompileUnit::get* functions could be
subsumed by the full verification check - but ideally that should just be an
assertion if we could front-load the actual debug info metadata failure paths.
llvm-svn: 176907
Listing all of the attributes for the callee of a call/invoke instruction is way
too much and makes the IR unreadable. Use references to attributes instead.
llvm-svn: 175877
The main lists of debug info metadata attached to the compile_unit had an extra
layer of metadata nodes they went through for no apparent reason. This patch
removes that (& still passes just as much of the GDB 7.5 test suite). If anyone
can show evidence as to why these extra metadata nodes are there I'm open to
reverting this patch & documenting why they're there.
llvm-svn: 174266
DeadArgumentElimination pass can replace one LLVM function with another,
invalidating a pointer stored in debug info metadata entry for this function.
To fix this, we collect debug info descriptors for functions before
running a DeadArgumentElimination pass and "patch" pointers in metadata nodes
if we replace a function.
llvm-svn: 165490
another mechanical change accomplished though the power of terrible Perl
scripts.
I have manually switched some "s to 's to make escaping simpler.
While I started this to fix tests that aren't run in all configurations,
the massive number of tests is due to a really frustrating fragility of
our testing infrastructure: things like 'grep -v', 'not grep', and
'expected failures' can mask broken tests all too easily.
Essentially, I'm deeply disturbed that I can change the testsuite so
radically without causing any change in results for most platforms. =/
llvm-svn: 159547
This was done through the aid of a terrible Perl creation. I will not
paste any of the horrors here. Suffice to say, it require multiple
staged rounds of replacements, state carried between, and a few
nested-construct-parsing hacks that I'm not proud of. It happens, by
luck, to be able to deal with all the TCL-quoting patterns in evidence
in the LLVM test suite.
If anyone is maintaining large out-of-tree test trees, feel free to poke
me and I'll send you the steps I used to convert things, as well as
answer any painful questions etc. IRC works best for this type of thing
I find.
Once converted, switch the LLVM lit config to use ShTests the same as
Clang. In addition to being able to delete large amounts of Python code
from 'lit', this will also simplify the entire test suite and some of
lit's architecture.
Finally, the test suite runs 33% faster on Linux now. ;]
For my 16-hardware-thread (2x 4-core xeon e5520): 36s -> 24s
llvm-svn: 159525
of the instruction.
Note that this change affects the existing non-atomic load and store
instructions; the parser now accepts both forms, and the change is noted
in the release notes.
llvm-svn: 137527
patch brings numerous advantages to LLVM. One way to look at it
is through diffstat:
109 files changed, 3005 insertions(+), 5906 deletions(-)
Removing almost 3K lines of code is a good thing. Other advantages
include:
1. Value::getType() is a simple load that can be CSE'd, not a mutating
union-find operation.
2. Types a uniqued and never move once created, defining away PATypeHolder.
3. Structs can be "named" now, and their name is part of the identity that
uniques them. This means that the compiler doesn't merge them structurally
which makes the IR much less confusing.
4. Now that there is no way to get a cycle in a type graph without a named
struct type, "upreferences" go away.
5. Type refinement is completely gone, which should make LTO much MUCH faster
in some common cases with C++ code.
6. Types are now generally immutable, so we can use "Type *" instead
"const Type *" everywhere.
Downsides of this patch are that it removes some functions from the C API,
so people using those will have to upgrade to (not yet added) new API.
"LLVM 3.0" is the right time to do this.
There are still some cleanups pending after this, this patch is large enough
as-is.
llvm-svn: 134829
input filename so that opt doesn't print the input filename in the
output so that grep lines in the tests don't unintentionally match
strings in the input filename.
llvm-svn: 81537
return values that are still (partially) live. Instead of updating all uses of
a call instruction after removing some elements, it now just rebuilds the
original struct (With undef gaps where the unused values were) and leaves it to
instcombine to clean this up.
The added testcase still fails currently, but this is due to instcombine which
isn't good enough yet. I will fix that part next.
llvm-svn: 53608
Rewrite the DeadArgumentElimination pass, to use a more explicit tracking of
dependencies between return values and/or arguments. Also make the handling of
arguments and return values the same.
The pass now looks properly inside returned structs, but only at the first
level (ie, not inside nested structs).
This version fixed a few more bugs and was cleaned up a bit. It now passes all
of LLVM's testing, and should still pass SPEC2006. There is still a minor bug
with regard to returning nested structs. Since there is currently nothing that
emits such IR, I will fix that in a seperate commit (partly because it requires
a non-trivial fix).
llvm-svn: 53400
This is a fixed version that no longer uses multimap::equal_range, which
resulted in a pointer invalidation problem.
Also, DAE::InspectedFunctions was not really necessary, so it got removed.
Lastly, this version no longer applies the extra arg hack on functions who did
not have any arguments to start with.
llvm-svn: 52532
dependencies between return values and/or arguments. Also make the handling of
arguments and return values the same.
The pass now looks properly inside returned structs, but only at the first
level (ie, not inside nested structs).
Also add a testcase for testing various variations of (multiple) dead rerturn
values.
llvm-svn: 52459
return attributes on the floor. In the case of a call
to a varargs function where the varargs arguments are
being removed, any call attributes on those arguments
need to be dropped. I didn't do this because I plan to
make it illegal to have such attributes (see next patch).
With this change, compiling the gcc filter2 eh test at -O0
and then running opt -std-compile-opts on it results in
a correctly working program (compiling at -O1 or higher
results in the test failing due to a problem with how we
output eh info into the IR).
llvm-svn: 45285
Remove && from the end of the lines to prevent tests from throwing run
lines into the background. Also, clean up places where the same command
is run multiple times by using a temporary file.
llvm-svn: 36142
global variables that needed to be passed in. This makes it possible to
add new global variables with only a couple changes (Makefile and llvm-dg.exp)
instead of touching every single dg.exp file.
llvm-svn: 35918