The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.
In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.
Differential Revision: https://reviews.llvm.org/D43624
llvm-svn: 332240
The instruction mapping between eBPF/arm64/x86_64 are:
eBPF arm64 x86_64
LD1 BPF_LDX | BPF_B ldrb movzbl
LD2 BPF_LDX | BPF_H ldrh movzwl
LD4 BPF_LDX | BPF_W ldr movl
movzbl/movzwl/movl on x86_64 accept 32-bit sub-register, for example %eax,
the same for ldrb/ldrh on arm64 which accept 32-bit "w" register. And
actually these instructions only accept sub-registers. There is no point
to have LD1/2/4 (unsigned) for 64-bit register, because on these arches,
upper 32-bits are guaranteed to be zeroed by hardware or VM, so load into
the smallest available register class is the best choice for maintaining
type information.
For eBPF we should adopt the same philosophy, to change current
format (A):
r = *(u8 *) (r + off) // BPF_LDX | BPF_B
r = *(u16 *)(r + off) // BPF_LDX | BPF_H
r = *(u32 *)(r + off) // BPF_LDX | BPF_W
*(u8 *) (r + off) = r // BPF_STX | BPF_B
*(u16 *)(r + off) = r // BPF_STX | BPF_H
*(u32 *)(r + off) = r // BPF_STX | BPF_W
into B:
w = *(u8 *) (r + off) // BPF_LDX | BPF_B
w = *(u16 *)(r + off) // BPF_LDX | BPF_H
w = *(u32 *)(r + off) // BPF_LDX | BPF_W
*(u8 *) (r + off) = w // BPF_STX | BPF_B
*(u16 *)(r + off) = w // BPF_STX | BPF_H
*(u32 *)(r + off) = w // BPF_STX | BPF_W
There is no change on encoding nor how should they be interpreted,
everything is as it is, load the specified length, write into low bits of
the register then zeroing all remaining high bits.
The only change is their associated register class and how compiler view
them.
Format A still need to be kept, because eBPF LLVM backend doesn't support
sub-registers at default, but once 32-bit subregister is enabled, it should
use format B.
This patch implemented this together with all those necessary extended load
and truncated store patterns.
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Yonghong Song <yhs@fb.com>
llvm-svn: 325987
The reference '&' is missing in the function parameter. If there are
back-to-back optimizations in terms of dag node list like below:
t29: i64,ch = load<LD4[bitcast (%struct.test_t* @test.t to i8*)+12](dereferenceable), zext from i32> t3, t43, undef:i64
t34: i64,ch = load<LD4[bitcast (%struct.test_t* @test.t to i8*)](dereferenceable), zext from i32> t3, t41, undef:i64
The bug will trigger a segfault for the added test case remove_truncate_5.ll:
LLVMSymbolizer: error reading file: No such file or directory
#0 0x000000000241c4d9 (llc+0x241c4d9)
#1 0x000000000241c56a (llc+0x241c56a)
#2 0x000000000241aa50 (llc+0x241aa50)
...
#22 0x0000000000fd5edf (llc+0xfd5edf)
#23 0x00007f0fe03bec05 __libc_start_main (/lib64/libc.so.6+0x21c05)
#24 0x0000000000fd3e69 (llc+0xfd3e69)
...
Segmentation fault
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 325267
Previously some targets printed their own message at the start of Select to indicate what they were selecting. For the targets that didn't, it means there was no print of the root node before any custom handling in the target executed. So if the target did something custom and never called SelectNodeCommon, no print would be made. For the targets that did print a message in Select, if they didn't custom handle a node SelectNodeCommon would reprint the root node before walking the isel table.
It seems better to just print the message before the call to Select so all targets behave the same. And then remove the root node printing from SelectNodeCommon and just leave a message that says we're starting the table search.
There were also some oddities in blank line behavior. Usually due to a \n after a call to SelectionDAGNode::dump which already inserted a new line.
llvm-svn: 323551
As commented on the existing code:
// The Reg operand should be a virtual register, which is defined
// outside the current basic block. DAG combiner has done a pretty
// good job in removing truncating inside a single basic block.
However, when the Reg operand comes from bpf_load_[byte | half | word]
intrinsics, the generic optimizer doesn't understand their results are
zero extended, so these single basic block elimination opportunities were
missed.
Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
llvm-svn: 322534
As part of the unification of the debug format and the MIR format, print
MBB references as '%bb.5'.
The MIR printer prints the IR name of a MBB only for block definitions.
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)->getNumber\(\)/" << printMBBReference(*\1)/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)\.getNumber\(\)/" << printMBBReference(\1)/g'
* find . \( -name "*.txt" -o -name "*.s" -o -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#([0-9]+)/%bb.\1/g'
* grep -nr 'BB#' and fix
Differential Revision: https://reviews.llvm.org/D40422
llvm-svn: 319665
output
As part of the unification of the debug format and the MIR format,
always use `printReg` to print all kinds of registers.
Updated the tests using '_' instead of '%noreg' until we decide which
one we want to be the default one.
Differential Revision: https://reviews.llvm.org/D40421
llvm-svn: 319445
As part of the unification of the debug format and the MIR format, avoid
printing "vreg" for virtual registers (which is one of the current MIR
possibilities).
Basically:
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E "s/%vreg([0-9]+)/%\1/g"
* grep -nr '%vreg' . and fix if needed
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E "s/ vreg([0-9]+)/ %\1/g"
* grep -nr 'vreg[0-9]\+' . and fix if needed
Differential Revision: https://reviews.llvm.org/D40420
llvm-svn: 319427
In BPF backend, we try to optimize away redundant
trunc operations so that kernel verifier rewrite
remains valid. Previous implementation only works
for a single function.
This patch fixed the issue for multiple functions.
It clears internal map data structure before
performing optimization for each function.
Signed-off-by: Yonghong Song <yhs@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
llvm-svn: 316469
For networking-type bpf program, it often needs to access
packet data. A context data structure is provided to the bpf
programs with two fields:
u32 data;
u32 data_end;
User can access these two fields with ctx->data and ctx->data_end.
During program verification process, the kernel verifier modifies
the bpf program with loading of actual pointer value from kernel
data structure.
r = ctx->data ===> r = actual data start ptr
r = ctx->data_end ===> r = actual data end ptr
A typical program accessing ctx->data like
char *data_ptr = (char *)(long)ctx->data
will result in a 32-bit load followed by a zero extension.
Such an operation is combined into a single LDW in DAG combiner
as bpf LDW does zero extension automatically.
In cases like the below (which can be a result of global value numbering
and partial redundancy elimination before insn selection):
B1:
u32 a = load-32-bit &ctx->data
u64 pa = zext a
...
B2:
u32 b = load-32-bit &ctx->data
u64 pb = zext b
...
B3:
u32 m = PHI(a, b)
u64 pm = zext m
In B3, "pm = zext m" cannot be removed, which although is legal
from compiler perspective, will generate incorrect code after
kernel verification.
This patch recognizes this pattern and traces through PHI node
to see whether the operand of "zext m" is defined with LDWs or not.
If it is, the "zext m" itself can be removed.
The patch also recognizes the pattern where the load and use of
the load value not in the same basic block, where truncate operation
may be removed as well.
The patch handles 1-byte, 2-byte and 4-byte truncation.
Two test cases are added to verify the transformation happens properly
for the above code pattern.
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 306685
Davide Italiano reported the following issue if llvm
is compiled with gcc -Wstrict-aliasing -Werror:
.....
lib/Target/BPF/CMakeFiles/LLVMBPFCodeGen.dir/BPFISelDAGToDAG.cpp.o
../lib/Target/BPF/BPFISelDAGToDAG.cpp: In member function ‘virtual
void {anonymous}::BPFDAGToDAGISel::PreprocessISelDAG()’:
../lib/Target/BPF/BPFISelDAGToDAG.cpp:264:26: warning: dereferencing
type-punned pointer will break strict-aliasing rules
[-Wstrict-aliasing]
val = *(uint16_t *)new_val;
.....
The error is caused by my previous commit (revision 305560).
This patch fixed the issue by introducing an union to avoid
type casting.
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 305608
If users tried to have a structure decl/init code like below
struct test_t t = { .memeber1 = 45 };
It is very likely that compiler will generate a readonly section
to hold up the init values for variable t. Later load of t members,
e.g., t.member1 will result in a read from readonly section.
BPF program cannot handle relocation. This will force users to
write:
struct test_t t = {};
t.member1 = 45;
This is just inconvenient and unintuitive.
This patch addresses this issue by implementing BPF PreprocessISelDAG.
For any load from a global constant structure or an global array of
constant struct, it attempts to
translate it into a constant directly. The traversal of the
constant struct and other constant data structures are similar
to where the assembler emits read-only sections.
Four different unit test cases are also added to cover
different scenarios.
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 305560
If the offset cannot fit into the instruction, an addition to the
pointer is emitted before the actual access. However, BPF offsets are
16-bit but LLVM considers them to be, for the matter of this check,
to be 32-bit long.
This causes the following program:
int bpf_prog1(void *ign)
{
volatile unsigned long t = 0x8983984739ull;
return *(unsigned long *)((0xffffffff8fff0002ull) + t);
}
To generate the following (wrong) code:
0: 18 01 00 00 39 47 98 83 00 00 00 00 89 00 00 00
r1 = 590618314553ll
2: 7b 1a f8 ff 00 00 00 00 *(u64 *)(r10 - 8) = r1
3: 79 a1 f8 ff 00 00 00 00 r1 = *(u64 *)(r10 - 8)
4: 79 10 02 00 00 00 00 00 r0 = *(u64 *)(r1 + 2)
5: 95 00 00 00 00 00 00 00 exit
Fix it by changing the offset check to 16-bit.
Patch by Nadav Amit <nadav.amit@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Differential Revision: https://reviews.llvm.org/D32055
llvm-svn: 300269
We had various variants of defining dump() functions in LLVM. Normalize
them (this should just consistently implement the things discussed in
http://lists.llvm.org/pipermail/cfe-dev/2014-January/034323.html
For reference:
- Public headers should just declare the dump() method but not use
LLVM_DUMP_METHOD or #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- The definition of a dump method should look like this:
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MyClass::dump() {
// print stuff to dbgs()...
}
#endif
llvm-svn: 293359
- Where we were returning a node before, call ReplaceNode instead.
- Where we were calling SelectNodeTo, just return afterwards.
Part of llvm.org/pr26808.
llvm-svn: 269350
This is a step towards removing the rampant undefined behaviour in
SelectionDAG, which is a part of llvm.org/PR26808.
We rename SelectionDAGISel::Select to SelectImpl and update targets to
match, and then change Select to return void and consolidate the
sketchy behaviour we're trying to get away from there.
Next, we'll update backends to implement `void Select(...)` instead of
SelectImpl and eventually drop the base Select implementation.
llvm-svn: 268693
o Before this patch, BPF backend will expand UNDEF node
to i64 constant 0.
o For second pass of dag combiner, legalizer will run through
each to-be-processed dag node.
o If any new SDNode is generated and has an undef operand,
dag combiner will put undef node, newly-generated constant-0 node,
and any node which uses these nodes in the working list.
o During this process, it is possible undef operand is
generated again, and this will form an infinite loop
for dag combiner pass2.
o This patch allows UNDEF to be a legal type.
Signed-off-by: Yonghong Song <yhs@plumgrid.com>
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
llvm-svn: 249718
For the program like below
struct key_t {
int pid;
char name[16];
};
extern void test1(char *);
int test() {
struct key_t key = {};
test1(key.name);
return 0;
}
For key.name, the llc/bpf may generate the below code:
R1 = R10 // R10 is the frame pointer
R1 += -24 // framepointer adjustment
R1 |= 4 // R1 is then used as the first parameter of test1
OR operation is not recognized by in-kernel verifier.
This patch introduces an intermediate FI_ri instruction and
generates the following code that can be properly verified:
R1 = R10
R1 += -20
Patch by Yonghong Song <yhs@plumgrid.com>
llvm-svn: 249371
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
llvm-svn: 240137
Summary:
V8->V9:
- cleanup tests
V7->V8:
- addressed feedback from David:
- switched to range-based 'for' loops
- fixed formatting of tests
V6->V7:
- rebased and adjusted AsmPrinter args
- CamelCased .td, fixed formatting, cleaned up names, removed unused patterns
- diffstat: 3 files changed, 203 insertions(+), 227 deletions(-)
V5->V6:
- addressed feedback from Chandler:
- reinstated full verbose standard banner in all files
- fixed variables that were not in CamelCase
- fixed names of #ifdef in header files
- removed redundant braces in if/else chains with single statements
- fixed comments
- removed trailing empty line
- dropped debug annotations from tests
- diffstat of these changes:
46 files changed, 456 insertions(+), 469 deletions(-)
V4->V5:
- fix setLoadExtAction() interface
- clang-formated all where it made sense
V3->V4:
- added CODE_OWNERS entry for BPF backend
V2->V3:
- fix metadata in tests
V1->V2:
- addressed feedback from Tom and Matt
- removed top level change to configure (now everything via 'experimental-backend')
- reworked error reporting via DiagnosticInfo (similar to R600)
- added few more tests
- added cmake build
- added Triple::bpf
- tested on linux and darwin
V1 cover letter:
---------------------
recently linux gained "universal in-kernel virtual machine" which is called
eBPF or extended BPF. The name comes from "Berkeley Packet Filter", since
new instruction set is based on it.
This patch adds a new backend that emits extended BPF instruction set.
The concept and development are covered by the following articles:
http://lwn.net/Articles/599755/http://lwn.net/Articles/575531/http://lwn.net/Articles/603983/http://lwn.net/Articles/606089/http://lwn.net/Articles/612878/
One of use cases: dtrace/systemtap alternative.
bpf syscall manpage:
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=b4fc1a460f3017e958e6a8ea560ea0afd91bf6fe
instruction set description and differences vs classic BPF:
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/networking/filter.txt
Short summary of instruction set:
- 64-bit registers
R0 - return value from in-kernel function, and exit value for BPF program
R1 - R5 - arguments from BPF program to in-kernel function
R6 - R9 - callee saved registers that in-kernel function will preserve
R10 - read-only frame pointer to access stack
- two-operand instructions like +, -, *, mov, load/store
- implicit prologue/epilogue (invisible stack pointer)
- no floating point, no simd
Short history of extended BPF in kernel:
interpreter in 3.15, x64 JIT in 3.16, arm64 JIT, verifier, bpf syscall in 3.18, more to come in the future.
It's a very small and simple backend.
There is no support for global variables, arbitrary function calls, floating point, varargs,
exceptions, indirect jumps, arbitrary pointer arithmetic, alloca, etc.
From C front-end point of view it's very restricted. It's done on purpose, since kernel
rejects all programs that it cannot prove safe. It rejects programs with loops
and with memory accesses via arbitrary pointers. When kernel accepts the program it is
guaranteed that program will terminate and will not crash the kernel.
This patch implements all 'must have' bits. There are several things on TODO list,
so this is not the end of development.
Most of the code is a boiler plate code, copy-pasted from other backends.
Only odd things are lack or < and <= instructions, specialized load_byte intrinsics
and 'compare and goto' as single instruction.
Current instruction set is fixed, but more instructions can be added in the future.
Signed-off-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Subscribers: majnemer, chandlerc, echristo, joerg, pete, rengolin, kristof.beyls, arsenm, t.p.northover, tstellarAMD, aemerson, llvm-commits
Differential Revision: http://reviews.llvm.org/D6494
llvm-svn: 227008