to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
This shouldn't really happen in practice I hope, but we tried to handle other constant cases. We missed this one because we checked for ConstantVector without realizing that zero becomes ConstantAggregateZero instead.
So instead just check for Constant and use getAggregateElement which will do the dirty work for us.
llvm-svn: 343270
Had we emitted this IR earlier, InstCombine would have removed icmp so I'm going to assume using the i1 directly would be considered canonical.
llvm-svn: 343244
Summary:
The pass is supposed to scalarize such intrinsics if the target does not support
them natively, so if the scalarization does not happen instruction selection
crashes due to inability to lower these intrinsics.
Reviewers: andrew.w.kaylor, craig.topper
Reviewed By: andrew.w.kaylor
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D45947
llvm-svn: 330700
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
llvm-svn: 318490
Rename the DEBUG_TYPE to match the names of corresponding passes where
it makes sense. Also establish the pattern of simply referencing
DEBUG_TYPE instead of repeating the passname where possible.
llvm-svn: 303921
Currently, when masked load, store, gather or scatter intrinsics are used, we check in CodeGenPrepare pass if the subtarget support these intrinsics, if not we replace them with scalar code - this is a functional transformation not an optimization (not optional).
CodeGenPrepare pass does not run when the optimization level is set to CodeGenOpt::None (-O0).
Functional transformation should run with all optimization levels, so here I created a new pass which runs on all optimization levels and does no more than this transformation.
Differential Revision: https://reviews.llvm.org/D32487
llvm-svn: 303050