The diff is relatively large since I took a chance to rearrange the code I had to touch in a more obvious way, but the key bit is merely using the !range metadata when we can't analyze the instruction further. The previous !range metadata code was essentially just dead since no binary operator or cast will have !range metadata (per Verifier) and it was otherwise dropped on the floor.
llvm-svn: 262751
This experiment was originally about trying to use facts implied dominating conditions to infer more precise known bits. While the compile time was found to be acceptable on several large code bases, we never found sufficiently profitable examples to justify turning on the code by default. Given this, it's time to abandon the experiment.
Several folks have commented that they've found this useful for experimentation, but nothing has come of those experiments. Given how easy the patch is to apply, there's no reason to leave the code in tree.
For anyone interested in further investigation in this area, I recommend finding the summary email I sent on one of the original review threads. In particular, I now believe the use-list based approach is strictly worse than the dom-tree-walking approach.
llvm-svn: 262646
Given that we're not actually reducing the instruction count in the included
regression tests, I think we would call this a canonicalization step.
The motivation comes from the example in PR26702:
https://llvm.org/bugs/show_bug.cgi?id=26702
If we hoist the bitwise logic ahead of the bitcast, the previously unoptimizable
example of:
define <4 x i32> @is_negative(<4 x i32> %x) {
%lobit = ashr <4 x i32> %x, <i32 31, i32 31, i32 31, i32 31>
%not = xor <4 x i32> %lobit, <i32 -1, i32 -1, i32 -1, i32 -1>
%bc = bitcast <4 x i32> %not to <2 x i64>
%notnot = xor <2 x i64> %bc, <i64 -1, i64 -1>
%bc2 = bitcast <2 x i64> %notnot to <4 x i32>
ret <4 x i32> %bc2
}
Simplifies to the expected:
define <4 x i32> @is_negative(<4 x i32> %x) {
%lobit = ashr <4 x i32> %x, <i32 31, i32 31, i32 31, i32 31>
ret <4 x i32> %lobit
}
Differential Revision: http://reviews.llvm.org/D17583
llvm-svn: 262645
This patch provides the following infrastructure for PGO enhancements in inliner:
Enable the use of block level profile information in inliner
Incremental update of block frequency information during inlining
Update the function entry counts of callees when they get inlined into callers.
Differential Revision: http://reviews.llvm.org/D16381
llvm-svn: 262636
The vectorization of first-order recurrences (r261346) caused PR26734. When
detecting these recurrences, we need to ensure that the previous value is
actually defined inside the loop. This patch includes the fix and test case.
llvm-svn: 262624
Summary: This is the last step toward supporting aggregate memory access in instcombine. This explodes stores of arrays into a serie of stores for each element, allowing them to be optimized.
Reviewers: joker.eph, reames, hfinkel, majnemer, mgrang
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D17828
llvm-svn: 262530
Summary: This is another step toward improving fca support. This unpack load of array in a series of load to array's elements.
Reviewers: chandlerc, joker.eph, majnemer, reames, hfinkel
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D15890
llvm-svn: 262521
This is a test that Akira Hatanaka wrote to test GlobalOpt's handling of
aliases with GEP operands. David Majnemer independently made the same
change to GlobalOpt in r212079. Akira's test is a useful addition, so I'm
pulling it over from the llvm repo for Swift on GitHub.
llvm-svn: 262510
As noted in the code comment, I don't think we can do the same transform that we do for
*scalar* integers comparisons to *vector* integers comparisons because it might pessimize
the general case.
Exhibit A for an incomplete integer comparison ISA remains x86 SSE/AVX: it only has EQ and GT
for integer vectors.
But we should now recognize all the variants of this construct and produce the optimal code
for the cases shown in:
https://llvm.org/bugs/show_bug.cgi?id=26701
llvm-svn: 262424
Summary: SampleProfile pass needs to be performed after InstructionCombiningPass, which helps eliminate un-inlinable function calls.
Reviewers: davidxl, dnovillo
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D17742
llvm-svn: 262419
This patch fixes calculating correct value for builtin_object_size function
when pointer is used only in builtin_object_size function call and never
after that.
Patch by Strahinja Petrovic.
Differential Revision: http://reviews.llvm.org/D17337
llvm-svn: 262337
The intended effect of this patch in conjunction with:
http://reviews.llvm.org/rL259392http://reviews.llvm.org/rL260145
is that customers using the AVX intrinsics in C will benefit from combines when
the load mask is constant:
__m128 mload_zeros(float *f) {
return _mm_maskload_ps(f, _mm_set1_epi32(0));
}
__m128 mload_fakeones(float *f) {
return _mm_maskload_ps(f, _mm_set1_epi32(1));
}
__m128 mload_ones(float *f) {
return _mm_maskload_ps(f, _mm_set1_epi32(0x80000000));
}
__m128 mload_oneset(float *f) {
return _mm_maskload_ps(f, _mm_set_epi32(0x80000000, 0, 0, 0));
}
...so none of the above will actually generate a masked load for optimized code.
This is the masked load counterpart to:
http://reviews.llvm.org/rL262064
llvm-svn: 262269
merged into a loop that was subsequently unrolled (or otherwise nuked).
In this case it can't merge in the ASTs for any remaining nested loops,
it needs to re-add their instructions dircetly.
The fix is very isolated, but I've pulled the code for merging blocks
into the AST into a single place in the process. The only behavior
change is in the case which would have crashed before.
This fixes a crash reported by Mikael Holmen on the list after r261316
restored much of the loop pass pipelining and allowed us to actually do
this kind of nested transformation sequenc. I've taken that test case
and further reduced it into the somewhat twisty maze of loops in the
included test case. This does in fact trigger the bug even in this
reduced form.
llvm-svn: 262108
Most of this is fairly straight forward. Add handling for min/max via existing matcher utility and ConstantRange routines. Add handling for clamp by exploiting condition constraints on inputs.
Note that I'm only handling two constant ranges at this point. It would be reasonable to consider treating overdefined as a full range if the instruction is typed as an integer, but that should be a separate change.
Differential Revision: http://reviews.llvm.org/D17184
llvm-svn: 262085
The intended effect of this patch in conjunction with:
http://reviews.llvm.org/rL259392http://reviews.llvm.org/rL260145
is that customers using the AVX intrinsics in C will benefit from combines when
the store mask is constant:
void mstore_zero_mask(float *f, __m128 v) {
_mm_maskstore_ps(f, _mm_set1_epi32(0), v);
}
void mstore_fake_ones_mask(float *f, __m128 v) {
_mm_maskstore_ps(f, _mm_set1_epi32(1), v);
}
void mstore_ones_mask(float *f, __m128 v) {
_mm_maskstore_ps(f, _mm_set1_epi32(0x80000000), v);
}
void mstore_one_set_elt_mask(float *f, __m128 v) {
_mm_maskstore_ps(f, _mm_set_epi32(0x80000000, 0, 0, 0), v);
}
...so none of the above will actually generate a masked store for optimized code.
Differential Revision: http://reviews.llvm.org/D17485
llvm-svn: 262064
The constant folding for sdiv and udiv has a big discrepancy between the
comments and the code, which looks like a typo. Currently, we're folding
X / undef pretty inconsistently:
0 / undef -> undef
C / undef -> 0
undef / undef -> 0
Whereas the comments state we do X / undef -> undef. The logic that
returns zero is actually commented as doing undef / X -> 0, despite that
the LHS isn't undef in many of the cases that hit it.
llvm-svn: 261813
Summary:
Both the hardware and LLVM have changed since 2012.
Now, load-based heuristic don't show big differences any more on OoO cores.
There is no notable regressons and improvements on spec2000/2006. (Cortex-A57, Core i5).
Reviewers: spatel, zansari
Differential Revision: http://reviews.llvm.org/D16836
llvm-svn: 261809
This is part of the payoff for the refactoring in:
http://reviews.llvm.org/rL261649http://reviews.llvm.org/rL261707
In addition to removing a pile of duplicated code, the xor case was
missing the optimization for vector types because it checked
"SrcTy->isIntegerTy()" rather than "SrcTy->isIntOrIntVectorTy()"
like 'and' and 'or' were already doing.
This solves part of:
https://llvm.org/bugs/show_bug.cgi?id=26702
llvm-svn: 261750
DeleteDeadBlock was called indiscriminately, leading to cleanuprets with
undef cleanuppad references.
Instead, try to drain the BB of most of it's instructions if it is
unreachable. We can then remove the BB if it solely consists of a
terminator (and maybe some phis).
llvm-svn: 261731
It is problematic if the inlinee has a cleanupret which unwinds to
caller and we inline it into a call site which doesn't unwind.
If the funclet unwinds anywhere other than to the caller,
then we will give the funclet two unwind destinations.
This will result in a verifier failure.
Seeing as how the caller wasn't an invoke (which would locally unwind)
and that the funclet cannot unwind to caller, we must conclude that an
'unwind to caller' cleanupret is dynamically unreachable.
This fixes PR26698.
Differential Revision: http://reviews.llvm.org/D17536
llvm-svn: 261656
Summary:
Since this is an IR pass it's nice to be able to write tests without
llc. This is the counterpart of the llc test under
CodeGen/PowerPC/loop-data-prefetch.ll.
Reviewers: hfinkel
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D17464
llvm-svn: 261578
The issue was that we only required LCSSA rebuilding if the immediate
parent-loop had values used outside of it. The fix is to enaable the
same logic for all outer loops, not only immediate parent.
llvm-svn: 261575
This flag was part of a migration to a new means of handling vectors-of-points which was described in the llvm-dev thread "FYI: Relocating vector of pointers". The old code path has been off by default for a while without complaints, so time to cleanup.
llvm-svn: 261569
DMB instructions can be expensive, so it's best to avoid them if possible. In
atomicrmw operations there will always be an attempted store so a release
barrier is always needed, but in the cmpxchg case we can delay the DMB until we
know we'll definitely try to perform a store (and so need release semantics).
In the strong cmpxchg case this isn't quite free: we must duplicate the LDREX
instructions to skip the barrier on subsequent iterations. The basic outline
becomes:
ldrex rOld, [rAddr]
cmp rOld, rDesired
bne Ldone
dmb
Lloop:
strex rRes, rNew, [rAddr]
cbz rRes Ldone
ldrex rOld, [rAddr]
cmp rOld, rDesired
beq Lloop
Ldone:
So we'll skip this version for strong operations in "minsize" functions.
llvm-svn: 261568
This change reverts "246133 [RewriteStatepointsForGC] Reduce the number of new instructions for base pointers" and a follow on bugfix 12575.
As pointed out in pr25846, this code suffers from a memory corruption bug. Since I'm (empirically) not going to get back to this any time soon, simply reverting the problematic change is the right answer.
llvm-svn: 261565
Summary:
Previously we had a notion of convergent functions but not of convergent
calls. This is insufficient to correctly analyze calls where the target
is unknown, e.g. indirect calls.
Now a call is convergent if it targets a known-convergent function, or
if it's explicitly marked as convergent. As usual, we can remove
convergent where we can prove that no convergent operations are
performed in the call.
Reviewers: chandlerc, jingyue
Subscribers: hfinkel, jhen, tra, llvm-commits
Differential Revision: http://reviews.llvm.org/D17317
llvm-svn: 261544
Cleanuppads may be merged together if one is the only predecessor of the
other in which case a simple transform can be performed: replace the
a cleanupret with a branch and remove an unnecessary cleanuppad.
Differential Revision: http://reviews.llvm.org/D17459
llvm-svn: 261390
This patch enables the vectorization of first-order recurrences. A first-order
recurrence is a non-reduction recurrence relation in which the value of the
recurrence in the current loop iteration equals a value defined in the previous
iteration. The load PRE of the GVN pass often creates these recurrences by
hoisting loads from within loops.
In this patch, we add a new recurrence kind for first-order phi nodes and
attempt to vectorize them if possible. Vectorization is performed by shuffling
the values for the current and previous iterations. The vectorization cost
estimate is updated to account for the added shuffle instruction.
Contributed-by: Matthew Simpson and Chad Rosier <mcrosier@codeaurora.org>
Differential Revision: http://reviews.llvm.org/D16197
llvm-svn: 261346
Summary:
If we don't have the first and last access of an interleaved load group,
the first and last wide load in the loop can do an out of bounds
access. Even though we discard results from speculative loads,
this can cause problems, since it can technically generate page faults
(or worse).
We now discard interleaved load groups that don't have the first and
load in the group.
Reviewers: hfinkel, rengolin
Subscribers: rengolin, llvm-commits, mzolotukhin, anemet
Differential Revision: http://reviews.llvm.org/D17332
llvm-svn: 261331
routine.
We were getting this wrong in small ways and generally being very
inconsistent about it across loop passes. Instead, let's have a common
place where we do this. One minor downside is that this will require
some analyses like SCEV in more places than they are strictly needed.
However, this seems benign as these analyses are complete no-ops, and
without this consistency we can in many cases end up with the legacy
pass manager scheduling deciding to split up a loop pass pipeline in
order to run the function analysis half-way through. It is very, very
annoying to fix these without just being very pedantic across the board.
The only loop passes I've not updated here are ones that use
AU.setPreservesAll() such as IVUsers (an analysis) and the pass printer.
They seemed less relevant.
With this patch, almost all of the problems in PR24804 around loop pass
pipelines are fixed. The one remaining issue is that we run simplify-cfg
and instcombine in the middle of the loop pass pipeline. We've recently
added some loop variants of these passes that would seem substantially
cleaner to use, but this at least gets us much closer to the previous
state. Notably, the seven loop pass managers is down to three.
I've not updated the loop passes using LoopAccessAnalysis because that
analysis hasn't been fully wired into LoopSimplify/LCSSA, and it isn't
clear that those transforms want to support those forms anyways. They
all run late anyways, so this is harmless. Similarly, LSR is left alone
because it already carefully manages its forms and doesn't need to get
fused into a single loop pass manager with a bunch of other loop passes.
LoopReroll didn't use loop simplified form previously, and I've updated
the test case to match the trivially different output.
Finally, I've also factored all the pass initialization for the passes
that use this technique as well, so that should be done regularly and
reliably.
Thanks to James for the help reviewing and thinking about this stuff,
and Ben for help thinking about it as well!
Differential Revision: http://reviews.llvm.org/D17435
llvm-svn: 261316
This test builds on 261250 (IR support for cmpxchg of pointers) and 261245 (capture tracking support for cmpxchg) to show that correctly analyze the capturing of pointers in a cmpxchg of pointer type.
llvm-svn: 261284
Today, we do not allow cmpxchg operations with pointer arguments. We require the frontend to insert ptrtoint casts and do the cmpxchg in integers. While correct, this is problematic from a couple of perspectives:
1) It makes the IR harder to analyse (for instance, it make capture tracking overly conservative)
2) It pushes work onto the frontend authors for no real gain
This patch implements the simplest form of IR support. As we did with floating point loads and stores, we teach AtomicExpand to convert back to the old representation. This prevents us needing to change all backends in a single lock step change. Over time, we can migrate each backend to natively selecting the pointer type. In the meantime, we get the advantages of a cleaner IR representation without waiting for the backend changes.
Differential Revision: http://reviews.llvm.org/D17413
llvm-svn: 261281
IRBuilder has two ways of putting bundle operands on calls: the default
operand bundle, and an overload of CreateCall that takes an operand
bundle list.
Previously, this overload used a default argument of None. This made it
impossible to distinguish between the case were the caller doesn't care
about bundles, and the case where the caller explicitly wants no
bundles. We behaved as if they wanted the latter behavior rather than
the former, which led to problems with simplifylibcalls and WinEH.
This change fixes it by making the parameter non-optional, so we can
distinguish these two cases.
llvm-svn: 261258
These atomic operations are conceptually both a load and store from the same location. As such, we can treat them as the most conservative of those two components which in practice, means we can treat them like stores. An cmpxchg or atomicrmw captures the values, but not the locations accessed.
Note: We can probably be more aggressive about the comparison value in an cmpxhg since to have it be in memory, it must already be captured, but I figured it was better to avoid that for the moment.
Note 2: It turns out that since we don't actually support cmpxchg of pointer type, writing a negative test is impossible.
Differential Revision: http://reviews.llvm.org/D17400
llvm-svn: 261245
Commit r259357 was reverted because it caused PR26629. We were assuming all
roots of a vectorizable tree could be truncated to the same width, which is not
the case in general. This commit reapplies the patch along with a fix and a new
test case to ensure we don't regress because of this issue again. This should
fix PR26629.
llvm-svn: 261212
convert one test to use this.
This is a particularly significant milestone because it required
a working per-function AA framework which can be queried over each
function from within a CGSCC transform pass (and additionally a module
analysis to be accessible). This is essentially *the* point of the
entire pass manager rewrite. A CGSCC transform is able to query for
multiple different function's analysis results. It works. The whole
thing appears to actually work and accomplish the original goal. While
we were able to hack function attrs and basic-aa to "work" in the old
pass manager, this port doesn't use any of that, it directly leverages
the new fundamental functionality.
For this to work, the CGSCC framework also has to support SCC-based
behavior analysis, etc. The only part of the CGSCC pass infrastructure
not sorted out at this point are the updates in the face of inlining and
running function passes that mutate the call graph.
The changes are pretty boring and boiler-plate. Most of the work was
factored into more focused preperatory patches. But this is what wires
it all together.
llvm-svn: 261203
Loop vectorizer now knows to vectorize GEP and create masked gather and scatter intrinsics for random memory access.
The feature is enabled on AVX-512 target.
Differential Revision: http://reviews.llvm.org/D15690
llvm-svn: 261140
Summary: Store and loads unpacked by instcombine do not always have the right alignement. This explicitely compute the alignement and set it.
Reviewers: dblaikie, majnemer, reames, hfinkel, joker.eph
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D17326
llvm-svn: 261139
When support for objc_unsafeClaimAutoreleasedReturnValue has been added to the
ARC optimizer in r258970, one case was missed which would lead the optimizer
to execute an llvm_unreachable. In this case, just handle ClaimRV in the same
way we handle RetainRV.
llvm-svn: 261134
The root issue appears to be a confusion around what makeNoWrapRegion actually does. It seems likely we need two versions of this function with slightly different semantics.
llvm-svn: 260981
Summary:
Extending findExistingExpansion can use existing value in ExprValueMap.
This patch gives 0.3~0.5% performance improvements on
benchmarks(test-suite, spec2000, spec2006, commercial benchmark)
Reviewers: mzolotukhin, sanjoy, zzheng
Differential Revision: http://reviews.llvm.org/D15559
llvm-svn: 260938
Summary:
While shrinking types according to the required bits, we can
encounter insert/extract element instructions. This will cause us to
reach an llvm_unreachable statement.
This change adds support for truncating insert/extract element
operations, and adds a regression test.
Reviewers: jmolloy
Subscribers: mzolotukhin, llvm-commits
Differential Revision: http://reviews.llvm.org/D17078
llvm-svn: 260893
than the SCC object, and have it scan the instruction stream directly
rather than relying on call records.
This makes the behavior of this routine consistent between libc routines
and LLVM intrinsics for libc routines. We can go and start teaching it
about those being norecurse, but we should behave the same for the
intrinsic and the libc routine rather than differently. I chatted with
James Molloy and the inconsistency doesn't seem intentional and likely
is due to intrinsic calls not being modelled in the call graph analyses.
This also fixes a bug where we would deduce norecurse on optnone
functions, when generally we try to handle optnone functions as-if they
were replaceable and thus unanalyzable.
llvm-svn: 260813
Summary:
Performing this optimization duplicates the call to the convergent
function and adds new control-flow dependencies, which is a no-no.
Reviewers: jingyue
Subscribers: broune, hfinkel, tra, resistor, joker.eph, arsenm, llvm-commits, mzolotukhin
Differential Revision: http://reviews.llvm.org/D17128
llvm-svn: 260730
Summary:
Calls to convergent functions can be duplicated, but only if the
duplicates are not control-flow dependent on any additional values.
Loop rotation doesn't meet the bar.
Reviewers: jingyue
Subscribers: mzolotukhin, llvm-commits, arsenm, joker.eph, resistor, tra, hfinkel, broune
Differential Revision: http://reviews.llvm.org/D17127
llvm-svn: 260729
As the title says. Modelled after similar code in SCEV.
This is useful when analysing induction variables in loops which have been canonicalized by other passes. I wrote the tests as non-loops specifically to avoid the generality introduced in http://reviews.llvm.org/D17174. While that can handle many induction variables without *needing* to exploit nsw, there's no reason not to use it if we've already proven it.
Differential Revision: http://reviews.llvm.org/D17177
llvm-svn: 260705
For some cases, InstCombine replaces the sequence of xor/sub instruction
followed by cmp instruction into a single cmp instruction.
However, this replacement may result suboptimal result especially when
the xor/sub has more than one use, as discussed in
bug 26465 (https://llvm.org/bugs/show_bug.cgi?id=26465).
This patch make the replacement happen only when xor/sub has only one
use.
Differential Revision: http://reviews.llvm.org/D16915
Patch by Taewook Oh!
llvm-svn: 260695
This patches teaches LVI to recognize clamp idioms (e.g. select(a > 5, a, 5) will always produce something greater than 5.
The tests end up being somewhat simplistic because trying to exercise the case I actually care about (a loop with a range check on a clamped secondary induction variable) ends up tripping across a couple of other imprecisions in the analysis. Ah, the joys of LVI...
Differential Revision: http://reviews.llvm.org/D16827
llvm-svn: 260627
Original commit message:
[InstCombine] Fold IntToPtr and PtrToInt into preceding loads.
Currently we only fold a BitCast into a Load when the BitCast is its
only user.
Do the same for any no-op cast.
Patch by Philip Pfaffe!
Differential Revision: http://reviews.llvm.org/D9152
llvm-svn: 260612
When optimizing a extractvalue(load), we generate a load from the
aggregate type. This load didn't have alignment set and so would
get the alignment of the type. This breaks when the type is packed
and so the alignment should be lower.
For example, loading { int, int } would give us alignment of 4, but
the original load from this type may have an alignment of 1 if packed.
Reviewed by David Majnemer
Differential revision: http://reviews.llvm.org/D17158
llvm-svn: 260587
Summary:
Added a test case just to make sure that isKnownNonZero() returns false
when we cannot guarantee that a ConstantExpr is a non-zero constant.
Reviewers: sanjoy, majnemer, mcrosier, nlewycky
Subscribers: nlewycky, mssimpso, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D16908
llvm-svn: 260544
Summary:
When a PHI is used only to be compared with zero, it is possible to replace an
incoming value with any non-zero constant if the incoming value can be proved as
a known nonzero value. For example, in below code, we can replace the incoming value %v with
any non-zero constant based on the fact that the PHI is only used to be compared with zero
and %v is a known non-zero value:
%v = select %cond, 1, 2
%p = phi [%v, BB] ...
%c = icmp eq, %p, 0
Reviewers: mcrosier, jmolloy, sanjoy
Subscribers: hfinkel, mcrosier, majnemer, llvm-commits, haicheng, bmakam, mssimpso, gberry
Differential Revision: http://reviews.llvm.org/D16240
llvm-svn: 260530
The current function importer will walk the callgraph, importing
transitively any callee that is below the threshold. This can
lead to import very deep which is costly in compile time and not
necessarily beneficial as most of the inline would happen in
imported function and not necessarilly in user code.
The actual factor has been carefully chosen by flipping a coin ;)
Some tuning need to be done (just at the existing limiting threshold).
Reviewers: tejohnson
Differential Revision: http://reviews.llvm.org/D17082
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 260466
This patch reads the indirect-call value records in the profile and makes the
annotation in the indirect-call instruction. This is for IR level profile
instrumentation.
Differential Revision: http://reviews.llvm.org/D16935
llvm-svn: 260400
This patch uses one bit in profile version to differentiate Clang
instrumentation and IR level instrumentation profiles.
PGOInstrumenation generates a COMDAT variable __llvm_profile_raw_version so
that the compiler runtime can set the right profile kind.
For Maco-O platform, we generate the variable as linkonce_odr linkage as
COMDAT is not supported.
PGOInstrumenation now checks this bit to make sure it's an IR level
instrumentation profile.
The patch was submitted as r260164 but reverted due to a Darwin test breakage.
Original Differential Revision: http://reviews.llvm.org/D15540
Differential Revision: http://reviews.llvm.org/D17020
llvm-svn: 260385
Summary:
Remove the convergent attribute on any functions which provably do not
contain or invoke any convergent functions.
After this change, we'll be able to modify clang to conservatively add
'convergent' to all functions when compiling CUDA.
Reviewers: jingyue, joker.eph
Subscribers: llvm-commits, tra, jhen, hfinkel, resistor, chandlerc, arsenm
Differential Revision: http://reviews.llvm.org/D17013
llvm-svn: 260319
This pass implements whole program optimization of virtual calls in cases
where we know (via bitset information) that the list of callees is fixed. This
includes the following:
- Single implementation devirtualization: if a virtual call has a single
possible callee, replace all calls with a direct call to that callee.
- Virtual constant propagation: if the virtual function's return type is an
integer <=64 bits and all possible callees are readnone, for each class and
each list of constant arguments: evaluate the function, store the return
value alongside the virtual table, and rewrite each virtual call as a load
from the virtual table.
- Uniform return value optimization: if the conditions for virtual constant
propagation hold and each function returns the same constant value, replace
each virtual call with that constant.
- Unique return value optimization for i1 return values: if the conditions
for virtual constant propagation hold and a single vtable's function
returns 0, or a single vtable's function returns 1, replace each virtual
call with a comparison of the vptr against that vtable's address.
Differential Revision: http://reviews.llvm.org/D16795
llvm-svn: 260312
We introduced gc.relocates of vector-of-pointer types a couple of weeks back. Somehow, I missed updating the InstCombine rule to account for this. If we hit this code path with a vector-of-pointers gc.relocate, we'd crash on a cast<PointerType>.
I also took the chance to do a bit of code style cleanup.
llvm-svn: 260279
FunctionAttrs does an "optimistic" analysis of SCCs as a unit, which
means normally it is able to disregard calls from an SCC into itself.
However, calls and invokes with operand bundles are allowed to have
memory effects not fully described by the memory effects on the call
target, so we can't be optimistic around operand-bundled calls from an
SCC into itself.
llvm-svn: 260244
This patch uses one bit in profile version to differentiate Clang
instrumentation and IR level instrumentation profiles.
PGOInstrumenation generates a COMDAT variable __llvm_profile_raw_version so
that the compiler runtime can set the right profile kind.
PGOInstrumenation now checks this bit to make sure it's an IR level
instrumentation profile.
Differential Revision: http://reviews.llvm.org/D15540
llvm-svn: 260146
sanitizer issue. The PredicatedScalarEvolution's copy constructor
wasn't copying the Generation value, and was leaving it un-initialized.
Original commit message:
[SCEV][LAA] Add no wrap SCEV predicates and use use them to improve strided pointer detection
Summary:
This change adds no wrap SCEV predicates with:
- support for runtime checking
- support for expression rewriting:
(sext ({x,+,y}) -> {sext(x),+,sext(y)}
(zext ({x,+,y}) -> {zext(x),+,sext(y)}
Note that we are sign extending the increment of the SCEV, even for
the zext case. This is needed to cover the fairly common case where y would
be a (small) negative integer. In order to do this, this change adds two new
flags: nusw and nssw that are applicable to AddRecExprs and permit the
transformations above.
We also change isStridedPtr in LAA to be able to make use of
these predicates. With this feature we should now always be able to
work around overflow issues in the dependence analysis.
Reviewers: mzolotukhin, sanjoy, anemet
Subscribers: mzolotukhin, sanjoy, llvm-commits, rengolin, jmolloy, hfinkel
Differential Revision: http://reviews.llvm.org/D15412
llvm-svn: 260112
Summary:
This change adds no wrap SCEV predicates with:
- support for runtime checking
- support for expression rewriting:
(sext ({x,+,y}) -> {sext(x),+,sext(y)}
(zext ({x,+,y}) -> {zext(x),+,sext(y)}
Note that we are sign extending the increment of the SCEV, even for
the zext case. This is needed to cover the fairly common case where y would
be a (small) negative integer. In order to do this, this change adds two new
flags: nusw and nssw that are applicable to AddRecExprs and permit the
transformations above.
We also change isStridedPtr in LAA to be able to make use of
these predicates. With this feature we should now always be able to
work around overflow issues in the dependence analysis.
Reviewers: mzolotukhin, sanjoy, anemet
Subscribers: mzolotukhin, sanjoy, llvm-commits, rengolin, jmolloy, hfinkel
Differential Revision: http://reviews.llvm.org/D15412
llvm-svn: 260085
Summary:
When alias analysis is uncertain about the aliasing between any two accesses,
it will return MayAlias. This uncertainty from alias analysis restricts LICM
from proceeding further. In cases where alias analysis is uncertain we might
use loop versioning as an alternative.
Loop Versioning will create a version of the loop with aggressive aliasing
assumptions in addition to the original with conservative (default) aliasing
assumptions. The version of the loop making aggressive aliasing assumptions
will have all the memory accesses marked as no-alias. These two versions of
loop will be preceded by a memory runtime check. This runtime check consists
of bound checks for all unique memory accessed in loop, and it ensures the
lack of memory aliasing. The result of the runtime check determines which of
the loop versions is executed: If the runtime check detects any memory
aliasing, then the original loop is executed. Otherwise, the version with
aggressive aliasing assumptions is used.
The pass is off by default and can be enabled with command line option
-enable-loop-versioning-licm.
Reviewers: hfinkel, anemet, chatur01, reames
Subscribers: MatzeB, grosser, joker.eph, sanjoy, javed.absar, sbaranga,
llvm-commits
Differential Revision: http://reviews.llvm.org/D9151
llvm-svn: 259986
We don't currently have many tests that deal with operations on multiple
local MemoryLocations. This new test helps out a bit in that regard.
llvm-svn: 259854
Fix the lit bug that enabled this "feature" (empty triple is substring
of all possible target triples) and change the two outliers to use the
documented * syntax.
llvm-svn: 259799
Current SCEV expansion will expand SCEV as a sequence of operations
and doesn't utilize the value already existed. This will introduce
redundent computation which may not be cleaned up throughly by
following optimizations.
This patch introduces an ExprValueMap which is a map from SCEV to the
set of equal values with the same SCEV. When a SCEV is expanded, the
set of values is checked and reused whenever possible before generating
a sequence of operations.
The original commit triggered regressions in Polly tests. The regressions
exposed two problems which have been fixed in current version.
1. Polly will generate a new function based on the old one. To generate an
instruction for the new function, it builds SCEV for the old instruction,
applies some tranformation on the SCEV generated, then expands the transformed
SCEV and insert the expanded value into new function. Because SCEV expansion
may reuse value cached in ExprValueMap, the value in old function may be
inserted into new function, which is wrong.
In SCEVExpander::expand, there is a logic to check the cached value to
be used should dominate the insertion point. However, for the above
case, the check always passes. That is because the insertion point is
in a new function, which is unreachable from the old function. However
for unreachable node, DominatorTreeBase::dominates thinks it will be
dominated by any other node.
The fix is to simply add a check that the cached value to be used in
expansion should be in the same function as the insertion point instruction.
2. When the SCEV is of scConstant type, expanding it directly is cheaper than
reusing a normal value cached. Although in the cached value set in ExprValueMap,
there is a Constant type value, but it is not easy to find it out -- the cached
Value set is not sorted according to the potential cost. Existing reuse logic
in SCEVExpander::expand simply chooses the first legal element from the cached
value set.
The fix is that when the SCEV is of scConstant type, don't try the reuse
logic. simply expand it.
Differential Revision: http://reviews.llvm.org/D12090
llvm-svn: 259736
D16251)
Summary:
This is a simpler fix to the problem than the dominator approach in
http://reviews.llvm.org/D16251. It adds only values into the gather() while loop
that have been seen before.
The actual endless loop is in the constant compare gather() routine in
Utils/SimplifyCFG.cpp. The same value ret.0.off0.i is pushed back into the
queue:
%.ret.0.off0.i = or i1 %.ret.0.off0.i, %cmp10.i
Here is what happens at the IR level:
for.cond.i: ; preds = %if.end6.i,
%if.end.i54
%ix.0.i = phi i32 [ 0, %if.end.i54 ], [ %inc.i55, %if.end6.i ]
%ret.0.off0.i = phi i1 [false, %if.end.i54], [%.ret.0.off0.i, %if.end6.i] <<<
%cmp2.i = icmp ult i32 %ix.0.i, %11
br i1 %cmp2.i, label %for.body.i, label %LBJ_TmpSimpleNeedExt.exit
if.end6.i: ; preds = %for.body.i
%cmp10.i = icmp ugt i32 %conv.i, %add9.i
%.ret.0.off0.i = or i1 %ret.0.off0.i, %cmp10.i <<<
When if.end.i54 gets eliminated which removes the definition of ret.0.off0.i.
The result is the expression %.ret.0.off0.i = or i1 %.ret.0.off0.i, %cmp10.i
(Note the first ‘or’ operand is now %.ret.0.off0.i, and *NOT* %ret.0.off0.i).
And
now there is use of .ret.0.off0.i before a definition which triggers the
“endless” loop in gather():
while(!DFT.empty()) {
V = DFT.pop_back_val(); // V is .ret.0.off0.i
if (Instruction *I = dyn_cast<Instruction>(V)) {
// If it is a || (or && depending on isEQ), process the operands.
if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
DFT.push_back(I->getOperand(1)); // This is now .ret.0.off0.i also
DFT.push_back(I->getOperand(0));
continue; // “endless loop” for .ret.0.off0.i
}
Reviewers: reames, ahatanak
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D16839
llvm-svn: 259730
Bail out if we have a PHI on an EHPad that gets a value from a
CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is
no good place to stick any instructions.
This fixes PR26373.
llvm-svn: 259702
According to git bisect, this is the root cause of a miscompile for Regex in
libLLVMSupport. I am still working on reducing a test case.
The actual bug may be elsewhere and this commit just exposed it.
Anyway, at the moment, to reproduce, follow these steps:
1. Build clang and libLTO in release mode.
2. Create a new build directory <stage2> and cd into it.
3. Use clang and libLTO from #1 to build llvm-extract in Release mode + asserts
using -O2 -flto
4. Run llvm-extract -ralias '.*bar' -S test/Other/extract-alias.ll
Result:
program doesn't contain global named '.*bar'!
Expected result:
@a0a0bar = alias void ()* @bar
@a0bar = alias void ()* @bar
declare void @bar()
Note: In step #3, if you don't use lto or asserts, the miscompile disappears.
llvm-svn: 259674
Current SCEV expansion will expand SCEV as a sequence of operations
and doesn't utilize the value already existed. This will introduce
redundent computation which may not be cleaned up throughly by
following optimizations.
This patch introduces an ExprValueMap which is a map from SCEV to the
set of equal values with the same SCEV. When a SCEV is expanded, the
set of values is checked and reused whenever possible before generating
a sequence of operations.
Differential Revision: http://reviews.llvm.org/D12090
llvm-svn: 259662
This regresses a test in LoopVectorize, so I'll need to go away and think about how to solve this in a way that isn't broken.
From the writeup in PR26071:
What's happening is that ComputeKnownZeroes is telling us that all bits except the LSB are zero. We're then deciding that only the LSB needs to be demanded from the icmp's inputs.
This is where we're wrong - we're assuming that after simplification the bits that were known zero will continue to be known zero. But they're not - during trivialization the upper bits get changed (because an XOR isn't shrunk), so the icmp fails.
The fault is in demandedbits - its contract does clearly state that a non-demanded bit may either be zero or one.
llvm-svn: 259649
Summary:
LoopVersioning is a transform utility that transform passes can use to
run-time disambiguate may-aliasing accesses. I'd like to also expose as
pass to allow it to be unit-tested.
I am planning to add support for non-aliasing annotation in
LoopVersioning and I'd like to be able to write tests directly using
this pass.
(After that feature is done, the pass could also be used to look for
optimization opportunities that are hidden behind incomplete alias
information at compile time.)
The pass drives LoopVersioning in its default way which is to fully
disambiguate may-aliasing accesses no matter how many checks are
required.
Reviewers: hfinkel, ashutosh.nema, sbaranga
Subscribers: zzheng, mssimpso, llvm-commits, sanjoy
Differential Revision: http://reviews.llvm.org/D16612
llvm-svn: 259610
Please see include/llvm/Transforms/Utils/MemorySSA.h for a description
of MemorySSA, and what it does.
Differential Revision: http://reviews.llvm.org/D7864
llvm-svn: 259595
LVI has several separate sources of facts - edge local conditions, recursive queries, assumes, and control independent value facts - which all apply to the same value at the same location. The existing implementation was very conservative about exploiting all of these facts at once.
This change introduces an "intersect" function specifically to abstract the action of picking a good set of facts from all of the separate facts given. At the moment, this function is relatively simple (i.e. mostly just reuses the bits which were already there), but even the minor additions reveal the inherent power. For example, JumpThreading is now capable of doing an inductive proof that a particular value is always positive and removing a half range check.
I'm currently only using the new intersect function in one place. If folks are happy with the direction of the work, I plan on making a series of small changes without review to replace mergeIn with intersect at all the appropriate places.
Differential Revision: http://reviews.llvm.org/D14476
llvm-svn: 259461
Teach LVI to handle select instructions in the exact same way it handles PHI nodes. This is useful since various parts of the optimizer convert PHI nodes into selects and we don't want these transformations to cause inferior optimization.
Note that this patch does nothing to exploit the implied constraint on the inputs represented by the select condition itself. That will be a later patch and is blocked on http://reviews.llvm.org/D14476
llvm-svn: 259429
Summary:
If the normal destination of the invoke or the parent block of the call site is unreachable-terminated, there is little point in inlining the call site unless there is literally zero cost. Unlike my previous change (D15289), this change specifically handle the call sites followed by unreachable in the same basic block for call or in the normal destination for the invoke. This change could be a reasonable first step to conservatively inline call sites leading to an unreachable-terminated block while BFI / BPI is not yet available in inliner.
Reviewers: manmanren, majnemer, hfinkel, davidxl, mcrosier, dblaikie, eraman
Subscribers: dblaikie, davidxl, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D16616
llvm-svn: 259403
A masked store with a zero mask means there's no store.
A masked store with an allOnes mask means it's a normal vector store.
This is a continuation of:
http://reviews.llvm.org/rL259369
llvm-svn: 259392
This miscompile came about because we tried to use a transform which was
only appropriate for xor operators when addition was present.
This fixes PR26407.
llvm-svn: 259375
A masked load with a zero mask means there's no load.
A masked load with an allOnes mask means it's a normal vector load.
Differential Revision: http://reviews.llvm.org/D16691
llvm-svn: 259369
Loop transformations can sometimes fail because the loop, while in
valid rotated LCSSA form, is not in a canonical CFG form. This is
an extremely simple pass that just merges obviously redundant
blocks, which can be used to fix some known failure cases. In the
future, it may be enhanced with more cases (and have code shared with
SimplifyCFG).
This allows us to run LoopSimplifyCFG -> LoopRotate -> LoopUnroll,
so that SimplifyCFG cleans up the loop before Rotate tries to run.
Not currently used in the pass manager, since this pass doesn't do
anything unless you can hook it up in an LPM with other loop passes.
It'll be added once Chandler cleans up things to allow this.
Tested in a custom pipeline out of tree to confirm it works in
practice (in addition to the included trivial test).
llvm-svn: 259256
We would infinite loop because we created a shufflevector that was wider than
needed and then failed to combine that with the insertelement. When subsequently
visiting the extractelement from that shuffle, we see that it's unnecessary,
delete it, and trigger another visit to the insertelement.
llvm-svn: 259236
The full diff for the test directory may be hard to read because of the
filename clash; so here's all that happened as far as the tests are
concerned:
```
cd test/Transforms/RewriteStatepointsForGC
git rm *ll
git mv deopt-bundles/* ./
rmdir deopt-bundles
find . -name '*.ll' | xargs gsed -i 's/-rs4gc-use-deopt-bundles //g'
```
llvm-svn: 259129
two-invokes-one-landingpad.ll was only moved (and not "ported"), but
having everything in the `deopt-bundles` directory will make later
changes more obvious.
llvm-svn: 259125
When the caller has optsize attribute, we reduce the inlinining threshold
to OptSizeThreshold (=75) if it is not already lower than that. We don't do
the same for minsize and I suspect it was not intentional. This also addresses
a FIXME regarding checking optsize attribute explicitly instead of using the
right wrapper.
Differential Revision: http://reviews.llvm.org/D16493
llvm-svn: 259120
This change permanently clamps -spp-no-statepoints to true (the code
deletion will come later). Tests that specifically tested
PlaceSafepoint's ability to wrap calls in gc.statepoint have been moved
to RS4GC's test suite.
llvm-svn: 259096
Summary:
If the instruction we're hoisting out of a loop into its preheader is
guaranteed to have executed in the loop, then the metadata associated
with the instruction (e.g. !range or !dereferenceable) is valid in the
preheader. This is because once we're in the preheader, we know we're
eventually going to reach the location the metadata was valid at.
This change makes LICM smarter around this, and helps it recognize cases
like these:
```
do {
int a = *ptr; !range !0
...
} while (i++ < N);
```
to
```
int a = *ptr; !range !0
do {
...
} while (i++ < N);
```
Earlier we'd drop the `!range` metadata after hoisting the load from
`ptr`.
Reviewers: igor-laevsky
Subscribers: mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D16669
llvm-svn: 259053
Change the unnamed label comments like
; <label>:8 ; preds = %1
to
; <label>:8: ; preds = %1
This way lit tests can match [[LABEL]]: in both asserts and no-asserts builds.
llvm-svn: 258993
This is a fix for:
https://llvm.org/bugs/show_bug.cgi?id=26308
With the switch to using the TTI cost model in:
http://reviews.llvm.org/rL228826
...it became possible to hit a zero-cost cycle of instructions (gep -> phi -> gep...),
so we need a cap for the recursion in DominatesMergePoint().
A recursion depth parameter was already added for a different reason in:
http://reviews.llvm.org/rL255660
...so we can just set a limit for it.
I pulled "10" out of the air and made it an independent parameter that we can play with.
It might be higher than it needs to be given the currently low default value of
PHINodeFoldingThreshold (2). That's the starting cost value that we enter the recursion
with, and most instructions have cost set to TCC_Basic (1), so I don't think we're going
to speculate more than 2 instructions with the current parameters.
As noted in the review and the TODO comment, we can do better than just limiting recursion
depth.
Differential Revision: http://reviews.llvm.org/D16637
llvm-svn: 258971
ObjC ARC Optimizer.
The main implication of this is:
1. Ensuring that we treat it conservatively in terms of optimization.
2. We put the ASM marker on it so that the runtime can recognize
objc_unsafeClaimAutoreleasedReturnValue from releaseRV.
<rdar://problem/21567064>
Patch by Michael Gottesman!
llvm-svn: 258970
This patch is the second attempt to reapply commit r258404. There was bug in
the initial patch and subsequent fix (mentioned below).
The initial patch caused an assertion because we were computing smaller type
sizes for instructions that cannot be demoted. The fix first determines the
instructions that will be demoted, and then applies the smaller type size to
only those instructions.
This should fix PR26239 and PR26307.
llvm-svn: 258929
Summary:
This is a revised version of D13974, and the following quoted summary are from D13974
"This patch adds support to check if a loop has loop invariant conditions which lead to loop exits. If so, we know that if the exit path is taken, it is at the first loop iteration. If there is an induction variable used in that exit path whose value has not been updated, it will keep its initial value passing from loop preheader. We can therefore rewrite the exit value with
its initial value. This will help remove phis created by LCSSA and enable other optimizations like loop unswitch."
D13974 was committed but failed one lnt test. The bug was that we only checked the condition from loop exit's incoming block was a loop invariant. But there could be another condition from loop header to that incoming block not being a loop invariant. This would produce miscompiled code.
This patch fixes the issue by checking if the incoming block is loop header, and if not, don't perform the rewrite. The could be further improved by recursively checking all conditions leading to loop exit block, but I'd like to check in this simple version first and improve it with future patches.
Reviewers: sanjoy
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D16570
llvm-svn: 258912
SimplifyCFG tries to turn complex branch conditions into a switch.
Some of it's logic attempts to reason about bitwise arithmetic produced
by InstCombine. InstCombine can turn things like (X == 2) || (X == 3)
into (X & 1) == 2 and so SimplifyCFG tries to detect when this occurs so
that it can produce a switch instruction.
However, the legality checking was not sufficient to determine whether
or not this had occured. Correctly check this case by requiring that
the right-hand side of the comparison be a power of two.
This fixes PR26323.
llvm-svn: 258904
Previously the RedoInsts was processed at the end of the block.
However it was possible that it left behind some instructions that
were not canonicalized.
This should guarantee that any previous instruction in the basic
block is canonicalized before we process a new instruction.
llvm-svn: 258830
This is a step towards solving PR25892:
https://llvm.org/bugs/show_bug.cgi?id=25892
It won't handle the reported case. As noted by the 'TODO' comments in the patch,
we need to relax the hasOneUse() constraint and also match patterns that include
memset_chk() and the llvm.memset() intrinsic in addition to memset().
Differential Revision: http://reviews.llvm.org/D16337
llvm-svn: 258816
This commit exposes a crash in computeKnownBits on the Chromium buildbots.
Reverting to investigate.
Reference: https://llvm.org/bugs/show_bug.cgi?id=26307
llvm-svn: 258812
This is a recommit of r258620 which causes PR26293.
The original message:
Now LIR can turn following codes into memset:
typedef struct foo {
int a;
int b;
} foo_t;
void bar(foo_t *f, unsigned n) {
for (unsigned i = 0; i < n; ++i) {
f[i].a = 0;
f[i].b = 0;
}
}
void test(foo_t *f, unsigned n) {
for (unsigned i = 0; i < n; i += 2) {
f[i] = 0;
f[i+1] = 0;
}
}
llvm-svn: 258777
* __cfi_check gets a 3rd argument: ubsan handler data
* Instead of trapping on failure, call __cfi_check_fail which must be
present in the module (generated in the frontend).
llvm-svn: 258746
We were hitting an assertion because we were computing smaller type sizes for
instructions that cannot be demoted. The fix first determines the instructions
that will be demoted, and then applies the smaller type size to only those
instructions.
This should fix PR26239.
llvm-svn: 258705
Use AVX1 FP instructions (vmaskmovps/pd) in place of the AVX2 int instructions (vpmaskmovd/q).
Differential Revision: http://reviews.llvm.org/D16528
llvm-svn: 258675
The intrinsic target prefix should match the target name
as it appears in the triple.
This is not yet complete, but gets most of the important ones.
llvm.AMDGPU.* intrinsics used by mesa and libclc are still handled
for compatability for now.
llvm-svn: 258557
Summary:
Make sure that any new and optimized objects created during GlobalOPT copy all the attributes from the base object.
A good example of improper behavior in the current implementation is section information associated with the GlobalObject. If a section was set for it, and GlobalOpt is creating/modifying a new object based on this one (often copying the original name), without this change new object will be placed in a default section, resulting in inappropriate properties of the new variable.
The argument here is that if customer specified a section for a variable, any changes to it that compiler does should not cause it to change that section allocation.
Moreover, any other properties worth representation in copyAttributesFrom() should also be propagated.
Reviewers: jmolloy, joker-eph, joker.eph
Subscribers: slarin, joker.eph, rafael, tobiasvk, llvm-commits
Differential Revision: http://reviews.llvm.org/D16074
llvm-svn: 258556
Summary:
This change adds a `-spp-no-statepoints` flag to PlaceSafepoints that
bypasses the code that wraps newly introduced polls and existing calls
in gc.statepoint. With `-spp-no-statepoints` enabled, PlaceSafepoints
effectively becomes a safpeoint **poll** insertion pass.
The eventual goal is to "constant fold" this option, along with
`-rs4gc-use-deopt-bundles` to `true`, once clients using gc.statepoint
are okay doing so.
Reviewers: pgavlin, reames, JosephTremoulet
Subscribers: sanjoy, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D16439
llvm-svn: 258551
This is similar to the bug/fix:
https://llvm.org/bugs/show_bug.cgi?id=26211http://reviews.llvm.org/rL258325
The fmin() test case reveals another bug caused by sloppy
code duplication. It will crash without this patch because
fp128 is a valid floating-point type, but we would think
that we had matched a function that used doubles.
The new helper function can be used to replace similar
checks that are used in several other places in this file.
llvm-svn: 258428
This commit extends the patterns recognised by InstSimplify to also handle (x >> y) <= x in the same way as (x /u y) <= x.
The missing optimisation was found investigating why LLVM did not optimise away bound checks in a binary search: https://github.com/rust-lang/rust/pull/30917
Patch by Andrea Canciani!
Differential Revision: http://reviews.llvm.org/D16402
llvm-svn: 258422
This patch adds the instrumentation for indirect call value profiling. It finds all the indirect call-sites and generates instrprof_value_profile intrinsic calls. A new opt level option -disable-vp is introduced to disable this instrumentation.
Reviewers: davidxl, betulb, vsk
Differential Revision: http://reviews.llvm.org/D16016
llvm-svn: 258417
Do not emit profile arc files and note files for module and skeleton
CU's.
Our users report seeing unexpected *.gcda and *.gcno files in their
projects when using gcov-style profiling with modules or frameworks.
The unwanted files come from these modules. This is not very helpful
for end-users. Further, we've seen reports of instrumented programs
crashing while writing these files out (due to I/O failures).
rdar://problem/22838296
Reviewed-by: aprantl
Differential Revision: http://reviews.llvm.org/D15997
llvm-svn: 258406
This change attempts to produce vectorized integer expressions in bit widths
that are narrower than their scalar counterparts. The need for demotion arises
especially on architectures in which the small integer types (e.g., i8 and i16)
are not legal for scalar operations but can still be used in vectors. Like
similar work done within the loop vectorizer, we rely on InstCombine to perform
the actual type-shrinking. We use the DemandedBits analysis and
ComputeNumSignBits from ValueTracking to determine the minimum required bit
width of an expression.
Differential revision: http://reviews.llvm.org/D15815
llvm-svn: 258404
Summary:
This adds a new kind of operand bundle to LLVM denoted by the
`"gc-transition"` tag. Inputs to `"gc-transition"` operand bundle are
lowered into the "transition args" section of `gc.statepoint` by
`RewriteStatepointsForGC`.
This removes the last bit of functionality that was unsupported in the
deopt bundle based code path in `RewriteStatepointsForGC`.
Reviewers: pgavlin, JosephTremoulet, reames
Subscribers: sanjoy, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D16342
llvm-svn: 258338
The test case will crash without this patch because the subsequent call to
hasUnsafeAlgebra() assumes that the call instruction is an FPMathOperator
(ie, returns an FP type).
This part of the function signature check was omitted for the sqrt() case,
but seems to be in place for all other transforms.
Before:
http://reviews.llvm.org/rL257400
...we would have needlessly continued execution in optimizeSqrt(), but the
bug was harmless because we'd eventually fail some other check and return
without damage.
This should fix:
https://llvm.org/bugs/show_bug.cgi?id=26211
Differential Revision: http://reviews.llvm.org/D16198
llvm-svn: 258325
Summary:
Funclet EH tables require that a given funclet have only one unwind
destination for exceptional exits. The verifier will therefore reject
e.g. two cleanuprets with different unwind dests for the same cleanup, or
two invokes exiting the same funclet but to different unwind dests.
Because catchswitch has no 'nounwind' variant, and because IR producers
are not *required* to annotate calls which will not unwind as 'nounwind',
it is legal to nest a call or an "unwind to caller" catchswitch within a
funclet pad that has an unwind destination other than caller; it is
undefined behavior for such a call or catchswitch to unwind.
Normally when inlining an invoke, calls in the inlined sequence are
rewritten to invokes that unwind to the callsite invoke's unwind
destination, and "unwind to caller" catchswitches in the inlined sequence
are rewritten to unwind to the callsite invoke's unwind destination.
However, if such a call or "unwind to caller" catchswitch is located in a
callee funclet that has another exceptional exit with an unwind
destination within the callee, applying the normal transformation would
give that callee funclet multiple unwind destinations for its exceptional
exits. There would be no way for EH table generation to determine which
is the "true" exit, and the verifier would reject the function
accordingly.
Add logic to the inliner to detect these cases and leave such calls and
"unwind to caller" catchswitches as calls and "unwind to caller"
catchswitches in the inlined sequence.
This fixes PR26147.
Reviewers: rnk, andrew.w.kaylor, majnemer
Subscribers: alexcrichton, llvm-commits
Differential Revision: http://reviews.llvm.org/D16319
llvm-svn: 258273
In some cases, the max backedge taken count can be more conservative
than the exact backedge taken count (for instance, because
ScalarEvolution::getRange is not control-flow sensitive whereas
computeExitLimitFromICmp can be). In these cases,
computeExitLimitFromCond (specifically the bit that deals with `and` and
`or` instructions) can create an ExitLimit instance with a
`SCEVCouldNotCompute` max backedge count expression, but a computable
exact backedge count expression. This violates an implicit SCEV
assumption: a computable exact BE count should imply a computable max BE
count.
This change
- Makes the above implicit invariant explicit by adding an assert to
ExitLimit's constructor
- Changes `computeExitLimitFromCond` to be more robust around
conservative max backedge counts
llvm-svn: 258184
This is a continuation of adding FMF to call instructions:
http://reviews.llvm.org/rL255555
As with D15937, the intent of the patch is to preserve the current behavior of the transform
except that we use the pow call's 'fast' attribute as a trigger rather than a function-level
attribute.
The TODO comment notes a potential follow-on patch that would propagate FMF to the new
instructions.
Differential Revision: http://reviews.llvm.org/D16122
llvm-svn: 258153
The fix uniques the bundle of getelementptr indices we are about to vectorize
since it's possible for the same index to be used by multiple instructions.
The original commit message is below.
[SLP] Vectorize the index computations of getelementptr instructions.
This patch seeds the SLP vectorizer with getelementptr indices. The primary
motivation in doing so is to vectorize gather-like idioms beginning with
consecutive loads (e.g., g[a[0] - b[0]] + g[a[1] - b[1]] + ...). While these
cases could be vectorized with a top-down phase, seeding the existing bottom-up
phase with the index computations avoids the complexity, compile-time, and
phase ordering issues associated with a full top-down pass. Only bundles of
single-index getelementptrs with non-constant differences are considered for
vectorization.
llvm-svn: 257918
This contains a fix for the issue that caused the revert:
we no longer assume that we can insert instructions after the
instruction that produces the base pointer. We previously
assumed that this would be ok, because the instruction produces
a value and therefore is not a terminator. This is false for invoke
instructions. We will now insert these new instruction directly
at the location of the users.
Original commit message:
[InstCombine] Look through PHIs, GEPs, IntToPtrs and PtrToInts to expose more constants when comparing GEPs
Summary:
When comparing two GEP instructions which have the same base pointer
and one of them has a constant index, it is possible to only compare
indices, transforming it to a compare with a constant. This removes
one use for the GEP instruction with the constant index, can reduce
register pressure and can sometimes lead to removing the comparisson
entirely.
InstCombine was already doing this when comparing two GEPs if the base
pointers were the same. However, in the case where we have complex
pointer arithmetic (GEPs applied to GEPs, PHIs of GEPs, conversions to
or from integers, etc) the value of the original base pointer will be
hidden to the optimizer and this transformation will be disabled.
This change detects when the two sides of the comparison can be
expressed as GEPs with the same base pointer, even if they don't
appear as such in the IR. The transformation will convert all the
pointer arithmetic to arithmetic done on indices and all the relevant
uses of GEPs to GEPs with a common base pointer. The GEP comparison
will be converted to a comparison done on indices.
Reviewers: majnemer, jmolloy
Subscribers: hfinkel, jevinskie, jmolloy, aadg, llvm-commits
Differential Revision: http://reviews.llvm.org/D15146
llvm-svn: 257897
There are several requirements that ended up with this design;
1. Matching bitreversals is too heavyweight for InstCombine and doesn't really need to be done so early.
2. Bitreversals and byteswaps are very related in their matching logic.
3. We want to implement support for matching more advanced bswap/bitreverse patterns like partial bswaps/bitreverses.
4. Bswaps are best matched early in InstCombine.
The result of these is that a new utility function is created in Transforms/Utils/Local.h that can be configured to search for bswaps, bitreverses or both. InstCombine uses it to find only bswaps, CGP uses it to find only bitreversals.
We can then extend the matching logic in one place only.
llvm-svn: 257875
I originally reapplied this in 257550, but had to revert again due to bot
breakage. The only change in this version is to allow either the TypeSize
or the TypeAllocSize of the variable to be the one represented in debug info
(hopefully in the future we can figure out how to encode the difference).
Additionally, several bot failures following r257550, were due to
optimizer bugs now fixed in r257787 and r257795.
r257550 commit message was:
```
The follow extra changes were made to test cases:
Manually making the variable be the actual type instead of a pointer
to avoid pointer-size differences in generic code:
LLVM :: DebugInfo/Generic/2010-03-24-MemberFn.ll
LLVM :: DebugInfo/Generic/2010-04-06-NestedFnDbgInfo.ll
LLVM :: DebugInfo/Generic/2010-05-03-DisableFramePtr.ll
LLVM :: DebugInfo/Generic/varargs.ll
Delete sizing information from debug info for the same reason
(but the presence of the pointer was important to the test case):
LLVM :: DebugInfo/Generic/restrict.ll
LLVM :: DebugInfo/Generic/tu-composite.ll
LLVM :: Linker/type-unique-type-array-a.ll
LLVM :: Linker/type-unique-simple2.ll
Fixing an incorrect DW_OP_deref
LLVM :: DebugInfo/Generic/2010-05-03-OriginDIE.ll
Fixing a missing DW_OP_deref
LLVM :: DebugInfo/Generic/incorrect-variable-debugloc.ll
Additionally, clang should no longer complain during bootstrap should no
longer happen after r257534.
The original commit message was:
``
Summary:
Teach the Verifier to make sure that the storage size given to llvm.dbg.declare
or the value size given to llvm.dbg.value agree with what is declared in
DebugInfo. This is implicitly assumed in a number of passes (e.g. in SROA).
Additionally this catches a number of common mistakes, such as passing a
pointer when a value was intended or vice versa.
One complication comes from stack coloring which modifies the original IR when
it merges allocas in order to make sure that if AA falls back to the IR it gets
the correct result. However, given this new invariant, indiscriminately
replacing one alloca by a different (differently sized one) is no longer valid.
Fix this by just undefing out any use of the alloca in a dbg.declare in this
case.
Additionally, I had to fix a number of test cases. Of particular note:
- I regenerated dbg-changes-codegen-branch-folding.ll from the given source as
it was affected by the bug fixed in r256077
- two-cus-from-same-file.ll was changed to avoid having a variable-typed debug
variable as that would depend on the target, even though this test is
supposed to be generic
- I had to manually declared size/align for reference type. See also the
discussion for D14275/r253186.
- fpstack-debuginstr-kill.ll required changing `double` to `long double`
- most others were just a question of adding OP_deref
``
```
llvm-svn: 257850
This patch seeds the SLP vectorizer with getelementptr indices. The primary
motivation in doing so is to vectorize gather-like idioms beginning with
consecutive loads (e.g., g[a[0] - b[0]] + g[a[1] - b[1]] + ...). While these
cases could be vectorized with a top-down phase, seeding the existing bottom-up
phase with the index computations avoids the complexity, compile-time, and
phase ordering issues associated with a full top-down pass. Only bundles of
single-index getelementptrs with non-constant differences are considered for
vectorization.
Differential Revision: http://reviews.llvm.org/D14829
llvm-svn: 257800
Summary: If SROA creates only one piece (e.g. because the other is not needed),
it still needs to create a bit_piece expression if that bit piece is smaller
than the original size of the alloca.
Reviewers: aprantl
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D16187
llvm-svn: 257795
Summary: The dbg.declare -> dbg.value conversion did not check which operand of
the store instruction the alloca was passed to. As a result code that stored the
address of an alloca, rather than storing to the alloca, would still trigger
the conversion routine, leading to the insertion of an incorrect dbg.value
intrinsic.
Reviewers: aprantl
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D16169
llvm-svn: 257787
This patch turns off the fast-math optimization attribute on the caller
if the callee's fast-math attribute is not turned on.
For example,
- before inlining
caller: "less-precise-fpmad"="true"
callee: "less-precise-fpmad"="false"
- after inlining
caller: "less-precise-fpmad"="false"
Alternatively, it's possible to block inlining if the caller's and
callee's attributes don't match. If this approach is preferable to the
one in this patch, we can discuss post-commit.
rdar://problem/19836465
Differential Revision: http://reviews.llvm.org/D7802
llvm-svn: 257575
The follow extra changes were made to test cases:
Manually making the variable be the actual type instead of a pointer
to avoid pointer-size differences in generic code:
LLVM :: DebugInfo/Generic/2010-03-24-MemberFn.ll
LLVM :: DebugInfo/Generic/2010-04-06-NestedFnDbgInfo.ll
LLVM :: DebugInfo/Generic/2010-05-03-DisableFramePtr.ll
LLVM :: DebugInfo/Generic/varargs.ll
Delete sizing information from debug info for the same reason
(but the presence of the pointer was important to the test case):
LLVM :: DebugInfo/Generic/restrict.ll
LLVM :: DebugInfo/Generic/tu-composite.ll
LLVM :: Linker/type-unique-type-array-a.ll
LLVM :: Linker/type-unique-simple2.ll
Fixing an incorrect DW_OP_deref
LLVM :: DebugInfo/Generic/2010-05-03-OriginDIE.ll
Fixing a missing DW_OP_deref
LLVM :: DebugInfo/Generic/incorrect-variable-debugloc.ll
Additionally, clang should no longer complain during bootstrap should no
longer happen after r257534.
The original commit message was:
```
Summary:
Teach the Verifier to make sure that the storage size given to llvm.dbg.declare
or the value size given to llvm.dbg.value agree with what is declared in
DebugInfo. This is implicitly assumed in a number of passes (e.g. in SROA).
Additionally this catches a number of common mistakes, such as passing a
pointer when a value was intended or vice versa.
One complication comes from stack coloring which modifies the original IR when
it merges allocas in order to make sure that if AA falls back to the IR it gets
the correct result. However, given this new invariant, indiscriminately
replacing one alloca by a different (differently sized one) is no longer valid.
Fix this by just undefing out any use of the alloca in a dbg.declare in this
case.
Additionally, I had to fix a number of test cases. Of particular note:
- I regenerated dbg-changes-codegen-branch-folding.ll from the given source as
it was affected by the bug fixed in r256077
- two-cus-from-same-file.ll was changed to avoid having a variable-typed debug
variable as that would depend on the target, even though this test is
supposed to be generic
- I had to manually declared size/align for reference type. See also the
discussion for D14275/r253186.
- fpstack-debuginstr-kill.ll required changing `double` to `long double`
- most others were just a question of adding OP_deref
```
llvm-svn: 257550
Summary: The dbg.declare -> dbg.value conversion looks through any zext/sext
to find a value to describe the variable (in the expectation that those
zext/sext instruction will go away later). However, those values do not
cover the entire variable and thus need a DW_OP_bit_piece.
Reviewers: aprantl
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D16061
llvm-svn: 257534
The findExternalCalls routine ignores calls to functions already
defined in the dest module. This was not handling the case where
the definition in the current module is actually an alias to a
function call.
llvm-svn: 257493
Prepatory patch before changing LibCallSimplifier to use the FMF.
Also, tighten the CHECK lines and give the tests more meaningful names.
Similar changes to:
http://reviews.llvm.org/rL257414
llvm-svn: 257481
Function::copyAttributesFrom will copy the personality function, prefix
data and prolog data from the source function to the new function, and
is invoked when the IRMover copies the function prototype. This puts a
reference to a constant in the source module on a function in the dest
module, which causes an error when deleting the source module after
importing, since the personality function in the source module still has
uses (this would presumably also be an issue for the prologue and prefix
data). Remove the copies added to the dest copy when creating the new
prototype, as they are mapped properly when/if we link the function body.
llvm-svn: 257420
Currently we're unrolling loops more in minsize than in optsize, which
means -Oz will have a larger code size than -Os. That doesn't make any
sense.
This resolves the FIXME about this in LoopUnrollPass and extends the
optsize test to make sure we use the smaller threshold for minsize as
well.
llvm-svn: 257402
This is a continuation of adding FMF to call instructions:
http://reviews.llvm.org/rL255555
The intent of the patch is to preserve the current behavior of the transform except
that we use the sqrt instruction's 'fast' attribute as a trigger rather than the
function-level attribute.
But this raises a bug noted by the new FIXME comment.
In order to do this transform:
sqrt((x * x) * y) ---> fabs(x) * sqrt(y)
...we need all of the sqrt, the first fmul, and the second fmul to be 'fast'.
If any of those ops is strict, we should bail out.
Differential Revision: http://reviews.llvm.org/D15937
llvm-svn: 257400
Summary:
This is a fix of D13718. D13718 was committed but then reverted because of the following bug:
https://llvm.org/bugs/show_bug.cgi?id=25299
This patch fixes the issue shown in the bug.
Reviewers: majnemer, reames
Subscribers: jevinskie, llvm-commits
Differential Revision: http://reviews.llvm.org/D14308
llvm-svn: 257277
Summary:
This is analogous to r256079, which removed an overly strong assertion, and
r256812, which simplified the code by replacing three conditionals by one.
Reviewers: reames
Subscribers: sanjoy, llvm-commits
Differential Revision: http://reviews.llvm.org/D16019
llvm-svn: 257250
This patch teaches rewrite-statepoints-for-gc to relocate vector-of-pointers directly rather than trying to split them. This builds on the recent lowering/IR changes to allow vector typed gc.relocates.
The motivation for this is that we recently found a bug in the vector splitting code where depending on visit order, a vector might not be relocated at some safepoint. Specifically, the bug is that the splitting code wasn't updating the side tables (live vector) of other safepoints. As a result, a vector which was live at two safepoints might not be updated at one of them. However, if you happened to visit safepoints in post order over the dominator tree, everything worked correctly. Weirdly, it turns out that post order is actually an incredibly common order to visit instructions in in practice. Frustratingly, I have not managed to write a test case which actually hits this. I can only reproduce it in large IR files produced by actual applications.
Rather than continue to make this code more complicated, we can remove all of the complexity by just representing the relocation of the entire vector natively in the IR.
At the moment, the new functionality is hidden behind a flag. To use this code, you need to pass "-rs4gc-split-vector-values=0". Once I have a chance to stress test with this option and get feedback from other users, my plan is to flip the default and remove the original splitting code. I would just remove it now, but given the rareness of the bug, I figured it was better to leave it in place until the new approach has been stress tested.
Differential Revision: http://reviews.llvm.org/D15982
llvm-svn: 257244
Look for PHI/Select in the same BB of the form
bb:
%p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
%s = select p, trueval, falseval
And expand the select into a branch structure. This later enables
jump-threading over bb in this pass.
Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
select if the associated PHI has at least one constant. If the unfolded
select is not jump-threaded, it will be folded again in the later
optimizations.
llvm-svn: 257198
It's strange that LoopInfo mostly owns the Loop objects, but that it
defers deleting them to the loop pass manager. Instead, change the
oddly named "updateUnloop" to "markAsRemoved" and have it queue the
Loop object for deletion. We can't delete the Loop immediately when we
remove it, since we need its pointer identity still, so we'll mark the
object as "invalid" so that clients can see what's going on.
llvm-svn: 257191
The function importer was still materializing metadata when modules were
loaded for function importing. We only want to materialize it when we
are going to invoke the metadata linking postpass. Materializing it
before function importing is not only unnecessary, but also causes
metadata referenced by imported functions to be mapped in early, and
then not connected to the rest of the module level metadata when it is
ultimately linked in.
Augmented the test case to specifically check for the metadata being
properly connected, which it wasn't before this fix.
llvm-svn: 257171
In setInsertionPoint if the value is not a PHI, Instruction or
Argument it should be a Constant, not a ConstantExpr.
Original commit message:
[InstCombine] Look through PHIs, GEPs, IntToPtrs and PtrToInts to expose more constants when comparing GEPs
Summary:
When comparing two GEP instructions which have the same base pointer
and one of them has a constant index, it is possible to only compare
indices, transforming it to a compare with a constant. This removes
one use for the GEP instruction with the constant index, can reduce
register pressure and can sometimes lead to removing the comparisson
entirely.
InstCombine was already doing this when comparing two GEPs if the base
pointers were the same. However, in the case where we have complex
pointer arithmetic (GEPs applied to GEPs, PHIs of GEPs, conversions to
or from integers, etc) the value of the original base pointer will be
hidden to the optimizer and this transformation will be disabled.
This change detects when the two sides of the comparison can be
expressed as GEPs with the same base pointer, even if they don't
appear as such in the IR. The transformation will convert all the
pointer arithmetic to arithmetic done on indices and all the relevant
uses of GEPs to GEPs with a common base pointer. The GEP comparison
will be converted to a comparison done on indices.
Reviewers: majnemer, jmolloy
Subscribers: hfinkel, jevinskie, jmolloy, aadg, llvm-commits
Differential Revision: http://reviews.llvm.org/D15146
llvm-svn: 257164
a top-down manner into a true top-down or RPO pass over the call graph.
There are specific patterns of function attributes, notably the
norecurse attribute, which are most effectively propagated top-down
because all they us caller information.
Walk in RPO over the call graph SCCs takes the form of a module pass run
immediately after the CGSCC pass managers postorder walk of the SCCs,
trying again to deduce norerucrse for each singular SCC in the call
graph.
This removes a very legacy pass manager specific trick of using a lazy
revisit list traversed during finalization of the CGSCC pass. There is
no analogous finalization step in the new pass manager, and a lazy
revisit list is just trying to produce an RPO iteration of the call
graph. We can do that more directly if more expensively. It seems
unlikely that this will be the expensive part of any compilation though
as we never examine the function bodies here. Even in an LTO run over
a very large module, this should be a reasonable fast set of operations
over a reasonably small working set -- the function call graph itself.
In the future, if this really is a compile time performance issue, we
can look at building support for both post order and RPO traversals
directly into a pass manager that builds and maintains the PO list of
SCCs.
Differential Revision: http://reviews.llvm.org/D15785
llvm-svn: 257163
Limit this transform to a basic block and guard against PHIs.
Hopefully, this fixes the remaining failures in PR25999:
https://llvm.org/bugs/show_bug.cgi?id=25999
llvm-svn: 257133
Summary:
Teach the Verifier to make sure that the storage size given to llvm.dbg.declare
or the value size given to llvm.dbg.value agree with what is declared in
DebugInfo. This is implicitly assumed in a number of passes (e.g. in SROA).
Additionally this catches a number of common mistakes, such as passing a
pointer when a value was intended or vice versa.
One complication comes from stack coloring which modifies the original IR when
it merges allocas in order to make sure that if AA falls back to the IR it gets
the correct result. However, given this new invariant, indiscriminately
replacing one alloca by a different (differently sized one) is no longer valid.
Fix this by just undefing out any use of the alloca in a dbg.declare in this
case.
Additionally, I had to fix a number of test cases. Of particular note:
- I regenerated dbg-changes-codegen-branch-folding.ll from the given source as
it was affected by the bug fixed in r256077
- two-cus-from-same-file.ll was changed to avoid having a variable-typed debug
variable as that would depend on the target, even though this test is
supposed to be generic
- I had to manually declared size/align for reference type. See also the
discussion for D14275/r253186.
- fpstack-debuginstr-kill.ll required changing `double` to `long double`
- most others were just a question of adding OP_deref
Reviewers: aprantl
Differential Revision: http://reviews.llvm.org/D14276
llvm-svn: 257105
We marked values which are 'undef' as constant instead of undefined
which violates SCCP's invariants. If we can figure out that a
computation results in 'undef', leave it in the undefined state.
This fixes PR16052.
llvm-svn: 257102
The fix for PR23999 made us mark loads of null as producing the constant
undef which upsets the lattice. Instead, keep the load as "undefined".
This fixes PR26044.
llvm-svn: 257087
Summary:
When comparing two GEP instructions which have the same base pointer
and one of them has a constant index, it is possible to only compare
indices, transforming it to a compare with a constant. This removes
one use for the GEP instruction with the constant index, can reduce
register pressure and can sometimes lead to removing the comparisson
entirely.
InstCombine was already doing this when comparing two GEPs if the
base pointers were the same. However, in the case where we have
complex pointer arithmetic (GEPs applied to GEPs, PHIs of GEPs,
conversions to or from integers, etc) the value of the original
base pointer will be hidden to the optimizer and this transformation
will be disabled.
This change detects when the two sides of the comparison can be
expressed as GEPs with the same base pointer, even if they don't
appear as such in the IR. The transformation will convert all the
pointer arithmetic to arithmetic done on indices and all the
relevant uses of GEPs to GEPs with a common base pointer. The
GEP comparison will be converted to a comparison done on indices.
Reviewers: majnemer, jmolloy
Subscribers: hfinkel, jevinskie, jmolloy, aadg, llvm-commits
Differential Revision: http://reviews.llvm.org/D15146
llvm-svn: 257064
Summary: This patch adds a check in SplitLandingPadPredecessors to see if the original landingpad instruction has any uses. If not, we don't need to create a PHINode for it in the joint block since it's gonna be a dead code anyway. The motivation for this patch is that we found a bug that SplitLandingPadPredecessors created a PHINode of token type landingpad, which failed the verifier since PHINode can not be token type. However, the created PHINode will never be used in our code pattern. This patch will workaround this bug, and we might add supports in SplitLandingPadPredecessors to handle token type landingpad with uses in the future.
Reviewers: reames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D15835
llvm-svn: 256972
Summary: As per title. This will allow the optimizer to pick up on it.
Reviewers: craig.topper, spatel, dexonsmith, Prazek, chandlerc, joker.eph, majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D15923
llvm-svn: 256969
Summary: It turns out that if we don't try to do it at the store location, we can do it before any operation that alias the load, as long as no operation alias the store.
Reviewers: craig.topper, spatel, dexonsmith, Prazek, chandlerc, joker.eph
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D15903
llvm-svn: 256923
Most of the properties of memset_pattern16 can be now covered by the generic attributes and inferred by InferFunctionAttrs. The only exceptions are:
- We don't yet have a writeonly attribute for the first argument.
- We don't have an attribute for modeling the access size facts encoded in MemoryLocation.cpp.
Differential Revision: http://reviews.llvm.org/D15879
llvm-svn: 256911
Summary:
Most of the tool chain is able to optimize scalar and memcpy like operation effisciently while it isn't that good with aggregates. In order to improve the support of aggregate, we try to change aggregate manipulation into either scalar or memcpy like ones whenever possible without loosing informations.
This is one such opportunity.
Reviewers: craig.topper, spatel, dexonsmith, Prazek, chandlerc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D15894
llvm-svn: 256868
In r256814, we managed to remove catchpads which were trivially redudant
because they were the same SSA value. We can do better using the same
algorithm but with a smarter datastructure by hashing the SSA values
within the catchpad and comparing them structurally.
llvm-svn: 256815
Summary:
At least for CoreCLR, a catchpad which immediately executes an
`unreachable` instruction indicates that the exception can never have a
matching type, and so such catchpads can be removed, and so can their
catchswitches if the catchswitch becomes empty.
Reviewers: rnk, andrew.w.kaylor, majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D15846
llvm-svn: 256809
Summary: This patch fixes a bug in prepareICWorklistFromFunction, where the loop becomes infinite with instructions of token type. The patch checks if the instruction is token type, and if so it updates EndInst with the current instruction.
Reviewers: reames, majnemer
Subscribers: llvm-commits, sanjoy
Differential Revision: http://reviews.llvm.org/D15859
llvm-svn: 256792
r256763 had promoteLoopAccessesToScalars check for the existence of a
catchswitch when the exit blocks were populated but
promoteLoopAccessesToScalars may be called with a prepopulated set of
exit blocks which would also need to be checked.
This fixes PR26019.
llvm-svn: 256788
This patch removes the isOperatorNewLike predicate since it was only being used to establish a non-null return value and we have attributes specifically for that purpose with generic handling. To keep approximate the same behaviour for existing frontends, I added the various operator new like (i.e. instances of operator new) to InferFunctionAttrs. It's not really clear to me why this isn't handled in Clang, but I didn't want to break existing code and any subtle assumptions it might have.
Once this patch is in, I'm going to start separating the isAllocLike family of predicates. These appear to be being used for a mixture of things which should be more clearly separated and documented. Today, they're being used to indicate (at least) aliasing facts, CSE-ability, and default values from an allocation site.
Differential Revision: http://reviews.llvm.org/D15820
llvm-svn: 256787
Before reevaluating instructions, iterate over all instructions
to be reevaluated and remove trivially dead instructions and if
any of it's operands become trivially dead, mark it for deletion
until all trivially dead instructions have been removed
llvm-svn: 256773
We had two bugs here:
- We might try to sink into a catchswitch, causing verifier failures.
- We will succeed in sinking into a cleanuppad but we didn't update the
funclet operand bundle.
This fixes PR26000.
llvm-svn: 256728