Still only 32-bit ARM using it at this stage, but the promotion allows
direct testing via opt and is a reasonably self-contained patch on the
way to switching ARM64.
At this point, other targets should be able to make use of it without
too much difficulty if they want. (See ARM64 commit coming soon for an
example).
llvm-svn: 206485
this code ages ago and lost track of it. Seems worth doing though --
this thing can get called from places that would benefit from knowing
that std::distance is O(1). Also add a very fledgeling unittest for
Users and make sure various aspects of this seem to work reasonably.
llvm-svn: 206453
graph. This simplifies the custom move constructor operation to one of
walking the graph and updating the 'up' pointers to point to the new
location of the graph. Switch the nodes from a reference to a pointer
for the 'up' edge to facilitate this.
llvm-svn: 206450
This introduces clang's Basic/OnDiskHashTable.h into llvm as
Support/OnDiskHashTable.h. I've taken the opportunity to add doxygen
comments and run the file through clang-format, but other than the
namespace changing from clang:: to llvm:: the API is identical.
llvm-svn: 206438
This is so that EF_MIPS_NAN2008 is set if we are using IEEE 754-2008
NaN encoding (-mnan=2008). This patch also adds support for parsing
'.nan legacy' and '.nan 2008' assembly directives. The handling of
these directives should match GAS' behaviour i.e., the last directive
in use sets the ELF header bit (EF_MIPS_NAN2008).
Differential Revision: http://reviews.llvm.org/D3346
llvm-svn: 206396
It doesn't work. I'm still cleaning up all the places where I blindly
followed this pattern. There are more to come in this code too.
As a benefit, this lets the default copy and move operations Just Work.
llvm-svn: 206375
because there is another (size_t, size_t) overload of Allocator, and the
only distinguishing factor is that one is a tempalte and the other
isn't. There was only one usage of this and that one was easily
converted to carry the alignment constraint in the type itself.
llvm-svn: 206325
Implement DebugInfoVerifier, which steals verification relying on
DebugInfoFinder from Verifier.
- Adds LegacyDebugInfoVerifierPassPass, a ModulePass which wraps
DebugInfoVerifier. Uses -verify-di command-line flag.
- Change verifyModule() to invoke DebugInfoVerifier as well as
Verifier.
- Add a call to createDebugInfoVerifierPass() wherever there was a
call to createVerifierPass().
This implementation as a module pass should sidestep efficiency issues,
allowing us to turn debug info verification back on.
<rdar://problem/15500563>
llvm-svn: 206300
ARM64 suffered multiple -verify-machineinstr failures (principally over the
xsp/xzr issue) because FastISel was completely ignoring which subset of the
general-purpose registers each instruction required.
More fixes are coming in ARM64 specific FastISel, but this should cover the
generic problems.
llvm-svn: 206283
by removing the MallocSlabAllocator entirely and just using
MallocAllocator directly. This makes all off these allocators expose and
utilize the same core interface.
The only ugly part of this is that it exposes the fact that the JIT
allocator has no real handling of alignment, any more than the malloc
allocator does. =/ It would be nice to fix both of these to support
alignments, and then to leverage that in the BumpPtrAllocator to do less
over allocation in order to manually align pointers. But, that's another
patch for another day. This patch has no functional impact, it just
removes the somewhat meaningless wrapper around MallocAllocator.
llvm-svn: 206267
allocation libraries, may allow more efficient allocation and
deallocation. It at least makes the interface implementable by the JIT
memory manager.
However, this highlights problematic overloading between the void* and
the T* deallocation functions. I'm looking into a better way to do this,
but as it happens, it comes up rarely in the codebase.
llvm-svn: 206265
overloads. This doesn't matter *that* much yet, but it will in
a subsequent patch. I had tested the original pattern, but not my
attempt to pacify MSVC. This at least appears to work. Still fixing the
rest of the fallout in the final patch that uses these overloads, but it
will follow shortly.
llvm-svn: 206259
'sizeof(T)' for T == void and produces a hard error. I cannot fathom why
this is OK. Oh well. switch to an explicit test for being the
(potentially qualified) void type, which is the only specific case I was
worried about. Hopefully this survives the libstdc++ build bots which
have limited type traits implementations...
llvm-svn: 206256
to types which we can compute the size of. The comparison with zero
isn't actually interesting here, it's mostly about putting sizeof into
a sfinae context.
This is particular important for Deallocate as otherwise the void*
overload can quickly become ambiguous.
llvm-svn: 206251
MCModule's ctor had to be moved out of line so the definition of
MCFunction was available. (ctor requires the dtor of members (in case
the ctor throws) which required access to the dtor of MCFunction)
llvm-svn: 206244
This patch re-introduces the MCContext member that was removed from
MCDisassembler in r206063, and requires that an MCContext be passed in at
MCDisassembler construction time. (Previously the MCContext member had been
initialized in an ad-hoc fashion after construction). The MCCContext member
can be used by MCDisassembler sub-classes to construct constant or
target-specific MCExprs.
This patch updates disassemblers for in-tree targets, and provides the
MCRegisterInfo instance that some disassemblers were using through the
MCContext (previously those backends were constructing their own
MCRegisterInfo instances).
llvm-svn: 206241
along with templated overloads much like we have for Allocate. These
will facilitate switching the Deallocate interface of all the Allocator
classes to accept the size by pre-filling it from the type size where we
can do so. I plan to convert several uses to the template variants in
subsequent patches prior to adding the Size parameter.
No functionality changed, WIP.
llvm-svn: 206230
rather than defining them (differently!) in both allocators. This also
serves as a basis for documenting and even enforcing some of the
LLVM-style "allocator" concept methods which must exist with various
signatures.
I plan on extending and changing the signatures of these to further
simplify our allocator model in subsequent commits, so I wanted to
factor things as best as I could first. Notably, I'm working to add the
'Size' to the deallocation method of all allocators. This has several
implications not the least of which are faster deallocation times on
certain allocation libraries (tcmalloc). It also will allow the JIT
allocator to fully model the existing allocation interfaces and allow
sanitizer poisoning of deallocated regions. The list of advantages goes
on. =] But by factoring things first I'll be able to make this easier by
first introducing template helpers for the deallocation path.
llvm-svn: 206225
small formatting inconsistencies with the rest of LLVM and even this
file. I looked at all the changes and they seemed like just better
formatting.
llvm-svn: 206209
declaration. GCC 4.7 appears to get hopelessly confused by declaring
this function within a member function of a class template. Go figure.
llvm-svn: 206152
abstract interface. The only user of this functionality is the JIT
memory manager and it is quite happy to have a custom type here. This
removes a virtual function call and a lot of unnecessary abstraction
from the common case where this is just a *very* thin vaneer around
a call to malloc.
Hopefully still no functionality changed here. =]
llvm-svn: 206149