UnresolvedUsingValueDecl to use NestedNameSpecifierLoc rather than the
extremely-lossy NestedNameSpecifier/SourceRange pair it used to use,
improving source-location information.
Various infrastructure updates to support NestedNameSpecifierLoc:
- AST/PCH (de-)serialization
- Recursive AST visitor
- libclang traversal (including the first tests of this
functionality)
llvm-svn: 126459
bugs from other clients that don't expect to see a LabelDecl in a DeclStmt,
but if so they should be easy to fix.
This implements most of PR3429 and rdar://8287027
llvm-svn: 125817
class and to bind the shared value using OpaqueValueExpr. This fixes an
unnoticed problem with deserialization of these expressions where the
deserialized form would lose the vital pointer-equality trait; or rather,
it fixes it because this patch also does the right thing for deserializing
OVEs.
Change OVEs to not be a "temporary object" in the sense that copy elision is
permitted.
This new representation is not totally unawkward to work with, but I think
that's really part and parcel with the semantics we're modelling here. In
particular, it's much easier to fix things like the copy elision bug and to
make the CFG look right.
I've tried to update the analyzer to deal with this in at least some
obvious cases, and I think we get a much better CFG out, but the printing
of OpaqueValueExprs probably needs some work.
llvm-svn: 125744
- BlockDeclRefExprs always store VarDecls
- BDREs no longer store copy expressions
- BlockDecls now store a list of captured variables, information about
how they're captured, and a copy expression if necessary
With that in hand, change IR generation to use the captures data in
blocks instead of walking the block independently.
Additionally, optimize block layout by emitting fields in descending
alignment order, with a heuristic for filling in words when alignment
of the end of the block header is insufficient for the most aligned
field.
llvm-svn: 125005
space better. Remove this reference. To make that work, change some APIs
(most importantly, getDesugaredType()) to take an ASTContext& if they
need to return a QualType. Simultaneously, diminish the need to return a
QualType by introducing some useful APIs on SplitQualType, which is
just a std::pair<const Type *, Qualifiers>.
llvm-svn: 121478
store it on the expression node. Also store an "object kind",
which distinguishes ordinary "addressed" l-values (like
variable references and pointer dereferences) and bitfield,
@property, and vector-component l-values.
Currently we're not using these for much, but I aim to switch
pretty much everything calculating l-valueness over to them.
For now they shouldn't necessarily be trusted.
llvm-svn: 119685
This takes some trickery since CastExpr has subclasses (and indeed,
is abstract).
Also, smoosh the CastKind into the bitfield from Expr.
Drops two words of storage from Expr in the common case of expressions
which don't need inheritance paths. Avoids a separate allocation and
another word of overhead in cases needing inheritance paths. Also has
the advantage of not leaking memory, since destructors for AST nodes are
never run.
llvm-svn: 110507
statements. Instead of the @try having a single @catch, where all of
the @catch's were chained (using an O(n^2) algorithm nonetheless),
@try just holds an array of its @catch blocks. The resulting AST is
slightly more compact (not important) and better represents the actual
language semantics (good).
llvm-svn: 102221
expressions, to improve source-location information, clarify the
actual receiver of the message, and pave the way for proper C++
support. The ObjCMessageExpr node represents four different kinds of
message sends in a single AST node:
1) Send to a object instance described by an expression (e.g., [x method:5])
2) Send to a class described by the class name (e.g., [NSString method:5])
3) Send to a superclass class (e.g, [super method:5] in class method)
4) Send to a superclass instance (e.g., [super method:5] in instance method)
Previously these four cases where tangled together. Now, they have
more distinct representations. Specific changes:
1) Unchanged; the object instance is represented by an Expr*.
2) Previously stored the ObjCInterfaceDecl* referring to the class
receiving the message. Now stores a TypeSourceInfo* so that we know
how the class was spelled. This both maintains typedef information
and opens the door for more complicated C++ types (e.g., dependent
types). There was an alternative, unused representation of these
sends by naming the class via an IdentifierInfo *. In practice, we
either had an ObjCInterfaceDecl *, from which we would get the
IdentifierInfo *, or we fell into the case below...
3) Previously represented by a class message whose IdentifierInfo *
referred to "super". Sema and CodeGen would use isStr("super") to
determine if they had a send to super. Now represented as a
"class super" send, where we have both the location of the "super"
keyword and the ObjCInterfaceDecl* of the superclass we're
targetting (statically).
4) Previously represented by an instance message whose receiver is a
an ObjCSuperExpr, which Sema and CodeGen would check for via
isa<ObjCSuperExpr>(). Now represented as an "instance super" send,
where we have both the location of the "super" keyword and the
ObjCInterfaceDecl* of the superclass we're targetting
(statically). Note that ObjCSuperExpr only has one remaining use in
the AST, which is for "super.prop" references.
The new representation of ObjCMessageExpr is 2 pointers smaller than
the old one, since it combines more storage. It also eliminates a leak
when we loaded message-send expressions from a precompiled header. The
representation also feels much cleaner to me; comments welcome!
This patch attempts to maintain the same semantics we previously had
with Objective-C message sends. In several places, there are massive
changes that boil down to simply replacing a nested-if structure such
as:
if (message has a receiver expression) {
// instance message
if (isa<ObjCSuperExpr>(...)) {
// send to super
} else {
// send to an object
}
} else {
// class message
if (name->isStr("super")) {
// class send to super
} else {
// send to class
}
}
with a switch
switch (E->getReceiverKind()) {
case ObjCMessageExpr::SuperInstance: ...
case ObjCMessageExpr::Instance: ...
case ObjCMessageExpr::SuperClass: ...
case ObjCMessageExpr::Class:...
}
There are quite a few places (particularly in the checkers) where
send-to-super is effectively ignored. I've placed FIXMEs in most of
them, and attempted to address send-to-super in a reasonable way. This
could use some review.
llvm-svn: 101972
Type hierarchy. Demote 'volatile' to extended-qualifier status. Audit our
use of qualifiers and fix a few places that weren't dealing with qualifiers
quite right; many more remain.
llvm-svn: 82705
This is simple enough, but then I thought it would be nice to make PrintingPolicy
get a LangOptions so that various things can key off "bool" and "C++" independently.
This spiraled out of control. There are many fixme's, but I think things are slightly
better than they were before.
One thing that can be improved: CFG should probably have an ASTContext pointer in it,
which would simplify its clients.
llvm-svn: 74493
printing logic to help customize the output. For now, we use this
rather than a special flag to suppress the "struct" when printing
"struct X" and to print the Boolean type as "bool" in C++ but "_Bool"
in C.
llvm-svn: 72590
- Exposed quite a few Sema issues and a CodeGen crash.
- See FIXMEs in test case, and in SemaDecl.cpp (PR3983).
I'm skeptical that __private_extern__ should actually be a storage
class value. I think that __private_extern__ basically amounts to
extern A __attribute__((visibility("hidden")))
and would be better off handled (a) as that, or (b) with an extra bit
in the VarDecl.
llvm-svn: 69020