Mach-O normalized file reader assumes that the entire file is aligned
to a large boundary. If the in-memory file is not aligned properly, it will
abort with an assertion failure in read32/read64. This patch forces the
in-memory file for the unit test to be aligned at 64-byte boundary.
I found these tests are failing on Windows, but theoretically they could
fail on other platform.
llvm-svn: 221508
This results in some simplifications to the code where an OwningPtr had to
be used with the previous api and then ownership moved to a unique_ptr for
the rest of lld.
llvm-svn: 203809
The main goal of this patch is to allow "mach-o encoded as yaml" and "native
encoded as yaml" documents to be intermixed. They are distinguished via
yaml tags at the start of the document. This will enable all mach-o test cases
to be written using yaml instead of checking in object files.
The Registry was extend to allow yaml tag handlers to be registered. The
mach-o Reader adds a yaml tag handler for the tag "!mach-o".
Additionally, this patch fixes some buffer ownership issues. When parsing
mach-o binaries, the mach-o atoms can have pointers back into the memory
mapped .o file. But with yaml encoded mach-o, name and content are ephemeral,
so a copyRefs parameter was added to cause the mach-o atoms to make their
own copy.
llvm-svn: 198986
This patch adds support for converting normalized mach-o to and from binary
mach-o. It also changes WriterMachO (which previously directly wrote a
mach-o binary given a set of Atoms) to instead do it in two steps. The first
step uses normalizedFromAtoms() to convert Atoms to normalized mach-o, and the
second step uses writeBinary() which to generate the mach-o binary file.
llvm-svn: 194167
This is the first step in how I plan to get mach-o object files support into
lld. We need to be able to test the mach-o Reader and Write on systems without
a mach-o tools. Therefore, we want to support a textual way (YAML) to represent
mach-o files.
MachONormalizedFile.h defines an in-memory abstraction of the content of mach-o
files. The in-memory data structures are always native endianess and always
use 64-bit sizes. That internal data structure can then be converted to or
from three different formats: 1) yaml (text) encoded mach-o, 2) binary mach-o
files, 3) lld Atoms.
This patch defines the internal model and uses YAML I/O to implement the
conversion to and from the model to yaml. The next patch will implement
the conversion from normalized to binary mach-o.
This patch includes unit tests to validate the yaml conversion APIs.
llvm-svn: 192147