an assert on Darwin llvm-gcc builds.
Assertion failed: (castIsValid(op, S, Ty) && "Invalid cast!"), function Create, file /Users/buildslave/zorg/buildbot/smooshlab/slave-0.8/build.llvm-gcc-i386-darwin9-RA/llvm.src/lib/VMCore/Instructions.cpp, li\
ne 2067.
etc.
http://smooshlab.apple.com:8013/builders/llvm-gcc-i386-darwin9-RA/builds/2354
--- Reverse-merging r134893 into '.':
U include/llvm/Target/TargetData.h
U include/llvm/DerivedTypes.h
U tools/bugpoint/ExtractFunction.cpp
U unittests/Support/TypeBuilderTest.cpp
U lib/Target/ARM/ARMGlobalMerge.cpp
U lib/Target/TargetData.cpp
U lib/VMCore/Constants.cpp
U lib/VMCore/Type.cpp
U lib/VMCore/Core.cpp
U lib/Transforms/Utils/CodeExtractor.cpp
U lib/Transforms/Instrumentation/ProfilingUtils.cpp
U lib/Transforms/IPO/DeadArgumentElimination.cpp
U lib/CodeGen/SjLjEHPrepare.cpp
--- Reverse-merging r134888 into '.':
G include/llvm/DerivedTypes.h
U include/llvm/Support/TypeBuilder.h
U include/llvm/Intrinsics.h
U unittests/Analysis/ScalarEvolutionTest.cpp
U unittests/ExecutionEngine/JIT/JITTest.cpp
U unittests/ExecutionEngine/JIT/JITMemoryManagerTest.cpp
U unittests/VMCore/PassManagerTest.cpp
G unittests/Support/TypeBuilderTest.cpp
U lib/Target/MBlaze/MBlazeIntrinsicInfo.cpp
U lib/Target/Blackfin/BlackfinIntrinsicInfo.cpp
U lib/VMCore/IRBuilder.cpp
G lib/VMCore/Type.cpp
U lib/VMCore/Function.cpp
G lib/VMCore/Core.cpp
U lib/VMCore/Module.cpp
U lib/AsmParser/LLParser.cpp
U lib/Transforms/Utils/CloneFunction.cpp
G lib/Transforms/Utils/CodeExtractor.cpp
U lib/Transforms/Utils/InlineFunction.cpp
U lib/Transforms/Instrumentation/GCOVProfiling.cpp
U lib/Transforms/Scalar/ObjCARC.cpp
U lib/Transforms/Scalar/SimplifyLibCalls.cpp
U lib/Transforms/Scalar/MemCpyOptimizer.cpp
G lib/Transforms/IPO/DeadArgumentElimination.cpp
U lib/Transforms/IPO/ArgumentPromotion.cpp
U lib/Transforms/InstCombine/InstCombineCompares.cpp
U lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
U lib/Transforms/InstCombine/InstCombineCalls.cpp
U lib/CodeGen/DwarfEHPrepare.cpp
U lib/CodeGen/IntrinsicLowering.cpp
U lib/Bitcode/Reader/BitcodeReader.cpp
llvm-svn: 134949
patch brings numerous advantages to LLVM. One way to look at it
is through diffstat:
109 files changed, 3005 insertions(+), 5906 deletions(-)
Removing almost 3K lines of code is a good thing. Other advantages
include:
1. Value::getType() is a simple load that can be CSE'd, not a mutating
union-find operation.
2. Types a uniqued and never move once created, defining away PATypeHolder.
3. Structs can be "named" now, and their name is part of the identity that
uniques them. This means that the compiler doesn't merge them structurally
which makes the IR much less confusing.
4. Now that there is no way to get a cycle in a type graph without a named
struct type, "upreferences" go away.
5. Type refinement is completely gone, which should make LTO much MUCH faster
in some common cases with C++ code.
6. Types are now generally immutable, so we can use "Type *" instead
"const Type *" everywhere.
Downsides of this patch are that it removes some functions from the C API,
so people using those will have to upgrade to (not yet added) new API.
"LLVM 3.0" is the right time to do this.
There are still some cleanups pending after this, this patch is large enough
as-is.
llvm-svn: 134829
all over the place in different styles and variants. Standardize on two
preferred entrypoints: one that takes a StructType and ArrayRef, and one that
takes StructType and varargs.
In cases where there isn't a struct type convenient, we now add a
ConstantStruct::getAnon method (whose name will make more sense after a few
more patches land).
It would be "really really nice" if the ConstantStruct::get and
ConstantVector::get methods didn't make temporary std::vectors.
llvm-svn: 133412
the value splatted into every element. Extend this to getTrue and getFalse which
by providing new overloads that take Types that are either i1 or <N x i1>. Use
it in InstCombine to add vector support to some code, fixing PR8469!
llvm-svn: 127116
constant replacement which was botching its handling of
types. Use of getType() instead of getRawType() was causing
the type map in constant folding to be updated wrong.
llvm-svn: 108610
to fadd, fsub, and fmul, when used with a floating-point type. LLVM
has supported the new instructions since 2.6, so it's time to get
on board.
llvm-svn: 102971
use plain SCEVUnknowns with ConstantExpr::getSizeOf and
ConstantExpr::getOffsetOf constants. This eliminates a bunch of
special-case code.
Also add code for pattern-matching these expressions, for clients that
want to recognize them.
Move ScalarEvolution's logic for expanding array and vector sizeof
expressions into an element count times the element size, to expose
the multiplication to subsequent folding, into the regular constant
folder.
llvm-svn: 94737
llvm-as: t.ll:1:25: error: invalid cast opcode for cast from '[4 x i8]' to '[1 x i32]'
@x = constant [1 x i32] bitcast ([4 x i8] c"abcd" to [1 x i32])
^
llvm-svn: 94595
if one of the vectors didn't have elements (such as undef). Fixes PR 6096.
Fix an issue in the constant folder where fcmp (<2 x %ty>, <2 x %ty>) would
have <2 x i1> type if constant folding was successful and i1 type if it wasn't.
This exposed a related issue in the bitcode reader.
llvm-svn: 94069
a convention (shadowing the setter with private forwarding function) to
prevent subclasses from accidentally using it.
This exposed some bogosity in ConstantExprs, which was propaging the
opcode of the constant expr into the NUW/NSW/Exact field in the
getWithOperands/getWithOperandReplaced methods.
llvm-svn: 92239
block with a blockaddress still referring to it' replace the invalid
blockaddress with a new blockaddress(@func, null) instead of a
inttoptr(1).
This changes the bitcode encoding format, and still needs codegen
support (this should produce a non-zero value, referring to the entry
block of the function would also be quite reasonable).
llvm-svn: 85678
In the new world order, BlockAddress can have a BasicBlock operand.
This doesn't permute much, because if you have a ConstantExpr (or
anything more specific than Constant) we still know the operand has
to be a Constant.
llvm-svn: 85375
the new predicates I added) instead of going through a context and doing a
pointer comparison. Besides being cheaper, this allows a smart compiler
to turn the if sequence into a switch.
llvm-svn: 83297
instead of cloning and RAUWing it.
- Make AbstractTypeUser a friend of Value so that it can offer
its subclasses a way to update a Value's type in place. This
is better than a universally visible setType method on Value,
and it's sufficient for the immediate need.
- Eliminate the constant "convert" functions. This eliminates a
lot of logic duplication, and fixes a complicated bug where a
constant can't actually be cloned during the type refinement
process because some of the types that its folder needs are
half-destroyed, being in the middle of refinement themselves.
- Move the getValType functions from being static overloaded
functions in Constants.cpp to be members of class template
specializations in ConstantsContext.h. This means that the
code ends up getting instantiated twice, however it also
makes it possible to eliminate all "convert" functions, so
it's not a big net code size increase. And if desired, the
duplicate instantiations could be eliminated with some
reorganization.
llvm-svn: 81861
how to fold notionally-out-of-bounds array getelementptr indices instead
of just doing these in lib/Analysis/ConstantFolding.cpp, because it can
be done in a fairly general way without TargetData, and because not all
constants are visited by lib/Analysis/ConstantFolding.cpp. This enables
more constant folding.
Also, set the "inbounds" flag when the getelementptr indices are
one-past-the-end.
llvm-svn: 81483
within the notional bounds of the static type of the getelementptr (which
is not the same as "inbounds") from GlobalOpt into a utility routine,
and use it in ConstantFold.cpp to check whether there are any mis-behaved
indices.
llvm-svn: 81478
Constant uniquing tables. This allows distinct ConstantExpr objects
with the same operation and different flags.
Even though a ConstantExpr "a + b" is either always overflowing or
never overflowing (due to being a ConstantExpr), it's still necessary
to be able to represent it both with and without overflow flags at
the same time within the IR, because the safety of the flag may
depend on the context of the use. If the constant really does overflow,
it wouldn't ever be safe to use with the flag set, however the use
may be in code that is never actually executed.
This also makes it possible to merge all the flags tests into a single test.
llvm-svn: 80998
and exact flags. Because ConstantExprs are uniqued, creating an
expression with this flag causes all expressions with the same operands
to have the same flag, which may not be safe. Add, sub, mul, and sdiv
ConstantExprs are usually folded anyway, so the main interesting flag
here is inbounds, and the constant folder already knows how to set the
inbounds flag automatically in most cases, so there isn't an urgent need
for the API support.
This can be reconsidered in the future, but for now just removing these
API bits eliminates a source of potential trouble with little downside.
llvm-svn: 80959