Summary:
No longer rely on cmake to set DEBUGSERVER_VERSION_STR,
but now generate the _vers.c file like xcode does
and include the generated file into the build on Mac OS X.
This fixes the cmake Mac OS X build after an earlier change
by Jason Molenda.
Reviewers: clayborg, jasonmolenda
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D11450
llvm-svn: 243072
Changed the "jthreads" key/value in the stop reply packets to be "jstopinfo". This JSON only contains threads with valid stop reasons and allows us not to have to ask about other threads via qThreadStopInfo when we are stepping. The "jstopinfo" only gets sent if there are more than one thread since the stop reply packet contains all the info needed for a single thread.
Added a Process::WillPublicStop() in case process subclasses want to do any extra gathering for public stops. For ProcessGDBRemote, we end up sending a jThreadsInfo packet to gather all expedited registers, expedited memory and MacOSX queue information. We only do this for public stops to minimize the packets we send when we have multiple private stops. Multiple private stops happen when a source level single step, step into or step out run the process multiple times while implementing the stepping, and none of these private stops make it out to the UI via notifications because they are private stops.
llvm-svn: 242593
frame, don't go any further, in RNBRemote::SendStopReplyPacketForThread.
These are the memory pre-fetches in the T05 packet and are
included in every private stop that lldb does. lldb needs, at most,
the caller stack frame so we're sending more data than needed by
including additional stack memory prefetches in this reply packet.
Once we've stopped for a public stop, we're going to do a jThreadsInfo
which will include the stack memory prefetches for all threads,
including the one which had the stop reason.
llvm-svn: 242380
This allows stepping operations that don't ever do a public stop to get all the info they need without having to send a jThreadsInfo packet since those tend to be large.
This patch will be followed by a patch that will detect when we do a public stop, and when that happens we will send a jThreadsInfo packet at that time to get all expedited registers and memory.
llvm-svn: 242352
vm_kernel_page_size appears to not be defined on OSX Mavericks, so the
build fails. This patch fixes the build by calculating the pagesize if
_VM_PAGE_SIZE_H_ is not defined.
llvm-svn: 242114
jGetLoadedDynamicLibrariesInfos. This packet is similar to
qXfer:libraries:read except that lldb supplies the number of solibs
that should be reported about, and the start address for the list
of them. At the initial process launch we'll read the full list
of solibs linked by the process -- at this point we could be using
qXfer:libraries:read -- but on subsequence solib-loaded notifications,
we'll be fetching a smaller number of solibs, often only one or two.
A typical Mac/iOS GUI app may have a couple hundred different
solibs loaded - doing all of the loads via memory reads takes
a couple of megabytes of traffic between lldb and debugserver.
Having debugserver summarize the load addresses of all the solibs
and sending it in JSON requires a couple of hundred kilobytes
of traffic. It's a significant performance improvement when
communicating over a slower channel.
This patch leaves all of the logic for loading the libraries
in DynamicLoaderMacOSXDYLD -- it only call over ot ProcesGDBRemote
to get the JSON result.
If the jGetLoadedDynamicLibrariesInfos packet is not implemented,
the normal technique of using memory read packets to get all of
the details from the target will be used.
<rdar://problem/21007465>
llvm-svn: 241964
proc_set_wakemon_params() to raise the limit on the # of wakeups
per second that are acceptable before the system may send an
EXC_RESOURCE signal to debugserver.
<rdar://problem/19631512>
llvm-svn: 241553
- Avoid sending the qfThreadInfo, qsThreadInfo packets if we have a stop reply packet with the threads already (save 2 round trip packets)
- Include the qname, qserial and qkind in the JSON info
- Report the qname, qserial and qkind to the thread so it can cache it to avoid many packets on MacOSX and iOS
- Don't clear all discoverable settings when we exec, just the ones we need to saves 1-5 packets for each exec.
llvm-svn: 240988
A few extras were fixed
- Symbol::GetAddress() now returns an Address object, not a reference. There were places where people were accessing the address of a symbol when the symbol's value wasn't an address symbol. On MacOSX, undefined symbols have a value zero and some places where using the symbol's address and getting an absolute address of zero (since an Address object with no section and an m_offset whose value isn't LLDB_INVALID_ADDRESS is considered an absolute address). So fixing this required some changes to make sure people were getting what they expected.
- Since some places want to access the address as a reference, I added a few new functions to symbol:
Address &Symbol::GetAddressRef();
const Address &Symbol::GetAddressRef() const;
Linux test suite passes just fine now.
<rdar://problem/21494354>
llvm-svn: 240702
A "qSymbol::" is sent when shared libraries have been loaded by hooking into the Process::ModulesDidLoad() function from within ProcessGDBRemote. This function was made virtual so that the ProcessGDBRemote version is called, which then first calls the Process::ModulesDidLoad(), and then it queries for any symbol lookups that the remote GDB server might want to do.
This allows debugserver to request the "dispatch_queue_offsets" symbol so that it can read the queue name, queue kind and queue serial number and include this data as part of the stop reply packet. Previously each thread would have to do 3 memory reads in order to read the queue name.
This is part of reducing the number of packets that are sent between LLDB and the remote GDB server.
<rdar://problem/21494354>
llvm-svn: 240466
We have been working on reducing the packet count that is sent between LLDB and the debugserver on MacOSX and iOS. Our approach to this was to reduce the packets required when debugging multiple threads. We currently make one qThreadStopInfoXXXX call (where XXXX is the thread ID in hex) per thread except the thread that stopped with a stop reply packet. In order to implement multiple thread infos in a single reply, we need to use structured data, which means JSON. The new jThreadsInfo packet will attempt to retrieve all thread infos in a single packet. The data is very similar to the stop reply packets, but packaged in JSON and uses JSON arrays where applicable. The JSON output looks like:
[
{ "tid":1580681,
"metype":6,
"medata":[2,0],
"reason":"exception",
"qaddr":140735118423168,
"registers": {
"0":"8000000000000000",
"1":"0000000000000000",
"2":"20fabf5fff7f0000",
"3":"e8f8bf5fff7f0000",
"4":"0100000000000000",
"5":"d8f8bf5fff7f0000",
"6":"b0f8bf5fff7f0000",
"7":"20f4bf5fff7f0000",
"8":"8000000000000000",
"9":"61a8db78a61500db",
"10":"3200000000000000",
"11":"4602000000000000",
"12":"0000000000000000",
"13":"0000000000000000",
"14":"0000000000000000",
"15":"0000000000000000",
"16":"960b000001000000",
"17":"0202000000000000",
"18":"2b00000000000000",
"19":"0000000000000000",
"20":"0000000000000000"},
"memory":[
{"address":140734799804592,"bytes":"c8f8bf5fff7f0000c9a59e8cff7f0000"},
{"address":140734799804616,"bytes":"00000000000000000100000000000000"}
]
}
]
It contains an array of dicitionaries with all of the key value pairs that are normally in the stop reply packet. Including the expedited registers. Notice that is also contains expedited memory in the "memory" key. Any values in this memory will get included in a new L1 cache in lldb_private::Process where if a memory read request is made and that memory request fits into one of the L1 memory cache blocks, it will use that memory data. If a memory request fails in the L1 cache, it will fall back to the L2 cache which is the same block sized caching we were using before these changes. This allows a process to expedite memory that you are likely to use and it reduces packet count. On MacOSX with debugserver, we expedite the frame pointer backchain for a thread (up to 256 entries) by reading 2 pointers worth of bytes at the frame pointer (for the previous FP and PC), and follow the backchain. Most backtraces on MacOSX and iOS now don't require us to read any memory!
We will try these packets out and if successful, we should port these to lldb-server in the near future.
<rdar://problem/21494354>
llvm-svn: 240354
For some communication channels, sending large packets can be very
slow. In those cases, it may be faster to compress the contents of
the packet on the target device and decompress it on the debug host
system. For instance, communicating with a device using something
like Bluetooth may be an environment where this tradeoff is a good one.
This patch adds a new field to the response to the "qSupported" packet
(which returns a "qXfer:features:" response) -- SupportedCompressions
and DefaultCompressionMinSize. These tell you what the remote
stub can support.
lldb, if it wants to enable compression and can handle one of those
algorithms, it can send a QEnableCompression packet specifying the
algorithm and optionally the minimum packet size to use compression
on. lldb may have better knowledge about the best tradeoff for
a given communication channel.
I added support to debugserver an lldb to use the zlib APIs
(if -DHAVE_LIBZ=1 is in CFLAGS and -lz is in LDFLAGS) and the
libcompression APIs on Mac OS X 10.11 and later
(if -DHAVE_LIBCOMPRESSION=1). libz "zlib-deflate" compression.
libcompression can support deflate, lz4, lzma, and a proprietary
lzfse algorithm. libcompression has been hand-tuned for Apple
hardware so it should be preferred if available.
debugserver currently only adds the SupportedCompressions when
it is being run on an Apple watch (TARGET_OS_WATCH). Comment
that #if out from RNBRemote.cpp if you want to enable it to
see how it works. I haven't tested this on a native system
configuration but surely it will be slower to compress & decompress
the packets in a same-system debug session.
I haven't had a chance to add support for this to
GDBRemoteCommunciationServer.cpp yet.
<rdar://problem/21090180>
llvm-svn: 240066
a little more resilient to freely formatted json. Greg's change
in r238279 made the json output from StructuredData unconditionally
pretty-printed and the spaces were confusing debugserver.
llvm-svn: 239013
qEcho:%s
where '%s' is any valid string. The response to this packet is the exact packet itself with no changes, just reply with what you received!
This will help us to recover from packets timing out much more gracefully. Currently if a packet times out, LLDB quickly will hose up the debug session. For example, if we send a "abc" packet and we expect "ABC" back in response, but the "abc" command takes longer than the current timeout value this will happen:
--> "abc"
<-- <<<error: timeout>>>
Now we want to send "def" and get "DEF" back:
--> "def"
<-- "ABC"
We got the wrong response for the "def" packet because we didn't sync up with the server to clear any current responses from previously issues commands.
The fix is to modify GDBRemoteCommunication::WaitForPacketWithTimeoutMicroSecondsNoLock() so that when it gets a timeout, it syncs itself up with the client by sending a "qEcho:%u" where %u is an increasing integer, one for each time we timeout. We then wait for 3 timeout periods to sync back up. So the above "abc" session would look like:
--> "abc"
<-- <<<error: timeout>>> 1 second
--> "qEcho:1"
<-- <<<error: timeout>>> 1 second
<-- <<<error: timeout>>> 1 second
<-- "abc"
<-- "qEcho:1"
The first timeout is from trying to get the response, then we know we timed out and we send the "qEcho:1" packet and wait for 3 timeout periods to get back in sync knowing that we might actually get the response for the "abc" packet in the mean time...
In this case we would actually succeed in getting the response for "abc". But lets say the remote GDB server is deadlocked and will never response, it would look like:
--> "abc"
<-- <<<error: timeout>>> 1 second
--> "qEcho:1"
<-- <<<error: timeout>>> 1 second
<-- <<<error: timeout>>> 1 second
<-- <<<error: timeout>>> 1 second
We then disconnect and say we lost connection.
We might also have a bad GDB server that just dropped the "abc" packet on the floor. We can still recover in this case and it would look like:
--> "abc"
<-- <<<error: timeout>>> 1 second
--> "qEcho:1"
<-- "qEcho:1"
Then we know our remote GDB server is still alive and well, and it just dropped the "abc" response on the floor and we can continue to debug.
<rdar://problem/21082939>
llvm-svn: 238530
We know have on API we should use for all XML within LLDB in XML.h. This API will be easy back the XML parsing by different libraries in case libxml2 doesn't work on all platforms. It also allows the only place for #ifdef ...XML... to be in XML.h and XML.cpp. The API is designed so it will still compile with or without XML support and there is a static function "bool XMLDocument::XMLEnabled()" that can be called to see if XML is currently supported. All APIs will return errors, false, or nothing when XML isn't enabled.
Converted all locations that used XML over to using the host XML implementation.
Added target.xml support to debugserver. Extended the XML register format to work for LLDB by including extra attributes and elements where needed. This allows the target.xml to replace the qRegisterInfo packets and allows us to fetch all register info in a single packet.
<rdar://problem/21090173>
llvm-svn: 238224
It was just detecting the existance of the value. If it gets the value correctly, we need to check that it is non-zero to see if cpu64bit_capable should be true.
<rdar://problem/20857426>
llvm-svn: 236759
the register state when debugging AArch32 programs (armv7
programs running on an armv8 processor). Most notably,
there is no "fpscr" register in the register context -
there is an fpsr and an fpcr.
Also fix a bug where the floating point values could not
be written in armv7 processes.
<rdar://problem/18977767>
llvm-svn: 226244
The issue with Thumb IT (if/then) instructions is the IT instruction preceeds up to four instructions that are made conditional. If a breakpoint is placed on one of the conditional instructions, the instruction either needs to match the thumb opcode size (2 or 4 bytes) or a BKPT instruction needs to be used as these are always unconditional (even in a IT instruction). If BKPT instructions are used, then we might end up stopping on an instruction that won't get executed. So if we do stop at a BKPT instruction, we need to continue if the condition is not true.
When using the BKPT isntructions are easy in that you don't need to detect the size of the breakpoint that needs to be used when setting a breakpoint even in a thumb IT instruction. The bad part is you will now always stop at the opcode location and let LLDB determine if it should auto-continue. If the BKPT instruction is used, the BKPT that is used for ARM code should be something that also triggers the BKPT instruction in Thumb in case you set a breakpoint in the middle of code and the code is actually Thumb code. A value of 0xE120BE70 will work since the lower 16 bits being 0xBE70 happens to be a Thumb BKPT instruction.
The alternative is to use trap or illegal instructions that the kernel will translate into breakpoint hits. On Mac this was 0xE7FFDEFE for ARM and 0xDEFE for Thumb. The darwin kernel currently doesn't recognize any 32 bit Thumb instruction as a instruction that will get turned into a breakpoint exception (EXC_BREAKPOINT), so we had to use the BKPT instruction on Mac. The linux kernel recognizes a 16 and a 32 bit instruction as valid thumb breakpoint opcodes. The benefit of using 16 or 32 bit instructions is you don't stop on opcodes in a IT block when the condition doesn't match.
To further complicate things, single stepping on ARM is often implemented by modifying the BCR/BVR registers and setting the processor to stop when the PC is not equal to the current value. This means single stepping is another way the ARM target can stop on instructions that won't get executed.
This patch does the following:
1 - Fix the internal debugserver for Apple to use the BKPT instruction for ARM and Thumb
2 - Fix LLDB to catch when we stop in the middle of a Thumb IT instruction and continue if we stop at an instruction that won't execute
3 - Fixes this in a way that will work for any target on any platform as long as it is ARM/Thumb
4 - Adds a patch for ignoring conditions that don't match when in ARM mode (see below)
This patch also provides the code that implements the same thing for ARM instructions, though it is disabled for now. The ARM patch will check the condition of the instruction in ARM mode and continue if the condition isn't true (and therefore the instruction would not be executed). Again, this is not enable, but the code for it has been added.
<rdar://problem/19145455>
llvm-svn: 223851
a number of warnings to be enabled. The one making the most noise
across the code base right now is CLANG_WARN_UNREACHABLE_CODE = YES.
llvm-svn: 219910
do that (RunCommandInterpreter, HandleCommands, HandleCommandsFromFile) to gather
the options into an options class. Also expose that to the SB API's.
Change the way the "-o" options to the lldb driver are processed so:
1) They are run synchronously - didn't really make any sense to run the asynchronously.
2) The stop on error
3) "quit" in one of the -o commands will not quit lldb - not the command interpreter
that was running the -o commands.
I added an entry to the run options to stop-on-crash, but I haven't implemented that yet.
llvm-svn: 219553
This patch fixes the codesigning of debugserver on OSX when built with
cmake. Without this you get this error when debugging:
error: process launch failed: unable to locate debugserver
Note: you also need to set LLDB_DEBUGSERVER_PATH to point to your built debugserver.
e.g. export LLDB_DEBUGSERVER_PATH=`pwd`/bin/debugserver
Change by dawn@burble.org.
Tested on MacOSX 10.9.5 and Xcode 6.1 Beta using cmake/ninja.
Verified no build break on Linux Ubuntu cmake/ninja and Xcode 6.1 canonical build.
llvm-svn: 218890
to the remote side (QStartNoAckMode) - it may take a little longer
than normal to get a reply.
In debugserver, hardcode the priority for several threads so they
aren't de-prioritized when a user app is using system resources.
Also, set the names of the threads.
<rdar://problem/17509866>
llvm-svn: 213828
This change brings in lldb-gdbserver (llgs) specifically for Linux x86_64.
(More architectures coming soon).
Not every debugserver option is covered yet. Currently
the lldb-gdbserver command line can start unattached,
start attached to a pid (process-name attach not supported yet),
or accept lldb attaching and launching a process or connecting
by process id.
The history of this large change can be found here:
https://github.com/tfiala/lldb/tree/dev-tfiala-native-protocol-linux-x86_64
Until mid/late April, I was not sharing the work and continued
to rebase it off of head (developed via id tfiala@google.com). I switched over to
user todd.fiala@gmail.com in the middle, and once I went to github, I did
merges rather than rebasing so I could share with others.
llvm-svn: 212069
Elevate ProcessInfo and ProcessLaunchInfo into their own headers.
llgs will be using ProcessLaunchInfo but doesn't need to pull in
the rest of Process.h.
This also moves a bunch of implementation details from the header
declarations into ProcessInfo.cpp and ProcessLaunchInfo.cpp.
Tested on Ubuntu 14.04 Cmake and MacOSX Xcode.
Related to https://github.com/tfiala/lldb/issues/26.
llvm-svn: 212005
Replace adhoc inline implementation of llvm::array_lengthof in favour of the
implementation in LLVM. This is simply a cleanup change, no functional change
intended.
llvm-svn: 211868
process fully reaped. The race & bad behavior was because we were letting
the reaping thread in LLDB to also set the Process exit status, so debugserver
would sometimes be shut down before it got a chance to report the exit status,
and then we got confused.
<rdar://problem/16555850>
llvm-svn: 211636
Building OS X debugserver assumes you have an Xcode installation at /Application/Xcode.app. Let's instead detect where Xcode is using xcrun.
See http://reviews.llvm.org/D4152
llvm-svn: 211074
lldb support. I'll be doing more testing & cleanup but I wanted to
get the initial checkin done.
This adds a new SBExpressionOptions::SetLanguage API for selecting a
language of an expression.
I added adds a new SBThread::GetInfoItemByPathString for retriving
information about a thread from that thread's StructuredData.
I added a new StructuredData class for representing
key-value/array/dictionary information (e.g. JSON formatted data).
Helper functions to read JSON and create a StructuredData object,
and to print a StructuredData object in JSON format are included.
A few Cocoa / Cocoa Touch data formatters were updated by Enrico
to track changes in iOS 8 / Yosemite.
Before we query a thread's extended information, the system runtime may
provide hints to the remote debug stub that it will use to retrieve values
out of runtime structures. I added a new SystemRuntime method
AddThreadExtendedInfoPacketHints which allows the SystemRuntime to add
key-value type data to the initial request that we send to the remote stub.
The thread-format formatter string can now retrieve values out of a thread's
extended info structured data. The default thread-format string picks up
two of these - thread.info.activity.name and thread.info.trace_messages.
I added a new "jThreadExtendedInfo" packet in debugserver; I will
add documentation to the lldb-gdb-remote.txt doc soon. It accepts
JSON formatted arguments (most importantly, "thread":threadnum) and
it returns a variety of information regarding the thread to lldb
in JSON format. This JSON return is scanned into a StructuredData
object that is associated with the thread; UI layers can query the
thread's StructuredData to see if key-values are present, and if
so, show them to the user. These key-values are likely to be
specific to different targets with some commonality among many
targets. For instance, many targets will be able to advertise the
pthread_t value for a thread.
I added an initial rough cut of "thread info" command which will print
the information about a thread from the jThreadExtendedInfo result.
I need to do more work to make this format reasonably.
Han Ming added calls into the pmenergy and pmsample libraries if
debugserver is run on Mac OS X Yosemite to get information about the
inferior's power use.
I added support to debugserver for gathering the Genealogy information
about threads, if it exists, and returning it in the jThreadExtendedInfo
JSON result.
llvm-svn: 210874
(lldb) file /bin/ls
(lldb) b malloc
(lldb) run
(lldb) process save-core /tmp/ls.core
Each ObjectFile plug-in now has the option to save core files by registering a new static callback.
llvm-svn: 210864
Changes include:
- ObjectFileMachO can now determine if a binary is "*-apple-ios" or "*-apple-macosx" by checking the min OS and SDK load commands
- ArchSpec now says "<arch>-apple-macosx" is equivalent to "<arch>-apple-ios" since the simulator mixes and matches binaries (some from the system and most from the iOS SDK).
- Getting process inforamtion on MacOSX now correctly classifies iOS simulator processes so they have "*-apple-ios" architectures in the ProcessInstanceInfo
- PlatformiOSSimulator can now list iOS simulator processes correctly instead of showing nothing by using:
(lldb) platform select ios-simulator
(lldb) platform process list
- debugserver can now properly return "*-apple-ios" for the triple in the process info packets for iOS simulator executables
- GDBRemoteCommunicationClient now correctly passes along the triples it gets for process info by setting the OS in the llvm::Triple correctly
<rdar://problem/17060217>
llvm-svn: 209852
Need to spend a little more time with suppressing the debugserver 64-to-32 bit warnings.
Will re-submit after I get the warnings properly suppressed.
llvm-svn: 209151
debugserver now returns $X09 as the immediate response to
a $k kill process request rather than $W09.
ProcessGDBRemote now properly handles X as indication of
a process exit state.
The @debugserver_test and @lldb_test for $k now properly expects
an X notification (signal-caused exit) after killing a just-attached
inferior that was still in the stopped state.
llvm-svn: 209108
$qC from debugserver now returns the current thread's thread-id (and, like $?, will set a current thread if one is not already selected). Previously it was returning the current process id.
lldb will now query $qProcessInfo to retrieve the process id. The process id is now cached lazily and reset like other cached values. Retrieval of the process id will fall back to the old $qC method for vendor==Apple and os==iOS if the qProcessInfo retrieval fails.
Added a gdb remote protocol-level test to verify that $qProcessInfo reports a valid process id after launching a process, while the process is in the initial stopped state. Verifies the given process id is a currently valid process on host OSes for which we know how to check (MacOSX, Linux, {Free/Net}BSD). Ignores the live process check for OSes where we don't know how to do this. (I saw no portable way to do this in stock Python without pulling in other libs).
llvm-svn: 208241
These changes were written by Greg Clayton, Jim Ingham, Jason Molenda.
It builds cleanly against TOT llvm with xcodebuild. I updated the
cmake files by visual inspection but did not try a build. I haven't
built these sources on any non-Mac platforms - I don't think this
patch adds any code that requires darwin, but please let me know if
I missed something.
In debugserver, MachProcess.cpp and MachTask.cpp were renamed to
MachProcess.mm and MachTask.mm as they picked up some new Objective-C
code needed to launch processes when running on iOS.
llvm-svn: 205113
condition where we could end up killing debugserver (and thus the target) before it had a chance
to detach.
Also fix debugserver to send the OK AFTER it detaches to avoid the same race condition.
<rdar://problem/16202713>
llvm-svn: 205043
Also fix the bug where lldb prints: "Got a connection and launched debugserver" rather
than the name of the process it actually launched.
llvm-svn: 202189
This change does the following:
* Adds Makefile build scripts to debug server.
* Fixes a few small mistakes in the other makefiles.
* Modifies generate-vers.pl slightly to also work for debugserver.
* Changes the OS X, non-framework python search path from libdir to
libdir/python2.X/site-packages where it is installed by the build
system (also where it is installed on other operating systems).
Patch by Keno Fischer.
llvm-svn: 199543
This gets rid of our hacky "get_random_port()" which would grab a random port and tell debugserver to open that port. Now LLDB creates, binds, listens and accepts a connection by binding to port zero and sending the correctly bound port down as the host:port to connect back to.
Fixed the "ConnectionFileDescriptor" to be able to correctly listen for connections from a specified host, localhost, or any host. Prior to this fix "listen://" only accepted the following format:
listen://<port>
But now it can accept:
listen://<port> // Listen for connection from localhost on port <port>
listen://<host>:<port> // Listen for connection from <host> and <port>
listen://*:<port> // Listen for connection from any host on port <port>
llvm-svn: 196547
This helps ensure that the launched debugserver is ready and listening for a connection. Prior to this we had a race condition.
Consolidate the launching of debugserver into a single place: a static function in GDBRemoteCommunication.
llvm-svn: 196401
Example code:
remote_platform = lldb.SBPlatform("remote-macosx");
remote_platform.SetWorkingDirectory("/private/tmp")
debugger.SetSelectedPlatform(remote_platform)
connect_options = lldb.SBPlatformConnectOptions("connect://localhost:1111");
err = remote_platform.ConnectRemote(connect_options)
if err.Success():
print >> result, 'Connected to remote platform:'
print >> result, 'hostname: %s' % (remote_platform.GetHostname())
src = lldb.SBFileSpec("/Applications/Xcode.app/Contents/SharedFrameworks/LLDB.framework", False)
dst = lldb.SBFileSpec()
# copy src to platform working directory since "dst" is empty
err = remote_platform.Install(src, dst);
if err.Success():
print >> result, '%s installed successfully' % (src)
else:
print >> result, 'error: failed to install "%s": %s' % (src, err)
Implemented many calls needed in lldb-platform to be able to install a directory that contains symlinks, file and directories.
The remote lldb-platform can now launch GDB servers on the remote system so that remote debugging can be spawned through the remote platform when connected to a remote platform.
The API in SBPlatform is subject to change and will be getting many new functions.
llvm-svn: 195273
Added two new GDB server packets to debugserver: "QSaveRegisterState" and "QRestoreRegiterState".
"QSaveRegisterState" makes the remote GDB server save all register values and it returns a save identifier as an unsigned integer. This packet can be used prior to running expressions to save all registers.
All registers can them we later restored with "QRestoreRegiterState:SAVEID" what SAVEID is the integer identifier that was returned from the call to QSaveRegisterState.
Cleaned up redundant code in lldb_private::Thread, lldb_private::ThreadPlanCallFunction.
Moved the lldb_private::Thread::RegisterCheckpoint into its own header file and it is now in the lldb_private namespace. Trimmed down the RegisterCheckpoint class to omit stuff that wasn't used (the stack ID).
Added a few new virtual methods to lldb_private::RegisterContext that allow subclasses to efficiently save/restore register states and changed the RegisterContextGDBRemote to take advantage of these new calls.
llvm-svn: 194621
- removed all gaps from the g/G packets
- optimized registers for x86_64 to not send/receive xmm0-xmm15 as well as ymm0-ymm15, now we only send ymm0-15 and xmm0-15 are now pseudo regs
- Fixed x86_64 floating point register gaps
- Fixed x86_64 so that xmm8-xmm15 don't overlap with ymm0-ymm3. This could lead to bad values showing in the debugger and was due to bad register info structure contents
- Fixed i386 so we only send ymm0-ymm7 and xmm0-xmm7 are now pseudo regs.
- Fixed ARM register definitions to not have any gaps
- Fixed it so value registers and invalidation registers are specified using register names which avoid games we had to play with register numbering in the ARM plugin.
llvm-svn: 194302
back in r173096 by Greg. When constructing a g packet or parsing a G packet,
and we're iterate over our register list, skip registers that are actually
just slices of other, real, registers. For instance, eax is 32-bits of rax
on x86_64.
<rdar://problem/15104187>
llvm-svn: 191802
the name of the remote gdb-protocol server, and get
a version number from it. This can be useful if lldb
needs to interoperate with a gdb-protocol server with
a known issue or bug.
llvm-svn: 191729
Summary:
This merge brings in the improved 'platform' command that knows how to
interface with remote machines; that is, query OS/kernel information, push
and pull files, run shell commands, etc... and implementation for the new
communication packets that back that interface, at least on Darwin based
operating systems via the POSIXPlatform class. Linux support is coming soon.
Verified the test suite runs cleanly on Linux (x86_64), build OK on Mac OS
X Mountain Lion.
Additional improvements (not in the source SVN branch 'lldb-platform-work'):
- cmake build scripts for lldb-platform
- cleanup test suite
- documentation stub for qPlatform_RunCommand
- use log class instead of printf() directly
- reverted work-in-progress-looking changes from test/types/TestAbstract.py that work towards running the test suite remotely.
- add new logging category 'platform'
Reviewers: Matt Kopec, Greg Clayton
Review: http://llvm-reviews.chandlerc.com/D1493
llvm-svn: 189295
- updated RNBDefs.h to allow version numbers to be passed in via preprocessor defines
- update libdebugserver.cpp to compile against latest DNBProcessKill signature
Review: http://llvm-reviews.chandlerc.com/D1331
llvm-svn: 188078
take for threads created while the program is running. Remove the testcase skips from TestConcurrentEvents.py,
since they all pass now, and fix TestWatchpointMultipleThreads.py - which should have caught this problem -
so it doesn't artificially break on new thread creation before the watchpoint triggers.
llvm.org/pr16566
<rdar://problem/14383244>
llvm-svn: 186132
Found a race condition when killing an application where the state could be set to exited by the waitpid_thread() _before_ we call task resume (via MachProcess::PrivateResume()) in MachProcess::Kill().
llvm-svn: 185048
Match up with top’s implementation on recent Cab as API has changed a bit.
Tested the same binary running on Zin as well. Tested ARM binary on iOS as well.
llvm-svn: 185017
for any reason, use debugserver own's cputype as a best guess when
we reply to the debugger's qProcessInfo packet or when initializing
our register tables.
<rdar://problem/13406879>
llvm-svn: 184829
support files for debugserver to fix a build failure for arm. Also
remove some of the code used for software-driven single instruction
stepping; this is slowly being yanked out and these particular bits
overlap with the nub_break_t going away.
llvm-svn: 184828
325,000 breakpoints for running "breakpoint set --func-regex ." on lldb itself (after hitting a breakpoint at main so that LLDB.framework is loaded) used to take up to an hour to set, now we are down under a minute. With warm file caches, we are at 40 seconds, and that is with setting 325,000 breakpoint through the GDB remote API. Linux and the native debuggers might be faster. I haven't timed what how much is debug info parsing and how much is the protocol traffic to/from GDB remote.
That there were many performance issues. Most of them were due to storing breakpoints in the wrong data structures, or using the wrong iterators to traverse the lists, traversing the lists in inefficient ways, and not optimizing certain function name lookups/symbol merges correctly.
Debugging after that is also now very efficient. There were issues with replacing the breakpoint opcodes in memory that was read, and those routines were also fixed.
llvm-svn: 183820
you can now specify:
debugserver host:port
debugserver port
debugserver /path/to/file
When "host" is specified, we will only accept connections from that host. If host is not specified, we default to "localhost".
llvm-svn: 183457
Most important was a new[] + delete mismatch in ScanFormatDescriptor()
and a couple of possible memory leaks in FileSpec::EnumerateDirectory().
llvm-svn: 181080
if we have an updated task_info call available; else fall back to getting
the default host-wide page size.
Update all uses of the vm page size to get it via MachVMMemory::PageSize().
<rdar://problem/13477763>, <rdar://problem/13498504>
llvm-svn: 178953
LLDB now can use a single dash for all long options for all commands form the command line and from the command interpreter. This involved just switching all calls from getopt_long() to getopt_long_only().
llvm-svn: 178789
Try and reap process when sending the "k" packet to avoid a race condition. We now wait for at most 1 second to reap the child process that we are killing.
llvm-svn: 178726
number in RNBRemote::HandlePacket_qProcessInfo -- add a new
GetCurrentThreadMachPort() so callers who need to make a mach
thred_get_state() call at the RNBRemote level will have a way to
get the port number.
llvm-svn: 178619
LLDB is crashing when logging is enabled from lldb-perf-clang. This has to do with the global destructor chain as the process and its threads are being torn down.
All logging channels now make one and only one instance that is kept in a global pointer which is never freed. This guarantees that logging can correctly continue as the process tears itself down.
llvm-svn: 178191
to in INADDR_LOOPBACK mode by default ("localhost only")
instead of INADDR_ANY ("accept connections from any system").
Add a new command line argument to debugserver, --open-connection
or -H which will enable the previous behavior. It would be used
if you were doing two-system debugging, with lldb running on one
system and debugserver running on the other. But it is a less
common workflow and should not be the default.
<rdar://problem/12583284>
llvm-svn: 177790
- TestCase.m_thread is now filled in with the first thread that has a valid
stop reason. This eliminates the need for the SelectMyThread() functions.
- The first thread that stops for a reason is also set as the selected thread
in the process in case any command line commands are run.
- Changed launch over to take a SBLaunchInfo parameter so that the launch
function doesn't keep getting new arguments as they are needed.
- TestCase::Setup() and TestCase::Launch(SBLaunchInfo) now return bool to
indicate success of setup and launch.
- ActionWanted::Next(SBThread) was renamed to ActionWanted::StepOver(SBThread)
- ActionWanted::Finish(SBThread) was renamed to ActionWanted::StepOut(SBThread)
llvm-svn: 177376
Added logging that will show up in the system console when we try to resume a process that is already running, or has an unexpected state.
llvm-svn: 176960
Drop the old f registers from debugserver's register list. Add the
NEON 128-bit q registers to debugserver, support reading and writing.
Add the new contains / invalidates mappings for the s, d, and q
registers so lldb will know what registers overlay what other registers.
Change the default format of s and d registers to be floating point
instead of hex. Remove some UTF-8 hyphen chars in comments in the ARM
register number definition headers.
<rdar://problem/13121797>
llvm-svn: 176915
Make it configurable what to profile.
For Mac, we don't use the dirty page size yet and hence there is no need to gather that. This should be way better in not draining the battery since we are operating between 0% to 0.1% on the Mac after this change.
llvm-svn: 176451
own port namepsace) as the thread identifier to using the system-wide
globally unique thread id as the thread identifier number.
MachThread.cpp keeps both the unique id and the mach port number
for each thread. All layers outside MachThread class use the unique
id with three exceptions: (1) Mach exceptions come in with the port
number (thread_port) which needs to be translated, (2) any calls to
low-level thread_get_state/thread_set_state/thread_suspend etc need
to use the mach port number, (3) MachThreadList::UpdateThreadList
which creates the MachThread objects gets the unique id and passes
it to the MachThread ctor as an argument.
In general, any time nub_thread_t is used, it is now referring to a
unique thread id. Any time a thread_t is used, it is now referring
to a mach port number. There was some interchangability of these
types previously. nub_thread_t has also been changed to a 64-bit
type which necessitated some printf specification string changes.
I haven't been able to test these changes extensively yet but want
to checkpoint the work. The scenarios I've been testing are all
working correctly so while there may be some corner cases I haven't
hit yet, I think it is substantially correct.
<rdar://problem/12931414>
llvm-svn: 175870
Also added a TimeSpecTimeout class which can be used with any calls that take a "struct timespec *" as an argument. It is used by the KQueue class.
Also updated some project settings.
llvm-svn: 175377
Major fixed to allow reading files that are over 4GB. The main problems were that the DataExtractor was using 32 bit offsets as a data cursor, and since we mmap all of our object files we could run into cases where if we had a very large core file that was over 4GB, we were running into the 4GB boundary.
So I defined a new "lldb::offset_t" which should be used for all file offsets.
After making this change, I enabled warnings for data loss and for enexpected implicit conversions temporarily and found a ton of things that I fixed.
Any functions that take an index internally, should use "size_t" for any indexes and also should return "size_t" for any sizes of collections.
llvm-svn: 173463
reply to be hex encoded, not decimal.
Fix the whitespace in the container-regs/invalidate-regs
documentation, fix one ambiguous hex/decimal number in an
example.
llvm-svn: 173225
Fixed the 32, 16, and 8 bit pseudo regs for x86_64 (real reg of "rax" which subvalues "eax", "ax", etc...) to correctly get updated when stepping. Also fixed it so actual registers can specify what other registers must be invalidated when a register is modified. Previously, only pseudo registers could invalidate other registers.
Modified the LLDB qRegisterInfo extension to the GDB remote interface to support specifying the containing registers with the new "container-regs" key whose value is a comma separated list of register numbers. Also added a "invalidate-regs" key whose value is also a comma separated list of register numbers.
Removed the hack GDBRemoteDynamicRegisterInfo::Addx86_64ConvenienceRegisters() function and modified "debugserver" to specify the registers correctly using the new "container-regs" and "invalidate-regs" keys.
llvm-svn: 173096
Swap in index ids for thread ids in GDBRemoteCommunicationClient. Besides dealing with the async logic, I have to take care of the situation when the inferior paused as well.
llvm-svn: 172869
Prevent profiling from working on older debugserver. Just a simple renaming since the caller is prepared to handle the ‘unimplemented’ answer.
llvm-svn: 172583
document some simple bourne shell to re-generate these from the DNBDefs.h
header file in case this needs to be done again in the future.
llvm-svn: 172494
1. Using mach port number, just like when inferior is paused.
2. Use key:value pair of thread used time instead of comma separated notation.
llvm-svn: 172012
Add unconditional logging messages to every place in debugserver
where we send a SIGKILL signal or do a ptrace PT_KILL call to
terminate the inferior process. When the debuggee is silently
killed off, the console logging from debugserver can disambiguate
whether debugserver killed off the process because it failed to
completely set it up, becuase it was told to (via the "k" packet),
or if some external daemon killed it.
llvm-svn: 171606
Update the debugserver "qProcessInfo" implementation to return the
cpu type, cpu subtype, OS and vendor information just like qHostInfo
does so lldb can create an ArchSpec based on the returned values.
Add a new GetProcessArchitecture to GDBRemoteCommunicationClient akin
to GetHostArchitecture. If the qProcessInfo packet is supported,
GetProcessArchitecture will return the cpu type / subtype of the
process -- e.g. a 32-bit user process running on a 64-bit x86_64 Mac
system.
Have ProcessGDBRemote set the Target's architecture based on the
GetProcessArchitecture when we've completed an attach/launch/connect.
llvm-svn: 170491
This can be used by lldb to ask for information
about the process debugserver is attached to/launched.
Particularly useful on a 64-bit x86 Mac system which
can run 32-bit or 64-bit user-land processes.
llvm-svn: 170409
Prevent async and sync calls to get profile data from stomping on each other.
At the same time, don't use '$' as end delimiter per chunk of profile data.
llvm-svn: 168948
DebugClang builds of LLDB to build a properly
codesigned debugserver. I did this by adding
a DebugClang configuration to debugserver that's
just a clone of the Debug configuration.
llvm-svn: 168746
Fixed an issue where if we call "Process::Destroy()" and the process is running, if we try to stop it and get "exited" back as the stop reason, we will still deliver the exited event.
llvm-svn: 163591
calling functions. This is necessary on Mac OS X, since bad things can happen if you set
the registers of a thread that's sitting in a kernel trap.
<rdar://problem/11145013>
llvm-svn: 160756
Allow debugserver to match process names that are longer than MAXCOMLEN (16) characters. We do this by digging up argv[0] from another sysctl if the process name supplied is longer than 16 characters.
llvm-svn: 160487
Designate MachThreadList as a transaction coordinator when doing Enable/DisableHardwareWatchpoint on the list of threads.
In case the operation (iterating on the threads and doing enable/disable) fails in the middle, we rollback the already
enabled/disabled threads to their checkpointed states. When all the threads succeed in enable/disable, we ask each thread
to finsih the transaction and commit the change of the debug state.
llvm-svn: 157858
Add default Process::GetWatchpointSupportInfo() impl which returns an error of "not supported".
Add "qWatchpointSupportInfo" packet to the gdb communication layer to support this, and modify TestWatchpointCommands.py to test it.
llvm-svn: 157345
Switch over to the "*-apple-macosx" for desktop and "*-apple-ios" for iOS triples.
Also make the selection process for auto selecting platforms based off of an arch much better.
llvm-svn: 156354
should be MasterPlans that want to stay on the plan stack. So make all plans NOT
MasterPlans by default and then have the SB API's and the CommandObjectThread step
commands set this explicitly.
Also added a "clean up" phase to the Thread::ShouldStop so that if plans get stranded
on the stack, we can remove them. This is done by adding an IsPlanStale method to the
thread plans, and if the plan can know that it is no longer relevant, it returns true,
and the plan and its sub-plans will get discarded.
llvm-svn: 156101
QListThreadsInStopReply
This GDB remote query command can enable added a "threads" key/value pair to all stop reply packets so that we always get a list of all threads in each stop reply packet. It increases performance if enabled (the reply to the "QListThreadsInStopReply" is "OK") by saving us from sending to command/reply pairs (the "qfThreadInfo" and "qsThreadInfo" packets), and also helps us keep the current process state up to date.
llvm-svn: 154380
We do this by delegating to two available Watchpoint Register Pairs (wvr, wcr). With
each pair handling the 4 bytes of (uint64_t)variable.
llvm-svn: 153300
that the inferior cannot execute past the watchpoint-triggering instruction.
The solution is disable the watchpoint before resuming the inferior and make it hardware single step;
when the inferior stops again due to single step, re-enable the watchpoint and disable the single step
to make the inferior able to continue again without obstacle.
rdar://problem/9667960
llvm-svn: 153273
However, the debugserver cannot get past the instruction which triggered the watchpoint.
So a workaround is in place for the time being which disables the triggered watchpoint
before resuming.
Lots of commented out printf's remain in the source which needs to be cleaned up.
WIP rdar://problem/9667960
llvm-svn: 153228
On darwin, if child process of process being debugged dies due to mach exception, the debugged process will die.
debugserver now only handles the mach exceptions for the task being debugged.
llvm-svn: 152291
Fixed STDERR to not be opened as readable. Also cleaned up some of the code that implemented the file actions as some of the code was using the wrong variables, they now use the right ones (in for stdin, out for stdout, err for stderr).
llvm-svn: 152102
"desktop" - build all binaries with XPC
"desktop_no_xcp" - build all binaries with none of the XPC binaries
"ios" - build all binaries with special iOS install settings.
Bumped the Xcode project build version for lldb-118 and debugserver-169.
llvm-svn: 151740
the lldb_private::StackFrame objects hold onto a weak pointer to the thread
object. The lldb_private::StackFrame objects the the most volatile objects
we have as when we are doing single stepping, frames can often get lost or
thrown away, only to be re-created as another object that still refers to the
same frame. We have another bug tracking that. But we need to be able to
have frames no longer be able to get the thread when they are not part of
a thread anymore, and this is the first step (this fix makes that possible
but doesn't implement it yet).
Also changed lldb_private::ExecutionContextScope to return shared pointers to
all objects in the execution context to further thread harden the internals.
llvm-svn: 150871
otherwise we will have a launched process stopped at the entry point and
it will get reparented when debugserver goes away and we won't be able to
kill the process later.
llvm-svn: 149622
We will return a valid range when possible and omit the "permissions" key
when the memory is not readable, writeable or executeable. This will help us
know the difference between an error back from this packet and unsupported,
from just "this address isn't in a valid region".
llvm-svn: 146394
from a process and hooked it up to the new packet that was recently added
to our GDB remote executable named debugserver. Now Process has the following
new calls:
virtual Error
Process::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info);
virtual uint32_t
GetLoadAddressPermissions (lldb::addr_t load_addr);
Only the first one needs to be implemented by subclasses that can add this
support.
Cleaned up the way the new packet was implemented in debugserver to be more
useful as an API inside debugserver. Also found an error where finding a region
for an address actually will pick up the next region that follows the address
in the query so we also need ot make sure that the address we requested the
region for falls into the region that gets returned.
llvm-svn: 144976
Add a more general purpose qMemoryRegionInfo packet which can
describe various attributes about a memory region. Currently it
will return the start address, size, and permissions (read, write,
executable) for the memory region. It may be possible to add
additional attributes in the future such as whether the region is
designated as stack memory or jitted code a la vmmap.
I still haven't implemented the lldb side of the code to use this
packet yet so there may be unexpected behavior - but the basic implementation looks
about right. I'll hook it up to lldb soon and fix any problems that crop up.
llvm-svn: 144175
whether a given address is in an executable region of memory or
not. I haven't written the lldb side that will use this packet it
hasn't been tested yet but it's a simple enough bit of code.
I want to have this feature available for the unwinder code. When
we're stopped at an address with no valid symbol context, there are
a number of questions I'd like to ask --
is the current pc value in an executable region (e.g. did they
jump to unallocated/unexecutable memory? we know how to unwind
from here if so.)
Is the stack pointer or the frame pointer the correct register
to use to find the caller's saved pc value?
Once we're past the first frame we can trust things like eh_frame
and ABI unwind schemes but the first frame is challenging and having
a way to check potential addresses to see if they're executable or
not would help narrow down the possibilities a lot.
llvm-svn: 144074
- If you download and build the sources in the Xcode project, x86_64 builds
by default using the "llvm.zip" checkpointed LLVM.
- If you delete the "lldb/llvm.zip" and the "lldb/llvm" folder, and build the
Xcode project will download the right LLVM sources and build them from
scratch
- If you have a "lldb/llvm" folder already that contains a "lldb/llvm/lib"
directory, we will use the sources you have placed in the LLDB directory.
Python can now be disabled for platforms that don't support it.
Changed the way the libllvmclang.a files get used. They now all get built into
arch specific directories and never get merged into universal binaries as this
was causing issues where you would have to go and delete the file if you wanted
to build an extra architecture slice.
llvm-svn: 143678
then we spawn child processes (debugserver, etc) and those bad settings get
inherited. We stop this from happening by correctly mucking with the posix
spawn attributes.
llvm-svn: 143176
the watchpoint state is changed, not only does the change propagate to all the thread instances,
it also updates a global debug state, if chosen by the DNBArchProtocol derivative.
Once implemented, the DNBArchProtocol derivative, also makes sure that when new thread comes along,
it tries to inherit from the global debug state, if it is valid.
Modify TestWatchpointMultipleThreads.py to test this functionality.
llvm-svn: 140811
it enables the hardware watchpoint for all existing threads. Add a test file for that.
Also fix MachThreadList::DisableHardwareWatchpoint().
llvm-svn: 140757
We had some cases where getting the shared pointer for a module from
the global module list was causing a performance issue when debugging
with DWARF in .o files. Now that the module uses intrusive ref counts,
we can easily convert any pointer to a shared pointer.
llvm-svn: 139983
data sent back to the debugger. On the debugger side, use the opportunity during the
StopInfoMachException::CreateStopReasonWithMachException() method to set the hardware index
for the very watchpoint location.
llvm-svn: 139975
the passed in (MachException::Data &)exc first before possible reassignment of the
member m_stop_exception with exc. This allows lldb to stop at the watchpoint of
a simple test program.
llvm-svn: 139767
o WatchpointLocationList:
Add a GetListMutex() method.
o WatchpointLocation:
Fix Dump() method where there was an extra % in the format string.
o Target.cpp:
Add implementation to CreateWatchpointLocation() to create and enable a watchpoint.
o DNBArchImplX86_64.cpp:
Fix bugs in SetWatchpoint()/ClearWatchpoint() where '==' was used, instead of '=',
to assign/reset the data break address to a debug register.
Also fix bugs where a by reference debug_state should have been used, not by value.
llvm-svn: 139666
in order to distinguish the real single step exception from a watchpoint exception
which uses the same exc_type of EXC_BREAKPOINT and exc_code of EXC_I386_SGL.
This is done by checking the debug status register to find out whether the watchpoint
data break event has fired, and, if yes, stuff the data break address into the exception's
exc_sub_code field on the debugserver side for lldb to consume on the other end.
llvm-svn: 139274
(MachThreadList::EnableHardwareWatchpoint()) where the watchpoint is not associated
with a thread and the current thread, if set, is returned, otherwise we return the
first thread.
Plus minor change to RNBRemote::HandlePacket_z() to use the existing macros to check
the validity of break_id/watch_id.
llvm-svn: 139246
Add a virtual method GetHardwareWatchpointHit() to the DNBArchProtocol base class
which consults the architecture to return the watchpoint hit; otherwise return an
invalid index.
Add impl. of the method to X86_64 and I386 subclasses, plus reset the debug status
register before we resume execution of the inferior thread.
llvm-svn: 139034
cpu registers it uses and it crashes the release version of
debugserver. We just get lucky in Debug builds. Until this
is fixed I am disabling AVX detection to avoid the crashes.
llvm-svn: 137113
the pid of the process currently being debugged by debugserer in
hex, or 0 if unavailable.
This is effectively the same as the qC packet but that packet is
not clear in either its documentation or implementation (in gdb et al)
as to whether it is intended to return a pid or a thread id. qGetPid
is unambiguous.
If qGetPid is unimplemented in the remote debugserver, the debugger may
try qC and see what kind of value is returned..
llvm-svn: 136055
fixed a few bugs that revealed. Now the "register
read" command should show AVX registers
(ymm0-ymm15) on Mac OS X platforms that support
them.
When testing this on Mac OS X, run debugserver
manually, like this:
debugserver --native-regs localhost:1111 /path/to/executable
Then
lldb /path/to/executable
...
(lldb) process connect connect://localhost:1111
llvm-svn: 135331
with the "target modules lookup --address <addr>" command. The variable
ID's, names, types, location for the address, and declaration is
displayed.
This can really help with crash logs since we get, on MacOSX at least,
the registers for the thread that crashed so it is often possible to
figure out some of the variable contents.
llvm-svn: 134886
arguments in hex-encoded form instead of the old QEnvironment packet
which takes them as plain-text strings. Environment variables
containing remote protocol special chars like '#' would fail to set
with QEnvironment.
llvm-svn: 133857
parse NOP instructions. I added the new table entries for the NOP for the
plain NOP, Yield, WFE, WFI, and SEV variants. Modified the opcode emulation
function EmulateInstructionARM::EmulateMOVRdSP(...) to notify us when it is
creating a frame. Also added an abtract way to detect the frame pointer
register for both the standard ARM ABI and for Darwin.
Fixed GDBRemoteRegisterContext::WriteAllRegisterValues(...) to correctly be
able to individually write register values back if case the 'G' packet is
not implemented or returns an error.
Modified the StopInfoMachException to "trace" stop reasons. On ARM we currently
use the BVR/BCR register pairs to say "stop when the PC is not equal to the
current PC value", and this results in a EXC_BREAKPOINT mach exception that
has 0x102 in the code.
Modified debugserver to create the short option string from long option
definitions to make sure it doesn't get out of date. The short option string
was missing many of the newer short option values due to a modification of
the long options defs, and not modifying the short option string.
llvm-svn: 131911
of duplicated code from appearing all over LLDB:
lldb::addr_t
Process::ReadPointerFromMemory (lldb::addr_t vm_addr, Error &error);
bool
Process::WritePointerToMemory (lldb::addr_t vm_addr, lldb::addr_t ptr_value, Error &error);
size_t
Process::ReadScalarIntegerFromMemory (lldb::addr_t addr, uint32_t byte_size, bool is_signed, Scalar &scalar, Error &error);
size_t
Process::WriteScalarToMemory (lldb::addr_t vm_addr, const Scalar &scalar, uint32_t size, Error &error);
in lldb_private::Process the following functions were renamed:
From:
uint64_t
Process::ReadUnsignedInteger (lldb::addr_t load_addr,
size_t byte_size,
Error &error);
To:
uint64_t
Process::ReadUnsignedIntegerFromMemory (lldb::addr_t load_addr,
size_t byte_size,
uint64_t fail_value,
Error &error);
Cleaned up a lot of code that was manually doing what the above functions do
to use the functions listed above.
Added the ability to get a scalar value as a buffer that can be written down
to a process (byte swapping the Scalar value if needed):
uint32_t
Scalar::GetAsMemoryData (void *dst,
uint32_t dst_len,
lldb::ByteOrder dst_byte_order,
Error &error) const;
The "dst_len" can be smaller that the size of the scalar and the least
significant bytes will be written. "dst_len" can also be larger and the
most significant bytes will be padded with zeroes.
Centralized the code that adds or removes address bits for callable and opcode
addresses into lldb_private::Target:
lldb::addr_t
Target::GetCallableLoadAddress (lldb::addr_t load_addr, AddressClass addr_class) const;
lldb::addr_t
Target::GetOpcodeLoadAddress (lldb::addr_t load_addr, AddressClass addr_class) const;
All necessary lldb_private::Address functions now use the target versions so
changes should only need to happen in one place if anything needs updating.
Fixed up a lot of places that were calling :
addr_t
Address::GetLoadAddress(Target*);
to call the Address::GetCallableLoadAddress() or Address::GetOpcodeLoadAddress()
as needed. There were many places in the breakpoint code where things could
go wrong for ARM if these weren't used.
llvm-svn: 131878
and set the address as an opcode address or as a callable address. This is
needed in various places in the thread plans to make sure that addresses that
might be found in symbols or runtime might already have extra bits set (ARM/Thumb).
The new functions are:
bool
Address::SetCallableLoadAddress (lldb::addr_t load_addr, Target *target);
bool
Address::SetOpcodeLoadAddress (lldb::addr_t load_addr, Target *target);
SetCallableLoadAddress will initialize a section offset address if it can,
and if so it might possibly set some bits in the address to make the address
callable (bit zero might get set for ARM for Thumb functions).
SetOpcodeLoadAddress will initialize a section offset address using the
specified target and it will strip any special address bits if needed
depending on the target.
Fixed the ABIMacOSX_arm::GetArgumentValues() function to require arguments
1-4 to be in the needed registers (previously this would incorrectly fallback
to the stack) and return false if unable to get the register values. The
function was also modified to first look for the generic argument registers
and then fall back to finding the registers by name.
Fixed the objective trampoline handler to use the new Address::SetOpcodeLoadAddress
function when needed to avoid address mismatches when trying to complete
steps into objective C methods. Make similar fixes inside the
AppleThreadPlanStepThroughObjCTrampoline::ShouldStop() function.
Modified ProcessGDBRemote::BuildDynamicRegisterInfo(...) to be able to deal with
the new generic argument registers.
Modified RNBRemote::HandlePacket_qRegisterInfo() to handle the new generic
argument registers on the debugserver side.
Modified DNBArchMachARM::NumSupportedHardwareBreakpoints() to be able to
detect how many hardware breakpoint registers there are using a darwin sysctl.
Did the same for hardware watchpoints in
DNBArchMachARM::NumSupportedHardwareWatchpoints().
llvm-svn: 131834
the appropriate registers for arm and x86_64. The register names for the
arguments that are the size of a pointer or less are all named "arg1", "arg2",
etc. This allows you to read these registers by name:
(lldb) register read arg1 arg2 arg3
...
You can also now specify you want to see alternate register names when executing
the read register command:
(lldb) register read --alternate
(lldb) register read -A
llvm-svn: 131376