templates, and keep track of how those member classes were
instantiated or specialized.
Make sure that we don't try to instantiate an explicitly-specialized
member class of a class template, when that explicit specialization
was a declaration rather than a definition.
llvm-svn: 83547
class templates. We now treat friend class templates much more like
normal class templates, except that they still get special name lookup
rules. Fixes PR5057 and eliminates a bunch of spurious diagnostics in
<iostream>.
llvm-svn: 82848
member functions of class template specializations, and static data
members. The mechanics are (mostly) present, but the semantic analysis
is very weak.
llvm-svn: 82789
Something strange is going on here; this test randomly started failing after
unrelated changes to TestRunner.py (even though it runs the same
script).
Argiris or Doug, can one of you investigate?
llvm-svn: 77063
templates, e.g.,
template<typename T>
struct Outer {
struct Inner;
};
template<typename T>
struct Outer<T>::Inner {
// ...
};
Implementing this feature required some extensions to ActOnTag, which
now takes a set of template parameter lists, and is the precursor to
removing the ActOnClassTemplate function from the parser Action
interface. The reason for this approach is simple: the parser cannot
tell the difference between a class template definition and the
definition of a member of a class template; both have template
parameter lists, and semantic analysis determines what that template
parameter list means.
There is still some cleanup to do with ActOnTag and
ActOnClassTemplate. This commit provides the basic functionality we
need, however.
llvm-svn: 76820
templates.
For example, this now type-checks (but does not instantiate the body
of deref<int>):
template<typename T> T& deref(T* t) { return *t; }
void test(int *ip) {
int &ir = deref(ip);
}
Specific changes/additions:
* Template argument deduction from a call to a function template.
* Instantiation of a function template specializations (just the
declarations) from the template arguments deduced from a call.
* FunctionTemplateDecls are stored directly in declaration contexts
and found via name lookup (all forms), rather than finding the
FunctionDecl and then realizing it is a template. This is
responsible for most of the churn, since some of the core
declaration matching and lookup code assumes that all functions are
FunctionDecls.
llvm-svn: 74213
<rdar://problem/6952203>.
To do this, we actually remove a not-quite-correct optimization in the
C++ name lookup routines. We'll revisit this optimization for the
general case once more C++ is working.
llvm-svn: 73659
ExpectAndConsume instead of custom diag logic. This gets us an
insertion hint and positions the ; at the end of the line
instead of on the next token. Before:
t.c:5:1: error: expected ';' after return statement
}
^
after:
t.c:4:11: error: expected ';' after return statement
return 4
^
;
llvm-svn: 73315
a paren expression without considering the context past the parentheses.
Behold:
(T())x; - type-id
(T())*x; - type-id
(T())/x; - expression
(T()); - expression
llvm-svn: 72260
-Makes typeof consistent with sizeof/alignof
-Fixes a bug when '>' is in a typeof expression, inside a template type param:
A<typeof(x>1)> a;
llvm-svn: 72255
parse just a single declaration and provide a reasonable diagnostic
when the "only one declarator per template declaration" rule is
violated. This eliminates some ugly, ugly hackery where we used to
require thatn the layout of a DeclGroup of a single element be the
same as the layout of a single declaration.
llvm-svn: 71596
scheme to be more useful.
The new scheme introduces a set of categories that should be more
readable, and also reflects what we want to consider as an extension
more accurately. Specifically, it makes the "what is a keyword"
determination accurately reflect whether the keyword is a GNU or
Microsoft extension.
I also introduced separate flags for keyword aliases; this is useful
because the classification of the aliases is mostly unrelated to the
classification of the original keyword.
This patch treats anything that's in the implementation
namespace (prefixed with "__", or "_X" where "X" is any upper-case
letter) as a keyword without marking it as an extension. This is
consistent with the standards in that an implementation is allowed to define
arbitrary extensions in the implementation namespace without violating
the standard. This gets rid of all the nasty "extension used" warnings
for stuff like __attribute__ in -pedantic mode. We still warn for
extensions outside of the the implementation namespace, like typeof.
If someone wants to implement -Wextensions or something like that, we
could add additional information to the keyword table.
This also removes processing for the unused "Boolean" language option;
such an extension isn't supported on any other C implementation, so I
don't see any point to adding it.
The changes to test/CodeGen/inline.c are required because previously, we
weren't actually disabling the "inline" keyword in -std=c89 mode.
I'll remove Boolean and NoExtensions from LangOptions in a follow-up
commit.
llvm-svn: 70281
that I noticed working on other things.
Instead of emitting:
t2.cc:1:8: error: use of undeclared identifier 'g'
int x(*g);
^
t2.cc:1:10: error: expected ')'
int x(*g);
^
t2.cc:1:6: note: to match this '('
int x(*g);
^
We now only emit:
t2.cc:1:7: warning: type specifier missing, defaults to 'int'
int x(*g);
^
Note that the example in SemaCXX/nested-name-spec.cpp:f4 is still
not great, we now produce both of:
void f4(undef::C); // expected-error {{use of undeclared identifier 'undef'}} \
expected-error {{variable has incomplete type 'void'}}
The second diagnostic should be silenced by something getting marked invalid.
I don't plan to fix this though.
llvm-svn: 68919
struct xyz { int y; };
enum abc { ZZZ };
static xyz b;
abc c;
we used to produce:
t2.c:4:8: error: unknown type name 'xyz'
static xyz b;
^
t2.c:5:1: error: unknown type name 'abc'
abc c;
^
we now produce:
t2.c:4:8: error: use of tagged type 'xyz' without 'struct' tag
static xyz b;
^
struct
t2.c:5:1: error: use of tagged type 'abc' without 'enum' tag
abc c;
^
enum
GCC produces the normal:
t2.c:4: error: expected ‘=’, ‘,’, ‘;’, ‘asm’ or ‘__attribute__’ before ‘b’
t2.c:5: error: expected ‘=’, ‘,’, ‘;’, ‘asm’ or ‘__attribute__’ before ‘c’
rdar://6783347
llvm-svn: 68914