This is in preparation for adding a new "mask" operand. The existing "masked" attribute was used to specify dimensions that may be out-of-bounds. Such transfers can be lowered to masked load/stores. The new "in_bounds" attribute is used to specify dimensions that are guaranteed to be within bounds. (Semantics is inverted.)
Differential Revision: https://reviews.llvm.org/D99639
This revision adds support to properly add the body of registered
builtin named linalg ops.
At this time, indexing_map and iterator_type support is still
missing so the op is not executable yet.
Differential Revision: https://reviews.llvm.org/D99578
This allows for the conversion to match `A(B()) -> C()` with a pattern matching
`A` and marking `B` for deletion.
Also add better assertions when an operation is erased while still having uses.
Differential Revision: https://reviews.llvm.org/D99442
This exposes the ability to register Python functions with the JIT and
exposes them to the MLIR jitted code. The provided test case illustrates
the mechanism.
Differential Revision: https://reviews.llvm.org/D99562
This verification is to check if the indices for static shaped operands
on linalgOps access out of bound memory or not. For dynamic shaped
operands, we would be able to check it on runtime stage.
Found several invalid Linalg ops testcases, and fixed them.
Reviewed By: hanchung
Differential Revision: https://reviews.llvm.org/D98390
A new `InterfaceMethod` is added to `InferShapedTypeOpInterface` that
allows an operation to return the `Value`s for each dim of its
results. It is intended for the case where the `Value` returned for
each dim is computed using the operands and operation attributes. This
interface method is for cases where the result dim of an operation can
be computed independently, and it avoids the need to aggregate all
dims of a result into a single shape value. This also implies that
this is not suitable for cases where the result type is unranked (for
which the existing interface methods is to be used).
Also added is a canonicalization pattern that uses this interface and
resolves the shapes of the output in terms of the shapes of the
inputs. Moving Linalg ops to use this interface, so that many
canonicalization patterns implemented for individual linalg ops to
achieve the same result can be removed in favor of the added
canonicalization pattern.
Differential Revision: https://reviews.llvm.org/D97887
* Also adds some verbiage about upgrading `pip` itself, since this is a
common source of issues.
Differential Revision: https://reviews.llvm.org/D99522
Subtensor operations that are taking a slice out of a tensor that is
unit-extent along a dimension can be rewritten to drop that dimension.
Differential Revision: https://reviews.llvm.org/D99226
Drop usage of `emitRemark` and use `notifyMatchFailure` instead to
avoid unnecessary spew during compilation.
Differential Revision: https://reviews.llvm.org/D99485
Convert transfer_read ops with permutation maps into simpler
transfer_read with minority map + vector.braodcast and vector.transpose.
And transfer_read with leading dimensions broacast into transfer_read of
lower rank.
Differential Revision: https://reviews.llvm.org/D99019
Add a new clone operation to the memref dialect. This operation implicitly
copies data from a source buffer to a new buffer. In contrast to the linalg.copy
operation, this operation does not accept a target buffer as an argument.
Instead, this operation performs a conceptual allocation which does not need to
be performed manually.
Furthermore, this operation resolves the dependency from the linalg-dialect
in the BufferDeallocation pass. In addition, we also extended the canonicalization
patterns to fold clone operations. The copy removal pass has been removed.
Differential Revision: https://reviews.llvm.org/D99172
Provide a registration mechanism for Linalg dialect-specific passes in C
API and Python bindings. These are being built into the dialect library
but exposed in separate headers (C) or modules (Python).
Differential Revision: https://reviews.llvm.org/D99431
* This has the API I want but I am not thrilled with the implementation. There are various things that could be improved both about the way that Python builders are mapped and the way the Linalg ops are factored to increase code sharing between C++/Python.
* Landing this as-is since it at least makes the InitTensorOp usable with the right API. Will refactor underneath in follow-ons.
Differential Revision: https://reviews.llvm.org/D99000
The `mayNotHaveTerminator` was initially on Block but moved to the
verifier before landing and wasn't removed from its original place
where it is unused.
This reverts commit 361b7d125b by Chris
Lattner <clattner@nondot.org> dated Fri Mar 19 21:22:15 2021 -0700.
The change to the greedy rewriter driver picking a different order was
made without adequate analysis of the trade-offs and experimentation. A
change like this has far reaching consequences on transformation
pipelines, and a major impact upstream and downstream. For eg., one
can’t be sure that it doesn’t slow down a large number of cases by small
amounts or create other issues. More discussion here:
https://llvm.discourse.group/t/speeding-up-canonicalize/3015/25
Reverting this so that improvements to the traversal order can be made
on a clean slate, in bigger steps, and higher bar.
Differential Revision: https://reviews.llvm.org/D99329
In case an operation in a global initializer region refers to another
global variable defined afterwards in the module of itself, translation
to LLVM IR was currently crashing because it could not find the LLVM IR global
when going through the initializer block.
To solve this problem, split global conversion to LLVM IR into two passes. A
first pass that creates LLVM IR global variables, and a second one that converts
the initializer, if any, and adds it to the llvm global.
Differential Revision: https://reviews.llvm.org/D99246
In particular for Graph Regions, the terminator needs is just a
historical artifact of the generalization of MLIR from CFG region.
Operations like Module don't need a terminator, and before Module
migrated to be an operation with region there wasn't any needed.
To validate the feature, the ModuleOp is migrated to use this trait and
the ModuleTerminator operation is deleted.
This patch is likely to break clients, if you're in this case:
- you may iterate on a ModuleOp with `getBody()->without_terminator()`,
the solution is simple: just remove the ->without_terminator!
- you created a builder with `Builder::atBlockTerminator(module_body)`,
just use `Builder::atBlockEnd(module_body)` instead.
- you were handling ModuleTerminator: it isn't needed anymore.
- for generic code, a `Block::mayNotHaveTerminator()` may be used.
Differential Revision: https://reviews.llvm.org/D98468
Lowering of bitwise_not to linalg dialect using a xor operation with a constant
of all-bits-one.
Differential Revision: https://reviews.llvm.org/D99221
For such op chains, we can create new linalg.fill ops
with the result type of the linalg.tensor_reshape op.
Differential Revision: https://reviews.llvm.org/D99116
init tensor operands also has indexing map and generally follow
the same constraints we expect for non-init-tensor operands.
Differential Revision: https://reviews.llvm.org/D99115
This commit exposes an option to the pattern
FoldWithProducerReshapeOpByExpansion to allow
folding unit dim reshapes. This gives callers
more fine-grained controls.
Differential Revision: https://reviews.llvm.org/D99114
This identifies a pattern where the producer affine min/max op
is bound to a dimension/symbol that is used as a standalone
expression in the consumer affine op's map. In that case the
producer affine min/max op can be merged into its consumer.
For example, a pattern like the following:
```
%0 = affine.min affine_map<()[s0] -> (s0 + 16, s0 * 8)> ()[%sym1]
%1 = affine.min affine_map<(d0)[s0] -> (s0 + 4, d0)> (%0)[%sym2]
```
Can be turned into:
```
%1 = affine.min affine_map<
()[s0, s1] -> (s0 + 4, s1 + 16, s1 * 8)> ()[%sym2, %sym1]
```
Differential Revision: https://reviews.llvm.org/D99016
If there are multiple identical expressions in an affine
min/max op's map, we can just keep one.
Differential Revision: https://reviews.llvm.org/D99015
Until now Linalg fusion only allow fusing producers whose operands
are all permutation indexing maps. It's easier to deduce the
subtensor/subview but it is an unnecessary constraint, as in tiling
we have more advanced logic to deduce the subranges even when the
operand is not of permutation indexing maps, e.g., the input operand
for convolution ops.
This patch uses the logic on tiling side to deduce subranges for
fusion. This enables fusing convolution with its consumer ops
when possible.
Along the way, we are now generating proper affine.min ops to guard
against size boundaries, if we cannot be certain they won't be
out of bounds.
Differential Revision: https://reviews.llvm.org/D99014
This is a preparation step to reuse makeTiledShapes in tensor
fusion. Along the way, did some lightweight cleanups.
Differential Revision: https://reviews.llvm.org/D99013
This avoided some conversion overhead on a model in TypeUniquer when
converting from ArrayRef -> TypeRange.
Differential Revision: https://reviews.llvm.org/D99300
All linalg operations having a region builder shall call it during op creation. Calling it during vectorization is obsolete.
Differential Revision: https://reviews.llvm.org/D99168
Index type is an integer type of target-specific bitwidth present in many MLIR
operations (loops, memory accesses). Converting values of this type to
fixed-size integers has always been problematic. Introduce a data layout entry
to specify the bitwidth of `index` in a given layout scope, defaulting to 64
bits, which is a commonly used assumption, e.g., in constants.
Port builtin-to-LLVM type conversion to use this data layout entry when
converting `index` type and untie it from pointer size. This is particularly
relevant for GPU targets. Keep a possibility to forcibly override the index
type in lowerings.
Depends On D98525
Reviewed By: herhut
Differential Revision: https://reviews.llvm.org/D98937
Even if the layout specification is missing from an op that supports it, the op
is still expected to provide meaningful responses to data layout queries.
Forward them to the op instead of directly calling the default implementation.
Depends On D98524
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D98525
This is useful for bit-packing types such as vectors and tuples as well as for
exotic architectures that have non-8-bit bytes.
Depends On D98500
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D98524
ModuleOp is a natural place to provide scoped data layout information. However,
it is undesirable for ModuleOp to implement the entirety of
DataLayoutOpInterface because that would require either pushing the interface
inside the IR library instead of a separate library, or putting the default
implementation of the interface as inline functions in headers leading to
binary bloat. Instead, ModuleOp accepts an arbitrary data layout spec attribute
and has a dedicated hook to extract it, and DataLayout is modified to know
about ModuleOp particularities.
Reviewed By: herhut, nicolasvasilache
Differential Revision: https://reviews.llvm.org/D98500
Fix the BlockAndValueMapping update that was missing entries for scf.for op's blockIterArgs.
Skip cloning subtensors of the padded tensor as the logic for these is separate.
Add a filter to drop side-effecting ops.
Tests are beefed up to verify the IR is sound in all hoisting configurations for 2-level 3-D tiled matmul.
Differential Revision: https://reviews.llvm.org/D99255
Use new `MemRefType::getMemorySpace` method with generic Attribute
in cases, where there is no specific logic around the memory space.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D99154
This mechanism makes it possible for a dialect to not register all
operations but still answer interface-based queries.
This can useful for dialects that are "open" or connected to an external
system and still interoperate with the compiler. It can also open up the
possibility to have a more extensible compiler at runtime: the compiler
does not need a pre-registration for each operation and the dialect can
inject behavior dynamically.
Reviewed By: rriddle, jpienaar
Differential Revision: https://reviews.llvm.org/D93085
Tosa's argmax lowering is representable as a linalg.indexed_generic
operation. Include the lowering to this type for both integer and
floating point types.
Differential Revision: https://reviews.llvm.org/D99137
To match an interface or trait, users currently have to use the `MatchAny` tag. This tag can be quite problematic for compile time for things like the canonicalizer, as the `MatchAny` patterns may get applied to *every* operation. This revision adds better support by bucketing interface/trait patterns based on which registered operations have them registered. This means that moving forward we will only attempt to match these patterns to operations that have this interface registered. Two simplify defining patterns that match traits and interfaces, two new utility classes have been added: OpTraitRewritePattern and OpInterfaceRewritePattern.
Differential Revision: https://reviews.llvm.org/D98986
This provides a simplified way to implement 'matchAndRewrite' style
canonicalization patterns for ops that don't need the full power of
RewritePatterns. Using this style, you can implement a static method
with a signature like:
```
LogicalResult AssertOp::canonicalize(AssertOp op, PatternRewriter &rewriter) {
return success();
}
```
instead of dealing with defining RewritePattern subclasses. This also
adopts this for a few canonicalization patterns in the std dialect to
show how it works.
Differential Revision: https://reviews.llvm.org/D99143