the x86-64 __va_list_tag with this attribute. The attribute causes the
affected type to behave like a fundamental type when considered by ADL.
(x86-64 is the only target we currently provide with a struct-based
__builtin_va_list)
Fixes PR6762.
llvm-svn: 104941
Flag synthesized struct decl. as non-empty so
CXX side of ir gen does not skip its Null initialization.
Fixes radar 8027844 for objc++'s collection statement.
llvm-svn: 104837
any arguments that are default-argument expressions. The can show up
when we have a new expression whose constructor arguments are not
type-dependent and whose allocated type is not dependent and has a
constructor with default arguments. Fixes PR7202.
llvm-svn: 104690
diagnostics. That would be while we're parsing string literals for the
sole purpose of producing a diagnostic about them. Fixes
<rdar://problem/8026030>.
llvm-svn: 104684
a massive memory leak when using a BumpPtrAllocator in ASTContext.
Added a FIXME, as the Destroy method for TemplateArgumentList isn't getting called.
This means we will instead leak when using the MallocAllocator.
llvm-svn: 104633
This class only supports name mangling (which is apparently used during C/ObjC
codegen). For now only the Itanium C++ ABI is supported. Patches to add a
second C++ ABI are forthcoming.
llvm-svn: 104630
variables within blocks. We loosely follow GCC's mangling, but since
these are always internal symbols the names don't really matter. I
intend to revisit block mangling later, because GCC's mangling is
rather verbose. <rdar://problem/8015719>.
llvm-svn: 104610
1) Suppress diagnostics as soon as we form the code-completion
token, so we don't get any error/warning spew from the early
end-of-file.
2) If we consume a code-completion token when we weren't expecting
one, go into a code-completion recovery path that produces the best
results it can based on the context that the parser is in.
llvm-svn: 104585
variables should have that linkage. Otherwise, its static local
variables should have internal linkage. To avoid computing this excessively,
set a function's linkage before we emit code for it.
Previously we were assigning weak linkage to the static variables of
static inline functions in C++, with predictably terrible results. This
fixes that and also gives better linkage than 'weak' when merging is required.
llvm-svn: 104581
- I think this can be cleaned up, since this means we may notify the consumer about the vtable twice, but I didn't see an easy fix for this without more substantial refactoring.
- Doug, please review!
llvm-svn: 104577
there are already two spaces before the token where the : was expected,
put the : in between the spaces. This means we get it right in both
of these cases:
t.c:2:17: error: expected ':'
return a ? b c;
^
:
t.c:3:16: error: expected ':'
return a ? b c;
^
:
In the later case, the diagnostic says to insert ": ", in the former
case it says to insert ":" between the spaces. This fixes rdar://8007231
llvm-svn: 104569
fatal error: too many errors emitted, stopping now [-ferror-limit=]
Tell the user that this is controlled with -ferror-limit=, like above.
llvm-svn: 104528
This works around a crash where malloc reused the memory of an erased BB for a
new BB leaving old cleanup information pointing at the new block.
llvm-svn: 104472
VLA restrictions so that one can use VLAs in templates (even
accidentally), but not as part of a non-type template parameter (which
would be very bad).
llvm-svn: 104471
pointers in the ASTContext, so that the folding sets stored inside
them will be deallocated when the ASTContext is destroyed (under
-disable-free). <rdar://problem/7998824>.
llvm-svn: 104465
in several important ways:
- VLAs of non-POD types are not permitted.
- VLAs cannot be used in conjunction with C++ templates.
These restrictions are intended to keep VLAs out of the parts of the
C++ type system where they cause the most trouble. Fixes PR5678 and
<rdar://problem/8013618>.
llvm-svn: 104443
temporaries. There are actually several interrelated fixes here:
- When converting an object to a base class, it's only an lvalue
cast when the original object was an lvalue and we aren't casting
pointer-to-derived to pointer-to-base. Previously, we were
misclassifying derived-to-base casts of class rvalues as lvalues,
causing various oddities (including problems with reference binding
not extending the lifetimes of some temporaries).
- Teach the code for emitting a reference binding how to look
through no-op casts and parentheses directly, since
Expr::IgnoreParenNoOpCasts is just plain wrong for this. Also, make
sure that we properly look through multiple levels of indirection
from the temporary object, but destroy the actual temporary object;
this fixes the reference-binding issue mentioned above.
- Teach Objective-C message sends to bind the result as a temporary
when needed. This is actually John's change, but it triggered the
reference-binding problem above, so it's included here. Now John
can actually test his return-slot improvements.
llvm-svn: 104434
'-fasm' and explicitly map from that flag to -fgnu-keywords in the driver. Turn
off the driver in the lexer test for this madness and add a test to the driver
that the translation actually works.
llvm-svn: 104428
short name of the tool in use, instead of the name of the action that created
the command. The practical impact is we now get:
clang: error: clang frontend command failed due to signal 6 (use -v to see invocation)
instead of:
clang: error: assembler command failed due to signal 6 (use -v to see invocation)
when clang crashes on a job that uses the integrated assembler.
llvm-svn: 104417
the required "template" keyword, using the same heuristics we do for
dependent template names in member access expressions, e.g.,
test/SemaTemplate/dependent-template-recover.cpp:11:8: error: use 'template'
keyword to treat 'getAs' as a dependent template name
T::getAs<U>();
^
template
Fixes PR5404.
llvm-svn: 104409
that is missing the 'template' keyword, e.g.,
t->getAs<T>()
where getAs is a member of an unknown specialization. C++ requires
that we treat "getAs" as a value, but that would fail to parse since T
is the name of a type. We would then fail at the '>', since a type
cannot be followed by a '>'.
This is a very common error for C++ programmers to make, especially
since GCC occasionally allows it when it shouldn't (as does Visual
C++). So, when we are in this case, we use tentative parsing to see if
the tokens starting at "<" can only be parsed as a template argument
list. If so, we produce a diagnostic with a fix-it that states that
the 'template' keyword is needed:
test/SemaTemplate/dependent-template-recover.cpp:5:8: error: 'template' keyword
is required to treat 'getAs' as a dependent template name
t->getAs<T>();
^
template
This is just a start of this patch; I'd like to apply the same
approach to everywhere that a template-id with dependent template name
can be parsed.
llvm-svn: 104406
not make copies non-POD arguments or arguments passed by reference:
just copy the pointers directly. This eliminates another source of the
dreaded memcpy-of-non-PODs. Fixes PR7188.
llvm-svn: 104327
'self' variable arising from uses of the 'super' keyword. Also reorganize
some code so that BlockInfo (now CGBlockInfo) can be opaque outside of
CGBlocks.cpp.
Fixes rdar://problem/8010633.
llvm-svn: 104312
sure that the anonymous struct/union record declaration gets
instantiated before the variable declaration, and that it and its
fields (recursively) get entries in the local instantiation map. Fixes
PR7088.
llvm-svn: 104305
recursively, e.g. so that members of anonymous unions inside anonymous structs
still get initialized. Also generate default constructor calls for anonymous
struct members when necessary.
llvm-svn: 104292
capture failures when we try to initialize an incomplete
type. Previously, we would (ab)use FK_ConversionFailed, then
occasionally dereference a null pointer when trying to diagnose the
failure. Fixes <rdar://problem/7959007>.
llvm-svn: 104286
particular issue was the cause of the Boost.Interprocess failures, and
in general will lead to horrendous, hard-to-diagnose miscompiles. The
assertion itself has survives self-host and a full Boost build, so we
are close to eradicating this problem in C++.
Note that the assertion is *not* turned on for Objective-C++, where we
still have problems with introducing memcpy's of non-POD class
types. That part of the assertion will go away as soon as we fix the
known issues in Objective-C++.
llvm-svn: 104227
subobject. Previously, we could only properly bind to a base class
subobject while extending the lifetime of the complete object (of a
derived type); for non-static data member subobjects, we could memcpy
(!) the result and bind to that, which is rather broken.
Now, we pull apart the expression that we're binding to, to figure out
which subobject we're accessing, then construct the temporary object
(adding a destruction if needed) and, finally, dig out the subobject
we actually meant to access.
This fixes yet another instance where we were memcpy'ing rather than
doing the right thing. However, note the FIXME in references.cpp:
there's more work to be done for binding to subobjects, since the AST
is incorrectly modeling some member accesses in base classes as
lvalues when they are really rvalues.
llvm-svn: 104219
class type (that uses a return slot), pass the return slot to the
callee directly rather than allocating new storage and trying to copy
the object. This appears to have been the cause of the remaining two
Boost.Interprocess failures.
llvm-svn: 104215
instance variables:
- Use isRecordType() rather than isa<RecordType>(), so that we see
through typedefs in ivar types.
- Mark the destructor as referenced
- Perform C++ access control on the destructor
llvm-svn: 104206
instead of new[]'d. This greatly reduces the number of new[]'s, and guess what,
they were all leaked.
This adds a fixme in this hunk:
unsigned NumPackArgs = NumFlatArgs - PackBeginIndex;
+ // FIXME: NumPackArgs shouldn't be negative here???
if (NumPackArgs)
- PackArgs = &FlatArgs[PackBeginIndex];
+ PackArgs = FlatArgs.data()+PackBeginIndex;
where test/SemaTemplate/variadic-class-template-2.cpp is accessing the vector
out of range and NumPackArgs is negative. I assume variadic template args are
completely hosed.
llvm-svn: 104194
create a temporary copy of both the "true" and "false" results. Fixes
the Boost.Interprocess failures.
Daniel did all the hard work of tracking down the issue, I get to type
up the trivial fix for this horrible miscompile.
llvm-svn: 104184
template names. We were completely missing naming classes for many unqualified
lookups, but this didn't trigger code paths that need it. This removes part of
an optimization that re-uses the template name lookup done by the parser to
determine if explicit template arguments actually form a template-id.
Unfortunately the technique for avoiding the duplicate lookup lost needed data
such as the class context in which the lookup succeeded.
llvm-svn: 104117
the same .cpp file as provided the definitions referenced these functions,
hiding the issue. However, they are clearly no longer inline. Let me know if
there is a reason to move their definitions to the header and make them truly
inline.
llvm-svn: 104104
involves extending implicit conversion sequences to model vector
conversions and vector splats, along with teaching the C++ conditional
operator-checking code about vector types.
Fixes <rdar://problem/7983501>.
llvm-svn: 104081
design limitation in how we handle Objective-C class extensions. This was causing the CursorVisitor
to essentially visit an @property twice (once in the @interface, the other in the class extension).
Fixes <rdar://problem/7410145>.
llvm-svn: 104055
non-function-local declarations with names similar to what the user
typed. For example, this allows us to correct 'supper' to 'super' in
an Objective-C message send, even though the C function 'isupper' has
the same edit distance.
llvm-svn: 104023
consider "super" as a candidate whenever we're parsing an expression
within an Objective-C method in an interface that has a superclass. At
some point, we'd like to give "super" a little edge over non-local
names; that will come later.
llvm-svn: 104022
Revert much of the implementation of C++98/03 [temp.friend]p5 in
r103943 and its follow-ons r103948 and r103952. While our
implementation was technically correct, other compilers don't seem to
implement this paragraph (which forces the instantiation of friend
functions defined in a class template when a class template
specialization is instantiated), and doing so broke a bunch of Boost
libraries.
Since this behavior has changed in C++0x (which instantiates the
friend function definitions when they are used), we're going to skip
the nowhere-implemented C++98/03 semantics and go straight to the
C++0x semantics.
This commit is a band-aid to get Boost up and running again. It
doesn't really fix PR6952 (which this commit un-fixes), but it does
deal with the way Boost.Units abuses this particular paragraph.
llvm-svn: 104014
make it miss (invalid) things like:
<<<<<<<
>>>>>>>
and crash if
<<<<<<<
was at the end of the line. When we find a >>>>>>> that is not at the
end of the line, make sure to reset Pos so we don't crash on something
like:
<<<<<<< >>>>>>>
This isn't worth making testcases for, since each would require a new file.
rdar://7987078 - signal 11 compiling "<<<<<<<<<<"
llvm-svn: 103968
within class templates be instantiated along with each class template
specialization, even if the functions are not used. Do so, as a baby
step toward PR6952.
llvm-svn: 103943
This is still probably wrong for Objective-C++ and adds a couple of lines in CGException that should probably be in the CGObjCRuntime subclass. The personality function is now only looked up in one place in CGException though, so this should be easier to fix in the future.
llvm-svn: 103938