Summary: This is especially important for 32-bit targets with 64-bit shuffle elements.This is similar to how PSHUFB and VPERMIL handle the same problem.
Reviewers: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25666
llvm-svn: 284451
Summary:
If we are loading an i16 value from a 32-bit memory location, then
we need to be able to truncate the loaded value to i16.
Reviewers: arsenm
Subscribers: kzhuravl, wdng, nhaehnle, yaxunl, tony-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D25198
llvm-svn: 284397
This came up as part of:
https://reviews.llvm.org/D25485
Note that the vector case is missed because ComputeNumSignBits() is deficient for vectors.
llvm-svn: 284395
SelectionDAG::getConstantPool will automatically determine an appropriate alignment if one is not specified. It does this by querying the type's preferred alignment. This can end up creating quite a lot of padding when the preferred alignment for vectors is 128.
In optimize-for-size mode, it makes sense to instead query the ABI type alignment which is often smaller and causes less padding.
llvm-svn: 284381
The previous names were both misleading (the MachineLegalizer actually
contained the info tables) and inconsistent with the selector & translator (in
having a "Machine") prefix. This should make everything sensible again.
The only functional change is the name of a couple of command-line options.
llvm-svn: 284287
This is a patch to implement pr30640.
When a 64bit constant has the same hi/lo words, we can use rldimi to copy the low word into high word of the same register.
This optimization caused failure of test case bperm.ll because of not optimal heuristic in function SelectAndParts64. It chooses AND or ROTATE to extract bit groups from a register, and OR them together. This optimization lowers the cost of loading 64bit constant mask used in AND method, and causes different code sequence. But actually ROTATE method is better in this test case. The reason is in ROTATE method the final OR operation can be avoided since rldimi can insert the rotated bits into target register directly. So this patch also enhances SelectAndParts64 to prefer ROTATE method when the two methods have same cost and there are multiple bit groups need to be ORed together.
Differential Revision: https://reviews.llvm.org/D25521
llvm-svn: 284276
Summary:
We are using this helper for our 24-bit arithmetic combines, so we are now able to eliminate multi-use operations that mask the high-bits of 24-bit inputs (e.g. and x, 0xffffff)
Reviewers: arsenm, nhaehnle
Subscribers: tony-tye, arsenm, kzhuravl, wdng, nhaehnle, llvm-commits, yaxunl
Differential Revision: https://reviews.llvm.org/D24672
llvm-svn: 284267
X86. The pass optimizes as a unit the entire wide load + shuffles pattern
produced by interleaved vectorization. This initial patch optimizes one pattern
(64-bit elements interleaved by a factor of 4). Future patches will generalize
to additional patterns.
Patch by Farhana Aleen
Differential revision: http://reviews.llvm.org/D24681
llvm-svn: 284260
This change adds transformations such as:
zext(or(setcc(eq, (cmp x, 0)), setcc(eq, (cmp y, 0))))
To:
srl(or(ctlz(x), ctlz(y)), log2(bitsize(x))
This optimisation is beneficial on Jaguar architecture only, where lzcnt has a good reciprocal throughput.
Other architectures such as Intel's Haswell/Broadwell or AMD's Bulldozer/PileDriver do not benefit from it.
For this reason the change also adds a "HasFastLZCNT" feature which gets enabled for Jaguar.
Differential Revision: https://reviews.llvm.org/D23446
llvm-svn: 284248
Summary:
This will be used for 64-bit MULHU, which is in turn used for the 64-bit
divide-by-constant optimization (see D24822).
Reviewers: arsenm, tstellarAMD
Subscribers: kzhuravl, wdng, yaxunl, llvm-commits, tony-tye
Differential Revision: https://reviews.llvm.org/D25289
llvm-svn: 284224
Mostly this just means changing the triple from aarch64-apple-ios to the generic
aarch64--. Only one test needs more significant changes, but GlobalISel already
does the right thing so it's ok to just change the checks.
Differential Revision: https://reviews.llvm.org/D25532
llvm-svn: 284223
This will be needed by a future commit to support sign/zero extending from v8i8 to v8i64 which requires a sign/zero_extend_vector_inreg to be created which requires v8i8 to be concatenated upto v64i8 and goes through this code.
llvm-svn: 284204
Windows itanium is identical to MSVC when dealing with everything but C++.
Lower the math routines into msvcrt rather than compiler-rt.
llvm-svn: 284175
Windows itanium is equivalent to MSVC except in C++ mode. Ensure that the
promote the 32-bit floating point operations to their 64-bit equivalences.
llvm-svn: 284173
This option indicates copy relocations support is available from the linker
when building as PIE and allows accesses to extern globals to avoid the GOT.
Differential Revision: https://reviews.llvm.org/D24849
llvm-svn: 284160
Retrying after upstream changes.
Simplify Consecutive Merge Store Candidate Search
Now that address aliasing is much less conservative, push through
simplified store merging search which only checks for parallel stores
through the chain subgraph. This is cleaner as the separation of
non-interfering loads/stores from the store-merging logic.
Whem merging stores, search up the chain through a single load, and
finds all possible stores by looking down from through a load and a
TokenFactor to all stores visited. This improves the quality of the
output SelectionDAG and generally the output CodeGen (with some
exceptions).
Additional Minor Changes:
1. Finishes removing unused AliasLoad code
2. Unifies the the chain aggregation in the merged stores across
code paths
3. Re-add the Store node to the worklist after calling
SimplifyDemandedBits.
4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
arbitrary, but seemed sufficient to not cause regressions in
tests.
This finishes the change Matt Arsenault started in r246307 and
jyknight's original patch.
Many tests required some changes as memory operations are now
reorderable. Some tests relying on the order were changed to use
volatile memory operations
Noteworthy tests:
CodeGen/AArch64/argument-blocks.ll -
It's not entirely clear what the test_varargs_stackalign test is
supposed to be asserting, but the new code looks right.
CodeGen/AArch64/arm64-memset-inline.lli -
CodeGen/AArch64/arm64-stur.ll -
CodeGen/ARM/memset-inline.ll -
The backend now generates *worse* code due to store merging
succeeding, as we do do a 16-byte constant-zero store efficiently.
CodeGen/AArch64/merge-store.ll -
Improved, but there still seems to be an extraneous vector insert
from an element to itself?
CodeGen/PowerPC/ppc64-align-long-double.ll -
Worse code emitted in this case, due to the improved store->load
forwarding.
CodeGen/X86/dag-merge-fast-accesses.ll -
CodeGen/X86/MergeConsecutiveStores.ll -
CodeGen/X86/stores-merging.ll -
CodeGen/Mips/load-store-left-right.ll -
Restored correct merging of non-aligned stores
CodeGen/AMDGPU/promote-alloca-stored-pointer-value.ll -
Improved. Correctly merges buffer_store_dword calls
CodeGen/AMDGPU/si-triv-disjoint-mem-access.ll -
Improved. Sidesteps loading a stored value and
merges two stores
CodeGen/X86/pr18023.ll -
This test has been removed, as it was asserting incorrect
behavior. Non-volatile stores *CAN* be moved past volatile loads,
and now are.
CodeGen/X86/vector-idiv.ll -
CodeGen/X86/vector-lzcnt-128.ll -
It's basically impossible to tell what these tests are actually
testing. But, looks like the code got better due to the memory
operations being recognized as non-aliasing.
CodeGen/X86/win32-eh.ll -
Both loads of the securitycookie are now merged.
CodeGen/AMDGPU/vgpr-spill-emergency-stack-slot-compute.ll -
This test appears to work but no longer exhibits the spill behavior.
Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle
Subscribers: wdng, nhaehnle, nemanjai, arsenm, weimingz, niravd, RKSimon, aemerson, qcolombet, dsanders, resistor, tstellarAMD, t.p.northover, spatel
Differential Revision: https://reviews.llvm.org/D14834
llvm-svn: 284151
We don't need to return a MachineInstr* from these stack probe insertion
calls anyway. If we ever need to add it back, we can return an iterator
instead.
Based on a patch by David Kreitzer
This bug is a consequence of
r279314 | dexonsmith | 2016-08-19 13:40:12 -0700 (Fri, 19 Aug 2016) | 110 lines
We hit the "Assertion `!NodePtr->isKnownSentinel()' failed" assertion,
but only when inserting a stack probe call at the end of an MBB, which
isn't necessarily a common situation.
Differential Revision: https://reviews.llvm.org/D25566
llvm-svn: 284130
This patch assigns cost of the scaling used in addressing.
On many ARM cores, a negated register offset takes longer than a
non-negated register offset, in a register-offset addressing mode.
For instance:
LDR R0, [R1, R2 LSL #2]
LDR R0, [R1, -R2 LSL #2]
Above, (1) takes less cycles than (2).
By assigning appropriate scaling factor cost, we enable the LLVM
to make the right trade-offs in the optimization and code-selection phase.
Differential Revision: http://reviews.llvm.org/D24857
Reviewers: jmolloy, rengolin
llvm-svn: 284127
Because everything live is spilled at the end of a
block by fast regalloc, assume this will happen and
avoid the copies of the resource descriptor.
llvm-svn: 284119
The Register Calling Convention (RegCall) was introduced by Intel to optimize parameter transfer on function call.
This calling convention ensures that as many values as possible are passed or returned in registers.
This commit presents the basic additions to LLVM CodeGen in order to support RegCall in X86.
Differential Revision: http://reviews.llvm.org/D25022
llvm-svn: 284108
This allows RegBankSelect in greedy mode to get rid some of the cross
register bank copies when loads are involved in the chain of
computation.
llvm-svn: 284097
- Use storage class C_STAT for 'PrivateLinkage' The storage class for
PrivateLinkage should equal to the Internal Linkage.
- Set 'PrivateGlobalPrefix' from "L" to ".L" for MM_WinCOFF (includes
x86_64) MM_WinCOFF has empty GlobalPrefix '\0' so PrivateGlobalPrefix
"L" may conflict to the normal symbol name starting with 'L'.
Based on a patch by Han Sangjin! Manually updated test cases.
llvm-svn: 284096
Summary: We need a new LLVM intrinsic to implement MS _AddressOfReturnAddress builtin on 64-bit Windows.
Reviewers: majnemer, rnk
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25293
llvm-svn: 284061
Branch folder removes implicit defs if they are the only non-branching
instructions in a block, and the branches do not use the defined registers.
The problem is that in some cases these implicit defs are required for
the liveness information to be correct.
Differential Revision: https://reviews.llvm.org/D25478
llvm-svn: 284036
This is the most basic handling of the indirect access
pseudos using GPR indexing mode. This currently only enables
the mode for a single v_mov_b32 and then disables it.
This is much more complicated to use than the movrel instructions,
so a new optimization pass is probably needed to fold the access
into the uses and keep the mode enabled for them.
llvm-svn: 284031
Add a number of helper functions to match scalar or vector equivalent constant/splat values to allow most of the combine patterns to be used by vectors.
Differential Revision: https://reviews.llvm.org/D25374
llvm-svn: 284015
This combiner breaks debug experience and should not be run when optimizations are disabled.
For example:
int main() {
int j = 0;
j += 2;
if (j == 2)
return 0;
return 5;
}
When debugging this code compiled in /O0, it should be valid to break at line "j+=2;" and edit the value of j. It should change the return value of the function.
Differential Revision: https://reviews.llvm.org/D19268
llvm-svn: 284014
Add unit tests for checking a few tricky instruction sizes. Also remove the old
tests for the instruction sizes, which were clunky and brittle.
Since this is the first set of target-specific unit tests, we need to add some
CMake plumbing. In the future, adding unit tests for a given target will be as
simple as creating a directory with the same name as the target under
unittests/Target. The tests are only run if the target is enabled in
LLVM_TARGETS_TO_BUILD.
Differential Revision: https://reviews.llvm.org/D24548
llvm-svn: 283990
Although Copies are not specific to preISel, we still have to assign them
a proper register class. However, given they are not constrained to
anything we do not have to handle the source register at the copy. It
will be properly mapped when reaching the related definition.
In the process, the handlong of G_ANYEXT is slightly modified as those
end up being selected as copy. The difference is that when register size
do not match on both sides, we need to insert SUBREG_TO_REG operation,
otherwise the post RA copy expansion will not be happy!
llvm-svn: 283972
Summary:
In PPCMIPeephole, when we see two splat instructions, we can't simply do the following transformation:
B = Splat A
C = Splat B
=>
C = Splat A
because B may still be used between these two instructions. Instead, we should make the second Splat a PPC::COPY and let later passes decide whether to remove it or not:
B = Splat A
C = Splat B
=>
B = Splat A
C = COPY B
Fixes PR30663.
Reviewers: echristo, iteratee, kbarton, nemanjai
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D25493
llvm-svn: 283961
Fixes a crash in the build_vector -> vector_shuffle combine
when the first vector input is twice as wide as the output,
and the second input vector is even wider.
llvm-svn: 283953
Reverts r283938 to reinstate r283867 with a fix.
The original change had an ArrayRef referring to a destroyed temporary
initializer list. Use plain C arrays instead.
llvm-svn: 283942
The tail duplication pass uses an assumed layout when making duplication
decisions. This is fine, but passes up duplication opportunities that
may arise when blocks are outlined. Because we want the updated CFG to
affect subsequent placement decisions, this change must occur during
placement.
In order to achieve this goal, TailDuplicationPass is split into a
utility class, TailDuplicator, and the pass itself. The pass delegates
nearly everything to the TailDuplicator object, except for looping over
the blocks in a function. This allows the same code to be used for tail
duplication in both places.
This change, in concert with outlining optional branches, allows
triangle shaped code to perform much better, esepecially when the
taken/untaken branches are correlated, as it creates a second spine when
the tests are small enough.
Issue from previous rollback fixed, and a new test was added for that
case as well. Issue was worklist/scheduling/taildup issue in layout.
Issue from 2nd rollback fixed, with 2 additional tests. Issue was
tail merging/loop info/tail-duplication causing issue with loops that share
a header block.
Issue with early tail-duplication of blocks that branch to a fallthrough
predecessor fixed with test case: tail-dup-branch-to-fallthrough.ll
Differential revision: https://reviews.llvm.org/D18226
llvm-svn: 283934
The non-obvious motivation for adding this fold (which already happens in InstCombine)
is that we want to canonicalize IR towards select instructions and canonicalize DAG
nodes towards boolean math. So we need to recreate some folds in the DAG to handle that
change in direction.
An interesting implementation difference for cases like this is that InstCombine
generally works top-down while the DAG goes bottom-up. That means we need to detect
different patterns. In this case, the SimplifyDemandedBits fold prevents us from
performing a zext to sext fold that would then be recognized as a negation of a sext.
llvm-svn: 283900
The high registers are not allocatable in Thumb1 functions, but they
could still be used by inline assembly, so we need to save and restore
the callee-saved high registers (r8-r11) in the prologue and epilogue.
This is complicated by the fact that the Thumb1 push and pop
instructions cannot access these registers. Therefore, we have to move
them down into low registers before pushing, and move them back after
popping into low registers.
In most functions, we will have low registers that are also being
pushed/popped, which we can use as the temporary registers for
saving/restoring the high registers. However, this is not guaranteed, so
we may need to push some extra low registers to ensure that the high
registers can be saved/restored. For correctness, it would be sufficient
to use just one low register, but if we have enough low registers
available then we only need one push/pop instruction, rather than one
per high register.
We can also use the argument/return registers when they are not live,
and the link register when saving (but not restoring), reducing the
number of extra registers we need to push.
There are still a few extreme edge cases where we need two push/pop
instructions, because not enough low registers can be made live in the
prologue or epilogue.
In addition to the regression tests included here, I've also tested this
using a script to generate functions which clobber different
combinations of registers, have different numbers of argument and return
registers (including variadic arguments), allocate different fixed sized
objects on the stack, and do or don't use variable sized allocas and the
__builtin_return_address intrinsic (all of which affect the available
registers in the prologue and epilogue). I ran these functions in a test
harness which verifies that all of the callee-saved registers are
correctly preserved.
Differential Revision: https://reviews.llvm.org/D24228
llvm-svn: 283867
Currently, the Int_eh_sjlj_dispatchsetup intrinsic is marked as
clobbering all registers, including floating-point registers that may
not be present on the target. This is technically true, as we could get
linked against code that does use the FP registers, but that will not
actually work, as the soft-float code cannot save and restore the FP
registers. SjLj exception handling can only work correctly if either all
or none of the code is built for a target with FP registers. Therefore,
we can assume that, when Int_eh_sjlj_dispatchsetup is compiled for a
soft-float target, it is only going to be linked against other
soft-float code, and so only clobbers the general-purpose registers.
This allows us to check that no non-savable registers are clobbered when
generating the prologue/epilogue.
Differential Revision: https://reviews.llvm.org/D25180
llvm-svn: 283866
This reverts commit r283842.
test/CodeGen/X86/tail-dup-repeat.ll causes and llc crash with our
internal testing. I'll share a link with you.
llvm-svn: 283857
This changes MachineRegisterInfo to be initializes after parsing all
instructions. This is in preparation for upcoming commits that allow the
register class specification on the operand or deduce them from the
MCInstrDesc.
This commit removes the unused feature of having nonsequential register
numbers. This was confusing anyway as the vreg numbers would be
different after parsing when you had "holes" in your numbering.
This patch also introduces the concept of an incomplete virtual
register. An incomplete virtual register may be used during .mir parsing
to construct MachineOperands without knowing the exact register class
(or register bank) yet.
NFC except for some error messages.
Differential Revision: https://reviews.llvm.org/D22397
llvm-svn: 283848
The tail duplication pass uses an assumed layout when making duplication
decisions. This is fine, but passes up duplication opportunities that
may arise when blocks are outlined. Because we want the updated CFG to
affect subsequent placement decisions, this change must occur during
placement.
In order to achieve this goal, TailDuplicationPass is split into a
utility class, TailDuplicator, and the pass itself. The pass delegates
nearly everything to the TailDuplicator object, except for looping over
the blocks in a function. This allows the same code to be used for tail
duplication in both places.
This change, in concert with outlining optional branches, allows
triangle shaped code to perform much better, esepecially when the
taken/untaken branches are correlated, as it creates a second spine when
the tests are small enough.
Issue from previous rollback fixed, and a new test was added for that
case as well. Issue was worklist/scheduling/taildup issue in layout.
Issue from 2nd rollback fixed, with 2 additional tests. Issue was
tail merging/loop info/tail-duplication causing issue with loops that share
a header block.
Issue with early tail-duplication of blocks that branch to a fallthrough
predecessor fixed with test case: tail-dup-branch-to-fallthrough.ll
Differential revision: https://reviews.llvm.org/D18226
llvm-svn: 283842
Summary:
Previously, when allocating unspillable live ranges, we would never
attempt to split. We would always bail out and try last ditch graph
recoloring.
This patch changes this by attempting to split all live intervals before
performing recoloring.
This fixes LLVM bug PR14879.
I can't add test cases for any backends other than AVR because none of
them have small enough register classes to trigger the bug.
Reviewers: qcolombet
Subscribers: MatzeB
Differential Revision: https://reviews.llvm.org/D25070
llvm-svn: 283838
This only adds the support for 64-bit vector OR. Adding more sizes is
not difficult, but it requires a bigger refactoring because ORs work on
any size, not necessarly the ones that match the width of the register
width. Right now, this is not expressed in the legalization, so don't
bother pushing the refactoring yet.
llvm-svn: 283831
Add integer expansion for FLT_ROUNDS_ for targets where i32 is not a legal
type.
Patch by Edward Jones, thanks!
Differential Revision: https://reviews.llvm.org/D24459
llvm-svn: 283797
The instructions VLDM/VSTM can only access word-aligned memory
locations and produce alignment fault if the condition is not met.
The compiler currently generates VLDM/VSTM for v2f64 load/store
regardless the alignment of the memory access. Instead, if a v2f64
load/store is not word-aligned, the compiler should generate
VLD1/VST1. For each non double-word-aligned VLD1/VST1, a VREV
instruction should be generated when targeting Big Endian.
Differential Revision: https://reviews.llvm.org/D25281
llvm-svn: 283763
Summary:
Rotate by 1 is translated to 1 micro-op, while rotate with imm8 is translated to 2 micro-ops.
Fixes pr30644.
Reviewers: delena, igorb, craig.topper, spatel, RKSimon
Differential Revision: https://reviews.llvm.org/D25399
llvm-svn: 283758
Commit in the name of:Coby Tayree
1.'v' constraint for (x86) non-avx arch imitates the already implemented 'x' constraint, i.e. allows XMM{0-15} & YMM{0-15} depending on the apparent arch & mode (32/64).
2.for the avx512 arch it allows [X,Y,Z]MM{0-31} (mode dependent)
This patch applies the needed changes to clang
clang patch: https://reviews.llvm.org/D25004
Differential Revision: D25005
llvm-svn: 283717
Masked-expand-load node represents load operation that loads a variable amount of elements from memory according to amount of "true" bits in the mask and expands the loaded elements according to their position in the mask vector.
Right now, the node is used in intrinsics for VEXPAND* instructions.
The work is done towards implementation of masked.expandload and masked.compressstore intrinsics.
Differential Revision: https://reviews.llvm.org/D25322
llvm-svn: 283694
This seems to have been responsible for the XMM16-31 spills observed in PR29112. With this fixed the test case has been modified to no longer have a spill of XMM16.
llvm-svn: 283668
Avoid generating indexed vector instructions for Exynos. This is needed for
fmla/fmls/fmul/fmulx. For example, the instruction
fmla v0.4s, v1.4s, v2.s[1]
is less efficient than the instructions
dup v2.4s, v2.s[1]
fmla v0.4s, v1.4s, v2.4s
Patch written by Abderrazek Zaafrani.
Differential Revision: https://reviews.llvm.org/D21571
llvm-svn: 283663
Once MULHS was expanded, this exposed an issue where the condition
register was thought to be 16-bit. This caused an attempt to copy a
16-bit register to an 8-bit register.
Authored by Jake Goulding
llvm-svn: 283634
The tail duplication pass uses an assumed layout when making duplication
decisions. This is fine, but passes up duplication opportunities that
may arise when blocks are outlined. Because we want the updated CFG to
affect subsequent placement decisions, this change must occur during
placement.
In order to achieve this goal, TailDuplicationPass is split into a
utility class, TailDuplicator, and the pass itself. The pass delegates
nearly everything to the TailDuplicator object, except for looping over
the blocks in a function. This allows the same code to be used for tail
duplication in both places.
This change, in concert with outlining optional branches, allows
triangle shaped code to perform much better, esepecially when the
taken/untaken branches are correlated, as it creates a second spine when
the tests are small enough.
Issue from previous rollback fixed, and a new test was added for that
case as well. Issue was worklist/scheduling/taildup issue in layout.
Issue from 2nd rollback fixed, with 2 additional tests. Issue was
tail merging/loop info/tail-duplication causing issue with loops that share
a header block.
Differential revision: https://reviews.llvm.org/D18226
llvm-svn: 283619
The code used llvm basic block predecessors to decided where to insert phi
nodes. Instruction selection can and will liberally insert new machine basic
block predecessors. There is not a guaranteed one-to-one mapping from pred.
llvm basic blocks and machine basic blocks.
Therefore the current approach does not work as it assumes we can mark
predecessor machine basic block as needing a copy, and needs to know the set of
all predecessor machine basic blocks to decide when to insert phis.
Instead of computing the swifterror vregs as we select instructions, propagate
them at the end of instruction selection when the MBB CFG is complete.
When an instruction needs a swifterror vreg and we don't know the value yet,
generate a new vreg and remember this "upward exposed" use, and reconcile this
at the end of instruction selection.
This will only happen if the target supports promoting swifterror parameters to
registers and the swifterror attribute is used.
rdar://28300923
llvm-svn: 283617
Reapplying r283383 after revert in r283442. The additional fix
is a getting rid of a stray space in a function name, in the
refactoring part of the commit.
This avoids falling back to calling out to the GCC rem functions
(__moddi3, __umoddi3) when targeting Windows.
The __rt_div functions have flipped the two arguments compared
to the __aeabi_divmod functions. To match MSVC, we emit a
check for division by zero before actually calling the library
function (even if the library function itself also might do
the same check).
Not all calls to __rt_div functions for division are currently
merged with calls to the same function with the same parameters
for the remainder. This is more wasteful than a div + mls as before,
but avoids calls to __moddi3.
Differential Revision: https://reviews.llvm.org/D25332
llvm-svn: 283550
MOVSD/MOVSS take a 128-bit register and a FR32/FR64 register input, the commutation code wasn't taking this into account leading to verification errors.
This patch inserts a vreg copy mi to ensure that the registers are correct.
Fix for PR30607
Differential Revision: https://reviews.llvm.org/D25280
llvm-svn: 283539
Summary:
There was a bug with sequences like
s_mov_b64 s[0:1], exec
s_and_b64 s[2:3]<def>, s[0:1], s[2:3]<kill>
...
s_mov_b64_term exec, s[2:3]
because s[2:3] was defined and used in the same instruction, ending up with
SaveExecInst inside OtherUseInsts.
Note that the test case also exposes an unrelated bug.
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=98028
Reviewers: tstellarAMD, arsenm
Subscribers: kzhuravl, wdng, yaxunl, llvm-commits, tony-tye
Differential Revision: https://reviews.llvm.org/D25306
llvm-svn: 283528
Per spec changes, this implements block signatures, and adds just enough
logic to produce correct block signatures at the ends of functions.
Differential Revision: https://reviews.llvm.org/D25144
llvm-svn: 283503
Per spec changes, store instructions in WebAssembly no longer have a return
value. Update the instruction descriptions.
Differential Revision: https://reviews.llvm.org/D25122
llvm-svn: 283501
Summary:
These nodes need legalization for 3-element vectors. This commit
handles the legalization and adds tests for zext and sext.
This fixes PR30614.
Reviewers: RKSimon, srhines
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25268
llvm-svn: 283496
When replacing FrameIndex with BasePtr, we must preserve BasePtr for
LEA64_32r since BasePtr is used later for stack adjustment if it is
the same as StackPtr.
Patch by H.J Lu <hjl.tools@gmail.com>
Differential Revision: https://reviews.llvm.org/D23575
llvm-svn: 283486
This generalizes the build_vector -> vector_shuffle combine to support any
number of inputs. The idea is to create a binary tree of shuffles, where
the first layer performs pairwise shuffles of the input vectors placing each
input element into the correct lane, and the rest of the tree blends these
shuffles together.
This doesn't try to be smart and create any sort of "optimal" shuffles.
The assumption is that even a "poor" shuffle sequence is better than extracting
and inserting the elements one by one.
Differential Revision: https://reviews.llvm.org/D24683
llvm-svn: 283480
This reverts commit r283383 because it broke some of the bots:
undefined reference to ` __aeabi_uldivmod'
It affected (at least) clang-cmake-armv7-a15-selfhost,
clang-cmake-armv7-a15-selfhost and clang-native-arm-lnt.
llvm-svn: 283442
Global variables are GlobalValues, so they have explicit alignment. Querying
DataLayout for the alignment was incorrect.
Testcase added.
llvm-svn: 283423
We can work around a shortcoming of FileCheck by using {{\[}} to match a square
bracket before a [[ sequence.
Thanks to Eli Friedman for the heads up!
llvm-svn: 283422
This came out of a discussion in https://reviews.llvm.org/D25285.
There used to be various other llvm.dbg.* nodes, but we don't support
upgrading them and we want to reserve the namespace for future uses.
This also removes an entirely obsolete and bitrotted testcase for PR7662.
Reapplies 283390 with a forgotten testcase.
llvm-svn: 283400
This came out of a discussion in https://reviews.llvm.org/D25285.
There used to be various other llvm.dbg.* nodes, but we don't support
upgrading them and we want to reserve the namespace for future uses.
This also removes an entirely obsolete and bitrotted testcase for PR7662.
llvm-svn: 283390
This avoids falling back to calling out to the GCC rem functions
(__moddi3, __umoddi3) when targeting Windows.
The __rt_div functions have flipped the two arguments compared
to the __aeabi_divmod functions. To match MSVC, we emit a
check for division by zero before actually calling the library
function (even if the library function itself also might do
the same check).
Not all calls to __rt_div functions for division are currently
merged with calls to the same function with the same parameters
for the remainder. This is more wasteful than a div + mls as before,
but avoids calls to __moddi3.
Differential Revision: https://reviews.llvm.org/D24076
llvm-svn: 283383
This patch is related to r274263 or Phabricator/D21818.
This patch aims to improve the test case added in the previous commit to verify
specifically that the stack protector pass is adding the debug line info as
intended. Before, the test only verified that the verifier pass does not crash.
The current approach is to generate the assembly output and then look for the
.loc directive.
Differential Revision: https://reviews.llvm.org/D25290
llvm-svn: 283374
Summary: Both computeKnownBits and ComputeNumSignBits can now do a simple
look-through of EXTRACT_VECTOR_ELT. It will compute the result based
on the known bits (or known sign bits) for the vector that the element
is extracted from.
Reviewers: bogner, tstellarAMD, mkuper
Subscribers: wdng, RKSimon, jyknight, llvm-commits, nhaehnle
Differential Revision: https://reviews.llvm.org/D25007
llvm-svn: 283347
This is not a valid encoding - these instructions cannot do PC-relative addressing.
The underlying problem here is of whitelist in ARMISelDAGToDAG that unwraps ARMISD::Wrappers during addressing-mode selection. This didn't realise TargetConstantPool was actually possible, so didn't handle it.
llvm-svn: 283323
This reverts commit 062ace9764953e9769142c1099281a345f9b6bdc.
Issue with loop info and block removal revealed by polly.
I have a fix for this issue already in another patch, I'll re-roll this
together with that fix, and a test case.
llvm-svn: 283292
The tail duplication pass uses an assumed layout when making duplication
decisions. This is fine, but passes up duplication opportunities that
may arise when blocks are outlined. Because we want the updated CFG to
affect subsequent placement decisions, this change must occur during
placement.
In order to achieve this goal, TailDuplicationPass is split into a
utility class, TailDuplicator, and the pass itself. The pass delegates
nearly everything to the TailDuplicator object, except for looping over
the blocks in a function. This allows the same code to be used for tail
duplication in both places.
This change, in concert with outlining optional branches, allows
triangle shaped code to perform much better, esepecially when the
taken/untaken branches are correlated, as it creates a second spine when
the tests are small enough.
Issue from previous rollback fixed, and a new test was added for that
case as well.
Differential revision: https://reviews.llvm.org/D18226
llvm-svn: 283274
The motivation for the change is that we can't have pseudo-global settings for
codegen living in TargetOptions because that doesn't work with LTO.
Ideally, these reciprocal attributes will be moved to the instruction-level via
FMF, metadata, or something else. But making them function attributes is at least
an improvement over the current state.
The ingredients of this patch are:
Remove the reciprocal estimate command-line debug option.
Add TargetRecip to TargetLowering.
Remove TargetRecip from TargetOptions.
Clean up the TargetRecip implementation to work with this new scheme.
Set the default reciprocal settings in TargetLoweringBase (everything is off).
Update the PowerPC defaults, users, and tests.
Update the x86 defaults, users, and tests.
Note that if this patch needs to be reverted, the related clang patch checked in
at r283251 should be reverted too.
Differential Revision: https://reviews.llvm.org/D24816
llvm-svn: 283252
AArch64InstrInfo::shouldScheduleAdjacent() determines whether two
instruction can benefit from macroop fusion on apple CPUs. The list
turned out to be incomplete:
- the "rr" variants of the instructions were missing
- even the "rs" variants can have shift value == 0 and behave like the
"rr" variants
This also splits the MacropFusion target feature into
ArithmeticBccFusion and ArithmeticCbzFusion.
Differential Revision: https://reviews.llvm.org/D25142
llvm-svn: 283243
This patch corresponds to review:
The newly added VSX D-Form (register + offset) memory ops target the upper half
of the VSX register set. The existing ones target the lower half. In order to
unify these and have the ability to target all the VSX registers using D-Form
operations, this patch defines Pseudo-ops for the loads/stores which are
expanded post-RA. The expansion then choses the correct opcode based on the
register that was allocated for the operation.
llvm-svn: 283212
Treat soft-float as unsupported for fast-isel. Additionally, ensure we check
that lowering f32 arguments also considers the case of soft-float mode.
Reviewers: ehostunreach, vkalintiris, zoran.jovanovic
Differential Review: https://reviews.llvm.org/D24505
llvm-svn: 283209
This patch corresponds to review:
https://reviews.llvm.org/D23155
This patch removes the VSHRC register class (based on D20310) and adds
exploitation of the Power9 sub-word integer loads into VSX registers as well
as vector sign extensions.
The new instructions are useful for a few purposes:
Int to Fp conversions of 1 or 2-byte values loaded from memory
Building vectors of 1 or 2-byte integers with values loaded from memory
Storing individual 1 or 2-byte elements from integer vectors
This patch implements all of those uses.
llvm-svn: 283190
The tail duplication pass uses an assumed layout when making duplication
decisions. This is fine, but passes up duplication opportunities that
may arise when blocks are outlined. Because we want the updated CFG to
affect subsequent placement decisions, this change must occur during
placement.
In order to achieve this goal, TailDuplicationPass is split into a
utility class, TailDuplicator, and the pass itself. The pass delegates
nearly everything to the TailDuplicator object, except for looping over
the blocks in a function. This allows the same code to be used for tail
duplication in both places.
This change, in concert with outlining optional branches, allows
triangle shaped code to perform much better, esepecially when the
taken/untaken branches are correlated, as it creates a second spine when
the tests are small enough.
llvm-svn: 283164
This avoids llc using the hosts OS/vendor as defaults and triggering
unwanted behaviour in the tests. This should deal with the buildbot
breakages on windows after r283140.
llvm-svn: 283149
Each shadow only represents data flow that is restricted to its reaching
def. Propagating more than that could lead to spurious register liveness,
resulting in extra (incorrectly) block live-ins.
llvm-svn: 283143
Windows has no GOT relocations the way elf/darwin has. Some people use
x86_64-pc-win32-macho to build EFI firmware; Do not produce GOT
relocations for this target.
Differential Revision: https://reviews.llvm.org/D24627
llvm-svn: 283140
This should fix:
https://llvm.org/bugs/show_bug.cgi?id=30433
There are a couple of open questions about the codegen:
1. Should we let scalar ops be scalars and avoid vector constant loads/splats?
2. Should we have a pass to combine constants such as the inverted pair that we have here?
Differential Revision: https://reviews.llvm.org/D25165
llvm-svn: 283119