This revision adds native ODS support for VariadicOfVariadic operand
groups. An example of this is the SwitchOp, which has a variadic number
of nested operand ranges for each of the case statements, where the
number of case statements is variadic. Builtin ODS support allows for
generating proper accessors for the nested operand ranges, builder
support, and declarative format support. VariadicOfVariadic operands
are supported by providing a segment attribute to use to store the
operand groups, mapping similarly to the AttrSizedOperand trait
(but with a user defined attribute name).
`build` methods for VariadicOfVariadic operand expect inputs of the
form `ArrayRef<ValueRange>`. Accessors for the variadic ranges
return a new `OperandRangeRange` type, which represents a
contiguous range of `OperandRange`. In the declarative assembly
format, VariadicOfVariadic operands and types are by default
formatted as a comma delimited list of value lists:
`(<value>, <value>), (), (<value>)`.
Differential Revision: https://reviews.llvm.org/D107774
Use new return type for `OpAsmDialectInterface::getAlias`:
* `AliasResult::NoAlias` if an alias was not provided.
* `AliasResult::OverridableAlias` if an alias was provided, but it might be overriden by other hook.
* `AliasResult::FinalAlias` if an alias was provided and it should be used (no other hooks will be checked).
In that case `AsmPrinter` will use either the first alias with `FinalAlias` result or
the last alias with `OverridableAlias` result (it depends on dialect array order).
Used `OverridableAlias` result for `BuiltinOpAsmDialectInterface`.
Use case: provide more informative alias for built-in attributes like `AffineMapAttr`
instead of generic "map<N>".
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D107437
This allows to use OperationEquivalence to track structural comparison for equality
between two operations.
Differential Revision: https://reviews.llvm.org/D106422
Historically the builtin dialect has had an empty namespace. This has unfortunately created a very awkward situation, where many utilities either have to special case the empty namespace, or just don't work at all right now. This revision adds a namespace to the builtin dialect, and starts to cleanup some of the utilities to no longer handle empty namespaces. For now, the assembly form of builtin operations does not require the `builtin.` prefix. (This should likely be re-evaluated though)
Differential Revision: https://reviews.llvm.org/D105149
Add 'enconding' attribute visitor.
Without it ASM printer doesn't use attribute aliases for 'enconding'.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D105554
Opaque attributes that currently contain string literals can't currently be properly roundtripped as they are not printed as escaped strings. This leads to incorrect tokens being generated and the parser to almost certainly fail. This patch simply uses llvm::printEscapedString from LLVM. It escapes all non printable characters and quotes to \xx hex literals, and backslashes to two backslashes. This syntax is supported by MLIRs Lexer as well. The same function is also currently in use for the same purpose in printSymbolReference, printAttribute for StringAttr and many more in AsmPrinter.cpp.
Differential Revision: https://reviews.llvm.org/D105405
Add helpers to facilitate adding arguments and results to operations
that implement the `FunctionLike` trait. These operations already have a
convenient argument and result *erasure* mechanism, but a corresopnding
utility for insertion is missing. This introduces such a utility.
* Split memref.dim into two operations: memref.dim and tensor.dim. Both ops have the same builder interface and op argument names, so that they can be used with templates in patterns that apply to both tensors and memrefs (e.g., some patterns in Linalg).
* Add constant materializer to TensorDialect (needed for folding in affine.apply etc.).
* Remove some MemRefDialect dependencies, make some explicit.
Differential Revision: https://reviews.llvm.org/D105165
This revision refactors the usage of multithreaded utilities in MLIR to use a common
thread pool within the MLIR context, in addition to a new utility that makes writing
multi-threaded code in MLIR less error prone. Using a unified thread pool brings about
several advantages:
* Better thread usage and more control
We currently use the static llvm threading utilities, which do not allow multiple
levels of asynchronous scheduling (even if there are open threads). This is due to
how the current TaskGroup structure works, which only allows one truly multithreaded
instance at a time. By having our own ThreadPool we gain more control and flexibility
over our job/thread scheduling, and in a followup can enable threading more parts of
the compiler.
* The static nature of TaskGroup causes issues in certain configurations
Due to the static nature of TaskGroup, there have been quite a few problems related to
destruction that have caused several downstream projects to disable threading. See
D104207 for discussion on some related fallout. By having a ThreadPool scoped to
the context, we don't have to worry about destruction and can ensure that any
additional MLIR thread usage ends when the context is destroyed.
Differential Revision: https://reviews.llvm.org/D104516
The main goal of this commit is to remove the dependency of Standard dialect on the Tensor dialect.
* Rename SubTensorOp -> tensor.extract_slice, SubTensorInsertOp -> tensor.insert_slice.
* Some helper functions are (already) duplicated between the Tensor dialect and the MemRef dialect. To keep this commit smaller, this will be cleaned up in a separate commit.
* Additional dialect dependencies: Shape --> Tensor, Tensor --> Standard
* Remove dialect dependencies: Standard --> Tensor
* Move canonicalization test cases to correct dialect (Tensor/MemRef).
Note: This is a fixed version of https://reviews.llvm.org/D104499, which was reverted due to a missing update to two CMakeFile.txt.
Differential Revision: https://reviews.llvm.org/D104676
The main goal of this commit is to remove the dependency of Standard dialect on the Tensor dialect.
* Rename ops: SubTensorOp --> ExtractTensorOp, SubTensorInsertOp --> InsertTensorOp
* Some helper functions are (already) duplicated between the Tensor dialect and the MemRef dialect. To keep this commit smaller, this will be cleaned up in a separate commit.
* Additional dialect dependencies: Shape --> Tensor, Tensor --> Standard
* Remove dialect dependencies: Standard --> Tensor
* Move canonicalization test cases to correct dialect (Tensor/MemRef).
Differential Revision: https://reviews.llvm.org/D104499
This revision adds support for passing a functor to SourceMgrDiagnosticHandler for filtering out FileLineColLocs when emitting a diagnostic. More specifically, this can be useful in situations where there may be large CallSiteLocs with locations that aren't necessarily important/useful for users.
For now the filtering support is limited to FileLineColLocs, but conceptually we could allow filtering for all locations types if a need arises in the future.
Differential Revision: https://reviews.llvm.org/D103649
In a region with multiple blocks the verifier will try to look for
dominance and may get successor list for blocks, even though a block
may be empty or does not end with a terminator.
Differential Revision: https://reviews.llvm.org/D104411
Now that memref supports arbitrary element types, add support for memref of
memref and make sure it is properly converted to the LLVM dialect. The type
support itself avoids adding the interface to the memref type itself similarly
to other built-in types. This allows the shape, and therefore byte size, of the
memref descriptor to remain a lowering aspect that is easier to customize and
evolve as opposed to sanctifying it in the data layout specification for the
memref type itself.
Factor out the code previously in a testing pass to live in a dedicated data
layout analysis and use that analysis in the conversion to compute the
allocation size for memref of memref. Other conversions will be ported
separately.
Depends On D103827
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D103828
Historically, MemRef only supported a restricted list of element types that
were known to be storable in memory. This is unnecessarily restrictive given
the open nature of MLIR's type system. Allow types to opt into being used as
MemRef elements by implementing a type interface. For now, the interface is
merely a declaration with no methods. Later, methods to query, e.g., the type
size or whether a type can alias elements of another type may be added.
Harden the "standard"-to-LLVM conversion against memrefs with non-builtin
types.
See https://llvm.discourse.group/t/rfc-memref-of-custom-types/3558.
Depends On D103826
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D103827
This adds the ability to specify a location when creating BlockArguments.
Notably Value::getLoc() will return this correctly, which makes diagnostics
more precise (e.g. the example in test-legalize-type-conversion.mlir).
This is currently optional to avoid breaking any existing code - if
absent, the BlockArgument defaults to using the location of its enclosing
operation (preserving existing behavior).
The bulk of this change is plumbing location tracking through the parser
and printer to make sure it can round trip (in -mlir-print-debuginfo
mode). This is complete for generic operations, but requires manual
adoption for custom ops.
I added support for function-like ops to round trip their argument
locations - they print correctly, but when parsing the locations are
dropped on the floor. I intend to fix this, but it will require more
invasive plumbing through "function_like_impl" stuff so I think it
best to split it out to its own patch.
This is a reapply of the patch here: https://reviews.llvm.org/D102567
with an additional change: we now never defer block argument locations,
guaranteeing that we can round trip correctly.
This isn't required in all cases, but allows us to hill climb here and
works around unrelated bugs like https://bugs.llvm.org/show_bug.cgi?id=50451
Differential Revision: https://reviews.llvm.org/D102991
"[mlir] Speed up Lexer::getEncodedSourceLocation"
This reverts commit 3043be9d2d and commit
861d69a525.
This change resulted in printing textual MLIR that can't be parsed; see
review thread https://reviews.llvm.org/D102567 for details.
This adds the ability to specify a location when creating BlockArguments.
Notably Value::getLoc() will return this correctly, which makes diagnostics
more precise (e.g. the example in test-legalize-type-conversion.mlir).
This is currently optional to avoid breaking any existing code - if
absent, the BlockArgument defaults to using the location of its enclosing
operation (preserving existing behavior).
The bulk of this change is plumbing location tracking through the parser
and printer to make sure it can round trip (in -mlir-print-debuginfo
mode). This is complete for generic operations, but requires manual
adoption for custom ops.
I added support for function-like ops to round trip their argument
locations - they print correctly, but when parsing the locations are
dropped on the floor. I intend to fix this, but it will require more
invasive plumbing through "function_like_impl" stuff so I think it
best to split it out to its own patch.
Differential Revision: https://reviews.llvm.org/D102567
This change allows the SRC and DST of dma_start operations to be located in the
same memory space. This applies to both the Affine dialect and Memref dialect
versions of these Ops. The documention has been updated to reflect this by
explicitly stating overlapping memory locations are not supported (undefined
behavior).
Reviewed By: bondhugula
Differential Revision: https://reviews.llvm.org/D102274
The current design uses a unique entry for each argument/result attribute, with the name of the entry being something like "arg0". This provides for a somewhat sparse design, but ends up being much more expensive (from a runtime perspective) in-practice. The design requires building a string every time we lookup the dictionary for a specific arg/result, and also requires N attribute lookups when collecting all of the arg/result attribute dictionaries.
This revision restructures the design to instead have an ArrayAttr that contains all of the attribute dictionaries for arguments and another for results. This design reduces the number of attribute name lookups to 1, and allows for O(1) lookup for individual element dictionaries. The major downside is that we can end up with larger memory usage, as the ArrayAttr contains an entry for each element even if that element has no attributes. If the memory usage becomes too problematic, we can experiment with a more sparse structure that still provides a lot of the wins in this revision.
This dropped the compilation time of a somewhat large TensorFlow model from ~650 seconds to ~400 seconds.
Differential Revision: https://reviews.llvm.org/D102035
This CL introduces a generic attribute (called "encoding") on tensors.
The attribute currently does not carry any concrete information, but the type
system already correctly determines that tensor<8xi1,123> != tensor<8xi1,321>.
The attribute will be given meaning through an interface in subsequent CLs.
See ongoing discussion on discourse:
[RFC] Introduce a sparse tensor type to core MLIR
https://llvm.discourse.group/t/rfc-introduce-a-sparse-tensor-type-to-core-mlir/2944
A sparse tensor will look something like this:
```
// named alias with all properties we hold dear:
#CSR = {
// individual named attributes
}
// actual sparse tensor type:
tensor<?x?xf64, #CSR>
```
I see the following rough 5 step plan going forward:
(1) introduce this format attribute in this CL, currently still empty
(2) introduce attribute interface that gives it "meaning", focused on sparse in first phase
(3) rewrite sparse compiler to use new type, remove linalg interface and "glue"
(4) teach passes to deal with new attribute, by rejecting/asserting on non-empty attribute as simplest solution, or doing meaningful rewrite in the longer run
(5) add FE support, document, test, publicize new features, extend "format" meaning to other domains if useful
Reviewed By: stellaraccident, bondhugula
Differential Revision: https://reviews.llvm.org/D99548
The patch enables the use of index type in vectors. It is a prerequisite to support vectorization for indexed Linalg operations. This refactoring became possible due to the newly introduced data layout infrastructure. The data layout of a module defines the bitwidth of the index type needed to verify bitcasts and similar vector operations.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D99948
The issue was introduced in D98468.
The `{0}Regions` is an array of `std::unique_ptr<Region>` objects,
so it should be processed accordingly.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D99332
In particular for Graph Regions, the terminator needs is just a
historical artifact of the generalization of MLIR from CFG region.
Operations like Module don't need a terminator, and before Module
migrated to be an operation with region there wasn't any needed.
To validate the feature, the ModuleOp is migrated to use this trait and
the ModuleTerminator operation is deleted.
This patch is likely to break clients, if you're in this case:
- you may iterate on a ModuleOp with `getBody()->without_terminator()`,
the solution is simple: just remove the ->without_terminator!
- you created a builder with `Builder::atBlockTerminator(module_body)`,
just use `Builder::atBlockEnd(module_body)` instead.
- you were handling ModuleTerminator: it isn't needed anymore.
- for generic code, a `Block::mayNotHaveTerminator()` may be used.
Differential Revision: https://reviews.llvm.org/D98468
ModuleOp is a natural place to provide scoped data layout information. However,
it is undesirable for ModuleOp to implement the entirety of
DataLayoutOpInterface because that would require either pushing the interface
inside the IR library instead of a separate library, or putting the default
implementation of the interface as inline functions in headers leading to
binary bloat. Instead, ModuleOp accepts an arbitrary data layout spec attribute
and has a dedicated hook to extract it, and DataLayout is modified to know
about ModuleOp particularities.
Reviewed By: herhut, nicolasvasilache
Differential Revision: https://reviews.llvm.org/D98500
This mechanism makes it possible for a dialect to not register all
operations but still answer interface-based queries.
This can useful for dialects that are "open" or connected to an external
system and still interoperate with the compiler. It can also open up the
possibility to have a more extensible compiler at runtime: the compiler
does not need a pre-registration for each operation and the dialect can
inject behavior dynamically.
Reviewed By: rriddle, jpienaar
Differential Revision: https://reviews.llvm.org/D93085
This is an assumption that is made in numerous places in the code. In
particular, in the code generated by mlir-tblgen for operand/result accessors
in ops with attr-sized operand or result lists. Make sure to verify this
assumption.
Note that the operation traits are verified before running the custom op
verifier, which can expect the trait verifier to have passed, but some traits
may be verified before the AttrSizedOperand/ResultTrait and should not make
such assumptions.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D99183
This has been a TODO for a while, and prevents breakages for attributes/types that contain floats that can't roundtrip outside of the hex format.
Differential Revision: https://reviews.llvm.org/D98808
verifyCompatibleShapes is not transitive. Create an n-ary version and
update SameOperandShapes and SameOperandAndResultShapes traits to use
it.
Differential Revision: https://reviews.llvm.org/D98331
Based on the following discussion:
https://llvm.discourse.group/t/rfc-memref-memory-shape-as-attribute/2229
The goal of the change is to make memory space property to have more
expressive representation, rather then "magic" integer values.
It will allow to have more clean ASM form:
```
gpu.func @test(%arg0: memref<100xf32, "workgroup">)
// instead of
gpu.func @test(%arg0: memref<100xf32, 3>)
```
Explanation for `Attribute` choice instead of plain `string`:
* `Attribute` classes allow to use more type safe API based on RTTI.
* `Attribute` classes provides faster comparison operator based on
pointer comparison in contrast to generic string comparison.
* `Attribute` allows to store more complex things, like structs or dictionaries.
It will allows to have more complex memory space hierarchy.
This commit preserve old integer-based API and implements it on top
of the new one.
Depends on D97476
Reviewed By: rriddle, mehdi_amini
Differential Revision: https://reviews.llvm.org/D96145
This patch is a follow-up on D97217. It adds a new 'Skip' result to the Operation visitor
so that a callback can stop the ongoing visit of an operation/block/region and
continue visiting the next one without fully interrupting the walk. Skipping is
needed to be able to erase an operation/block in pre-order and do not continue
visiting the internals of that operation/block.
Related to the skipping mechanism, the patch also introduces the following changes:
* Added new TestIRVisitors pass with basic testing for the IR visitors.
* Fixed missing early increment ranges in visitor implementation.
* Updated documentation of walk methods to include erasure information and walk
order information.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D97820
This commit introduced a cyclic dependency:
Memref dialect depends on Standard because it used ConstantIndexOp.
Std depends on the MemRef dialect in its EDSC/Intrinsics.h
Working on a fix.
This reverts commit 8aa6c3765b.
Create the memref dialect and move several dialect-specific ops without
dependencies to other ops from std dialect to this dialect.
Moved ops:
AllocOp -> MemRef_AllocOp
AllocaOp -> MemRef_AllocaOp
DeallocOp -> MemRef_DeallocOp
MemRefCastOp -> MemRef_CastOp
GetGlobalMemRefOp -> MemRef_GetGlobalOp
GlobalMemRefOp -> MemRef_GlobalOp
PrefetchOp -> MemRef_PrefetchOp
ReshapeOp -> MemRef_ReshapeOp
StoreOp -> MemRef_StoreOp
TransposeOp -> MemRef_TransposeOp
ViewOp -> MemRef_ViewOp
The roadmap to split the memref dialect from std is discussed here:
https://llvm.discourse.group/t/rfc-split-the-memref-dialect-from-std/2667
Differential Revision: https://reviews.llvm.org/D96425
The AffineMap in the MemRef inferred by SubViewOp may have uncompressed symbols which result in type mismatch on otherwise unused symbols. Make the computation of the AffineMap compress those unused symbols which results in better canonical types.
Additionally, improve the error message to report which inferred type was expected.
Differential Revision: https://reviews.llvm.org/D96551
* Fixing missing `type` keyword in alias print
* Add test for large tuple type alias & rerun output to verify printed
form can be parsed (which caught the above).
The subview verifier in the rank-reduced case is plainly skipping verification
when the resulting type is a memref with empty affine map. This is generally incorrect.
Instead, form the actual expected rank-reduced MemRefType that takes into account the projections of 1's dimensions. Then, check the canonicalized expected rank-reduced type against the canonicalized candidate type.
Differential Revision: https://reviews.llvm.org/D95316
OffsetSizeAndStrideOpInterface now have the ability to specify only a leading subset of
offset, sizes, strides operands/attributes.
The size of that leading subset must be limited by the corresponding entry in `getArrayAttrMaxRanks` to avoid overflows.
Missing trailing dimensions are assumed to span the whole range (i.e. [0 .. dim)).
This brings more natural semantics to slice-like op on top of subview and is a simplifies to removing all uses of SliceOp in dependent projects.
Differential revision: https://reviews.llvm.org/D95441