forked from OSchip/llvm-project
SchedDFS: Complete support for nested subtrees.
Maintain separate per-node and per-tree book-keeping. Track all instructions above a DAG node including nested subtrees. Seperately track instructions within a subtree. Record subtree parents. llvm-svn: 173426
This commit is contained in:
parent
e2c3f5c982
commit
ffc8097c60
|
@ -78,10 +78,17 @@ class SchedDFSResult {
|
|||
/// finalization.
|
||||
struct NodeData {
|
||||
unsigned InstrCount;
|
||||
unsigned SubInstrCount;
|
||||
unsigned SubtreeID;
|
||||
|
||||
NodeData(): InstrCount(0), SubInstrCount(0), SubtreeID(InvalidSubtreeID) {}
|
||||
NodeData(): InstrCount(0), SubtreeID(InvalidSubtreeID) {}
|
||||
};
|
||||
|
||||
/// \brief Per-Subtree data computed during DFS.
|
||||
struct TreeData {
|
||||
unsigned ParentTreeID;
|
||||
unsigned SubInstrCount;
|
||||
|
||||
TreeData(): ParentTreeID(InvalidSubtreeID), SubInstrCount(0) {}
|
||||
};
|
||||
|
||||
/// \brief Record a connection between subtrees and the connection level.
|
||||
|
@ -95,7 +102,10 @@ class SchedDFSResult {
|
|||
bool IsBottomUp;
|
||||
unsigned SubtreeLimit;
|
||||
/// DFS results for each SUnit in this DAG.
|
||||
std::vector<NodeData> DFSData;
|
||||
std::vector<NodeData> DFSNodeData;
|
||||
|
||||
// Store per-tree data indexed on tree ID,
|
||||
SmallVector<TreeData, 16> DFSTreeData;
|
||||
|
||||
// For each subtree discovered during DFS, record its connections to other
|
||||
// subtrees.
|
||||
|
@ -109,31 +119,47 @@ public:
|
|||
SchedDFSResult(bool IsBU, unsigned lim)
|
||||
: IsBottomUp(IsBU), SubtreeLimit(lim) {}
|
||||
|
||||
/// \brief Get the node cutoff before subtrees are considered significant.
|
||||
unsigned getSubtreeLimit() const { return SubtreeLimit; }
|
||||
|
||||
/// \brief Return true if this DFSResult is uninitialized.
|
||||
///
|
||||
/// resize() initializes DFSResult, while compute() populates it.
|
||||
bool empty() const { return DFSData.empty(); }
|
||||
bool empty() const { return DFSNodeData.empty(); }
|
||||
|
||||
/// \brief Clear the results.
|
||||
void clear() {
|
||||
DFSData.clear();
|
||||
DFSNodeData.clear();
|
||||
DFSTreeData.clear();
|
||||
SubtreeConnections.clear();
|
||||
SubtreeConnectLevels.clear();
|
||||
}
|
||||
|
||||
/// \brief Initialize the result data with the size of the DAG.
|
||||
void resize(unsigned NumSUnits) {
|
||||
DFSData.resize(NumSUnits);
|
||||
DFSNodeData.resize(NumSUnits);
|
||||
}
|
||||
|
||||
/// \brief Compute various metrics for the DAG with given roots.
|
||||
void compute(ArrayRef<SUnit> SUnits);
|
||||
|
||||
/// \brief Get the number of instructions in the given subtree and its
|
||||
/// children.
|
||||
unsigned getNumInstrs(const SUnit *SU) const {
|
||||
return DFSNodeData[SU->NodeNum].InstrCount;
|
||||
}
|
||||
|
||||
/// \brief Get the number of instructions in the given subtree not including
|
||||
/// children.
|
||||
unsigned getNumSubInstrs(unsigned SubtreeID) const {
|
||||
return DFSTreeData[SubtreeID].SubInstrCount;
|
||||
}
|
||||
|
||||
/// \brief Get the ILP value for a DAG node.
|
||||
///
|
||||
/// A leaf node has an ILP of 1/1.
|
||||
ILPValue getILP(const SUnit *SU) const {
|
||||
return ILPValue(DFSData[SU->NodeNum].InstrCount, 1 + SU->getDepth());
|
||||
return ILPValue(DFSNodeData[SU->NodeNum].InstrCount, 1 + SU->getDepth());
|
||||
}
|
||||
|
||||
/// \brief The number of subtrees detected in this DAG.
|
||||
|
@ -146,8 +172,8 @@ public:
|
|||
unsigned getSubtreeID(const SUnit *SU) const {
|
||||
if (empty())
|
||||
return 0;
|
||||
assert(SU->NodeNum < DFSData.size() && "New Node");
|
||||
return DFSData[SU->NodeNum].SubtreeID;
|
||||
assert(SU->NodeNum < DFSNodeData.size() && "New Node");
|
||||
return DFSNodeData[SU->NodeNum].SubtreeID;
|
||||
}
|
||||
|
||||
/// \brief Get the connection level of a subtree.
|
||||
|
|
|
@ -1018,31 +1018,39 @@ class SchedDFSImpl {
|
|||
/// List PredSU, SuccSU pairs that represent data edges between subtrees.
|
||||
std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs;
|
||||
|
||||
struct RootData {
|
||||
unsigned NodeID;
|
||||
unsigned ParentNodeID; // Parent node (member of the parent subtree).
|
||||
unsigned SubInstrCount; // Instr count in this tree only, not children.
|
||||
|
||||
RootData(unsigned id): NodeID(id),
|
||||
ParentNodeID(SchedDFSResult::InvalidSubtreeID),
|
||||
SubInstrCount(0) {}
|
||||
|
||||
unsigned getSparseSetIndex() const { return NodeID; }
|
||||
};
|
||||
|
||||
SparseSet<RootData> RootSet;
|
||||
|
||||
public:
|
||||
SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSData.size()) {}
|
||||
SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
|
||||
RootSet.setUniverse(R.DFSNodeData.size());
|
||||
}
|
||||
|
||||
/// Return true if this node been visited by the DFS traversal.
|
||||
///
|
||||
/// During visitPostorderNode the Node's SubtreeID is assigned to the Node
|
||||
/// ID. Later, SubtreeID is updated but remains valid.
|
||||
bool isVisited(const SUnit *SU) const {
|
||||
return R.DFSData[SU->NodeNum].SubtreeID != SchedDFSResult::InvalidSubtreeID;
|
||||
return R.DFSNodeData[SU->NodeNum].SubtreeID
|
||||
!= SchedDFSResult::InvalidSubtreeID;
|
||||
}
|
||||
|
||||
/// Initialize this node's instruction count. We don't need to flag the node
|
||||
/// visited until visitPostorder because the DAG cannot have cycles.
|
||||
void visitPreorder(const SUnit *SU) {
|
||||
R.DFSData[SU->NodeNum].InstrCount = SU->getInstr()->isTransient() ? 0 : 1;
|
||||
R.DFSData[SU->NodeNum].SubInstrCount = R.DFSData[SU->NodeNum].InstrCount;
|
||||
}
|
||||
|
||||
/// Called once for each tree edge after calling visitPostOrderNode on the
|
||||
/// predecessor. Increment the parent node's instruction count and
|
||||
/// preemptively join this subtree to its parent's if it is small enough.
|
||||
void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
|
||||
R.DFSData[Succ->NodeNum].InstrCount
|
||||
+= R.DFSData[PredDep.getSUnit()->NodeNum].InstrCount;
|
||||
joinPredSubtree(PredDep, Succ);
|
||||
R.DFSNodeData[SU->NodeNum].InstrCount =
|
||||
SU->getInstr()->isTransient() ? 0 : 1;
|
||||
}
|
||||
|
||||
/// Called once for each node after all predecessors are visited. Revisit this
|
||||
|
@ -1051,22 +1059,42 @@ public:
|
|||
void visitPostorderNode(const SUnit *SU) {
|
||||
// Mark this node as the root of a subtree. It may be joined with its
|
||||
// successors later.
|
||||
R.DFSData[SU->NodeNum].SubtreeID = SU->NodeNum;
|
||||
R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
|
||||
RootData RData(SU->NodeNum);
|
||||
RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;
|
||||
|
||||
// If any predecessors are still in their own subtree, they either cannot be
|
||||
// joined or are large enough to remain separate. If this parent node's
|
||||
// total instruction count is not greater than a child subtree by at least
|
||||
// the subtree limit, then try to join it now since splitting subtrees is
|
||||
// only useful if multiple high-pressure paths are possible.
|
||||
unsigned InstrCount = R.DFSData[SU->NodeNum].InstrCount;
|
||||
unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
|
||||
for (SUnit::const_pred_iterator
|
||||
PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
|
||||
if (PI->getKind() != SDep::Data)
|
||||
continue;
|
||||
unsigned PredNum = PI->getSUnit()->NodeNum;
|
||||
if ((InstrCount - R.DFSData[PredNum].InstrCount) < R.SubtreeLimit)
|
||||
if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
|
||||
joinPredSubtree(*PI, SU, /*CheckLimit=*/false);
|
||||
|
||||
// Either link or merge the TreeData entry from the child to the parent.
|
||||
if (R.DFSNodeData[PredNum].SubtreeID == PredNum)
|
||||
RootSet[PredNum].ParentNodeID = SU->NodeNum;
|
||||
else {
|
||||
RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
|
||||
RootSet.erase(PredNum);
|
||||
}
|
||||
}
|
||||
RootSet[SU->NodeNum] = RData;
|
||||
}
|
||||
|
||||
/// Called once for each tree edge after calling visitPostOrderNode on the
|
||||
/// predecessor. Increment the parent node's instruction count and
|
||||
/// preemptively join this subtree to its parent's if it is small enough.
|
||||
void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
|
||||
R.DFSNodeData[Succ->NodeNum].InstrCount
|
||||
+= R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
|
||||
joinPredSubtree(PredDep, Succ);
|
||||
}
|
||||
|
||||
/// Add a connection for cross edges.
|
||||
|
@ -1078,13 +1106,25 @@ public:
|
|||
/// between trees.
|
||||
void finalize() {
|
||||
SubtreeClasses.compress();
|
||||
R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
|
||||
assert(SubtreeClasses.getNumClasses() == RootSet.size()
|
||||
&& "number of roots should match trees");
|
||||
for (SparseSet<RootData>::const_iterator
|
||||
RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) {
|
||||
unsigned TreeID = SubtreeClasses[RI->NodeID];
|
||||
if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID)
|
||||
R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID];
|
||||
R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount;
|
||||
assert(RI->SubInstrCount <= R.DFSNodeData[RI->NodeID].InstrCount &&
|
||||
"Bad SubInstrCount");
|
||||
}
|
||||
R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
|
||||
R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
|
||||
DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
|
||||
for (unsigned Idx = 0, End = R.DFSData.size(); Idx != End; ++Idx) {
|
||||
R.DFSData[Idx].SubtreeID = SubtreeClasses[Idx];
|
||||
for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
|
||||
R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
|
||||
DEBUG(dbgs() << " SU(" << Idx << ") in tree "
|
||||
<< R.DFSData[Idx].SubtreeID << '\n');
|
||||
<< R.DFSNodeData[Idx].SubtreeID << '\n');
|
||||
}
|
||||
for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator
|
||||
I = ConnectionPairs.begin(), E = ConnectionPairs.end();
|
||||
|
@ -1109,7 +1149,7 @@ protected:
|
|||
// Check if the predecessor is already joined.
|
||||
const SUnit *PredSU = PredDep.getSUnit();
|
||||
unsigned PredNum = PredSU->NodeNum;
|
||||
if (R.DFSData[PredNum].SubtreeID != PredNum)
|
||||
if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
|
||||
return false;
|
||||
|
||||
// Four is the magic number of successors before a node is considered a
|
||||
|
@ -1122,11 +1162,9 @@ protected:
|
|||
return false;
|
||||
}
|
||||
}
|
||||
if (CheckLimit && R.DFSData[PredNum].SubInstrCount > R.SubtreeLimit)
|
||||
if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
|
||||
return false;
|
||||
|
||||
R.DFSData[PredNum].SubtreeID = Succ->NodeNum;
|
||||
R.DFSData[Succ->NodeNum].SubInstrCount += R.DFSData[PredNum].SubInstrCount;
|
||||
R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
|
||||
SubtreeClasses.join(Succ->NodeNum, PredNum);
|
||||
return true;
|
||||
}
|
||||
|
@ -1136,16 +1174,19 @@ protected:
|
|||
if (!Depth)
|
||||
return;
|
||||
|
||||
SmallVectorImpl<SchedDFSResult::Connection> &Connections =
|
||||
R.SubtreeConnections[FromTree];
|
||||
for (SmallVectorImpl<SchedDFSResult::Connection>::iterator
|
||||
I = Connections.begin(), E = Connections.end(); I != E; ++I) {
|
||||
if (I->TreeID == ToTree) {
|
||||
I->Level = std::max(I->Level, Depth);
|
||||
return;
|
||||
do {
|
||||
SmallVectorImpl<SchedDFSResult::Connection> &Connections =
|
||||
R.SubtreeConnections[FromTree];
|
||||
for (SmallVectorImpl<SchedDFSResult::Connection>::iterator
|
||||
I = Connections.begin(), E = Connections.end(); I != E; ++I) {
|
||||
if (I->TreeID == ToTree) {
|
||||
I->Level = std::max(I->Level, Depth);
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
|
||||
Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
|
||||
FromTree = R.DFSTreeData[FromTree].ParentTreeID;
|
||||
} while (FromTree != SchedDFSResult::InvalidSubtreeID);
|
||||
}
|
||||
};
|
||||
} // namespace llvm
|
||||
|
|
Loading…
Reference in New Issue