forked from OSchip/llvm-project
[module] Remove a header that isn't used and doesn't compile.
llvm-svn: 209168
This commit is contained in:
parent
b4728c12e8
commit
ff6c0c18a8
|
@ -1,342 +0,0 @@
|
|||
//===--- DataflowSolver.h - Skeleton Dataflow Analysis Code -----*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file defines skeleton code for implementing dataflow analyses.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_CLANG_ANALYSES_DATAFLOW_SOLVER
|
||||
#define LLVM_CLANG_ANALYSES_DATAFLOW_SOLVER
|
||||
|
||||
#include "clang/Analysis/CFG.h"
|
||||
#include "clang/Analysis/FlowSensitive/DataflowValues.h"
|
||||
#include "clang/Analysis/ProgramPoint.h"
|
||||
#include "llvm/ADT/DenseMap.h"
|
||||
#include "llvm/ADT/SmallVector.h"
|
||||
#include <functional>
|
||||
|
||||
namespace clang {
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
/// DataflowWorkListTy - Data structure representing the worklist used for
|
||||
/// dataflow algorithms.
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
class DataflowWorkListTy {
|
||||
llvm::DenseMap<const CFGBlock*, unsigned char> BlockSet;
|
||||
SmallVector<const CFGBlock *, 10> BlockQueue;
|
||||
public:
|
||||
/// enqueue - Add a block to the worklist. Blocks already on the
|
||||
/// worklist are not added a second time.
|
||||
void enqueue(const CFGBlock *B) {
|
||||
unsigned char &x = BlockSet[B];
|
||||
if (x == 1)
|
||||
return;
|
||||
x = 1;
|
||||
BlockQueue.push_back(B);
|
||||
}
|
||||
|
||||
/// dequeue - Remove a block from the worklist.
|
||||
const CFGBlock *dequeue() {
|
||||
assert(!BlockQueue.empty());
|
||||
const CFGBlock *B = BlockQueue.pop_back_val();
|
||||
BlockSet[B] = 0;
|
||||
return B;
|
||||
}
|
||||
|
||||
/// isEmpty - Return true if the worklist is empty.
|
||||
bool isEmpty() const { return BlockQueue.empty(); }
|
||||
};
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// BlockItrTraits - Traits classes that allow transparent iteration
|
||||
// over successors/predecessors of a block depending on the direction
|
||||
// of our dataflow analysis.
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
namespace dataflow {
|
||||
template<typename Tag> struct ItrTraits {};
|
||||
|
||||
template <> struct ItrTraits<forward_analysis_tag> {
|
||||
typedef CFGBlock::const_pred_iterator PrevBItr;
|
||||
typedef CFGBlock::const_succ_iterator NextBItr;
|
||||
typedef CFGBlock::const_iterator StmtItr;
|
||||
|
||||
static PrevBItr PrevBegin(const CFGBlock *B) { return B->pred_begin(); }
|
||||
static PrevBItr PrevEnd(const CFGBlock *B) { return B->pred_end(); }
|
||||
|
||||
static NextBItr NextBegin(const CFGBlock *B) { return B->succ_begin(); }
|
||||
static NextBItr NextEnd(const CFGBlock *B) { return B->succ_end(); }
|
||||
|
||||
static StmtItr StmtBegin(const CFGBlock *B) { return B->begin(); }
|
||||
static StmtItr StmtEnd(const CFGBlock *B) { return B->end(); }
|
||||
|
||||
static BlockEdge PrevEdge(const CFGBlock *B, const CFGBlock *Prev) {
|
||||
return BlockEdge(Prev, B, 0);
|
||||
}
|
||||
|
||||
static BlockEdge NextEdge(const CFGBlock *B, const CFGBlock *Next) {
|
||||
return BlockEdge(B, Next, 0);
|
||||
}
|
||||
};
|
||||
|
||||
template <> struct ItrTraits<backward_analysis_tag> {
|
||||
typedef CFGBlock::const_succ_iterator PrevBItr;
|
||||
typedef CFGBlock::const_pred_iterator NextBItr;
|
||||
typedef CFGBlock::const_reverse_iterator StmtItr;
|
||||
|
||||
static PrevBItr PrevBegin(const CFGBlock *B) { return B->succ_begin(); }
|
||||
static PrevBItr PrevEnd(const CFGBlock *B) { return B->succ_end(); }
|
||||
|
||||
static NextBItr NextBegin(const CFGBlock *B) { return B->pred_begin(); }
|
||||
static NextBItr NextEnd(const CFGBlock *B) { return B->pred_end(); }
|
||||
|
||||
static StmtItr StmtBegin(const CFGBlock *B) { return B->rbegin(); }
|
||||
static StmtItr StmtEnd(const CFGBlock *B) { return B->rend(); }
|
||||
|
||||
static BlockEdge PrevEdge(const CFGBlock *B, const CFGBlock *Prev) {
|
||||
return BlockEdge(B, Prev, 0);
|
||||
}
|
||||
|
||||
static BlockEdge NextEdge(const CFGBlock *B, const CFGBlock *Next) {
|
||||
return BlockEdge(Next, B, 0);
|
||||
}
|
||||
};
|
||||
} // end namespace dataflow
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
/// DataflowSolverTy - Generic dataflow solver.
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
template <typename _DFValuesTy, // Usually a subclass of DataflowValues
|
||||
typename _TransferFuncsTy,
|
||||
typename _MergeOperatorTy,
|
||||
typename _Equal = std::equal_to<typename _DFValuesTy::ValTy> >
|
||||
class DataflowSolver {
|
||||
|
||||
//===----------------------------------------------------===//
|
||||
// Type declarations.
|
||||
//===----------------------------------------------------===//
|
||||
|
||||
public:
|
||||
typedef _DFValuesTy DFValuesTy;
|
||||
typedef _TransferFuncsTy TransferFuncsTy;
|
||||
typedef _MergeOperatorTy MergeOperatorTy;
|
||||
|
||||
typedef typename _DFValuesTy::AnalysisDirTag AnalysisDirTag;
|
||||
typedef typename _DFValuesTy::ValTy ValTy;
|
||||
typedef typename _DFValuesTy::EdgeDataMapTy EdgeDataMapTy;
|
||||
typedef typename _DFValuesTy::BlockDataMapTy BlockDataMapTy;
|
||||
|
||||
typedef dataflow::ItrTraits<AnalysisDirTag> ItrTraits;
|
||||
typedef typename ItrTraits::NextBItr NextBItr;
|
||||
typedef typename ItrTraits::PrevBItr PrevBItr;
|
||||
typedef typename ItrTraits::StmtItr StmtItr;
|
||||
|
||||
//===----------------------------------------------------===//
|
||||
// External interface: constructing and running the solver.
|
||||
//===----------------------------------------------------===//
|
||||
|
||||
public:
|
||||
DataflowSolver(DFValuesTy& d) : D(d), TF(d.getAnalysisData()) {}
|
||||
~DataflowSolver() {}
|
||||
|
||||
/// runOnCFG - Computes dataflow values for all blocks in a CFG.
|
||||
void runOnCFG(CFG& cfg, bool recordStmtValues = false) {
|
||||
// Set initial dataflow values and boundary conditions.
|
||||
D.InitializeValues(cfg);
|
||||
// Solve the dataflow equations. This will populate D.EdgeDataMap
|
||||
// with dataflow values.
|
||||
SolveDataflowEquations(cfg, recordStmtValues);
|
||||
}
|
||||
|
||||
/// runOnBlock - Computes dataflow values for a given block. This
|
||||
/// should usually be invoked only after previously computing
|
||||
/// dataflow values using runOnCFG, as runOnBlock is intended to
|
||||
/// only be used for querying the dataflow values within a block
|
||||
/// with and Observer object.
|
||||
void runOnBlock(const CFGBlock *B, bool recordStmtValues) {
|
||||
BlockDataMapTy& M = D.getBlockDataMap();
|
||||
typename BlockDataMapTy::iterator I = M.find(B);
|
||||
|
||||
if (I != M.end()) {
|
||||
TF.getVal().copyValues(I->second);
|
||||
ProcessBlock(B, recordStmtValues, AnalysisDirTag());
|
||||
}
|
||||
}
|
||||
|
||||
void runOnBlock(const CFGBlock &B, bool recordStmtValues) {
|
||||
runOnBlock(&B, recordStmtValues);
|
||||
}
|
||||
void runOnBlock(CFG::iterator &I, bool recordStmtValues) {
|
||||
runOnBlock(*I, recordStmtValues);
|
||||
}
|
||||
void runOnBlock(CFG::const_iterator &I, bool recordStmtValues) {
|
||||
runOnBlock(*I, recordStmtValues);
|
||||
}
|
||||
|
||||
void runOnAllBlocks(const CFG& cfg, bool recordStmtValues = false) {
|
||||
for (CFG::const_iterator I=cfg.begin(), E=cfg.end(); I!=E; ++I)
|
||||
runOnBlock(I, recordStmtValues);
|
||||
}
|
||||
|
||||
//===----------------------------------------------------===//
|
||||
// Internal solver logic.
|
||||
//===----------------------------------------------------===//
|
||||
|
||||
private:
|
||||
|
||||
/// SolveDataflowEquations - Perform the actual worklist algorithm
|
||||
/// to compute dataflow values.
|
||||
void SolveDataflowEquations(CFG& cfg, bool recordStmtValues) {
|
||||
EnqueueBlocksOnWorklist(cfg, AnalysisDirTag());
|
||||
|
||||
while (!WorkList.isEmpty()) {
|
||||
const CFGBlock *B = WorkList.dequeue();
|
||||
ProcessMerge(cfg, B);
|
||||
ProcessBlock(B, recordStmtValues, AnalysisDirTag());
|
||||
UpdateEdges(cfg, B, TF.getVal());
|
||||
}
|
||||
}
|
||||
|
||||
void EnqueueBlocksOnWorklist(CFG &cfg, dataflow::forward_analysis_tag) {
|
||||
// Enqueue all blocks to ensure the dataflow values are computed
|
||||
// for every block. Not all blocks are guaranteed to reach the exit block.
|
||||
for (CFG::iterator I=cfg.begin(), E=cfg.end(); I!=E; ++I)
|
||||
WorkList.enqueue(&**I);
|
||||
}
|
||||
|
||||
void EnqueueBlocksOnWorklist(CFG &cfg, dataflow::backward_analysis_tag) {
|
||||
// Enqueue all blocks to ensure the dataflow values are computed
|
||||
// for every block. Not all blocks are guaranteed to reach the exit block.
|
||||
// Enqueue in reverse order since that will more likely match with
|
||||
// the order they should ideally processed by the dataflow algorithm.
|
||||
for (CFG::reverse_iterator I=cfg.rbegin(), E=cfg.rend(); I!=E; ++I)
|
||||
WorkList.enqueue(&**I);
|
||||
}
|
||||
|
||||
void ProcessMerge(CFG& cfg, const CFGBlock *B) {
|
||||
ValTy& V = TF.getVal();
|
||||
TF.SetTopValue(V);
|
||||
|
||||
// Merge dataflow values from all predecessors of this block.
|
||||
MergeOperatorTy Merge;
|
||||
|
||||
EdgeDataMapTy& M = D.getEdgeDataMap();
|
||||
bool firstMerge = true;
|
||||
bool noEdges = true;
|
||||
for (PrevBItr I=ItrTraits::PrevBegin(B),E=ItrTraits::PrevEnd(B); I!=E; ++I){
|
||||
|
||||
CFGBlock *PrevBlk = *I;
|
||||
|
||||
if (!PrevBlk)
|
||||
continue;
|
||||
|
||||
typename EdgeDataMapTy::iterator EI =
|
||||
M.find(ItrTraits::PrevEdge(B, PrevBlk));
|
||||
|
||||
if (EI != M.end()) {
|
||||
noEdges = false;
|
||||
if (firstMerge) {
|
||||
firstMerge = false;
|
||||
V.copyValues(EI->second);
|
||||
}
|
||||
else
|
||||
Merge(V, EI->second);
|
||||
}
|
||||
}
|
||||
|
||||
bool isInitialized = true;
|
||||
typename BlockDataMapTy::iterator BI = D.getBlockDataMap().find(B);
|
||||
if(BI == D.getBlockDataMap().end()) {
|
||||
isInitialized = false;
|
||||
BI = D.getBlockDataMap().insert( std::make_pair(B,ValTy()) ).first;
|
||||
}
|
||||
// If no edges have been found, it means this is the first time the solver
|
||||
// has been called on block B, we copy the initialization values (if any)
|
||||
// as current value for V (which will be used as edge data)
|
||||
if(noEdges && isInitialized)
|
||||
Merge(V, BI->second);
|
||||
|
||||
// Set the data for the block.
|
||||
BI->second.copyValues(V);
|
||||
}
|
||||
|
||||
/// ProcessBlock - Process the transfer functions for a given block.
|
||||
void ProcessBlock(const CFGBlock *B, bool recordStmtValues,
|
||||
dataflow::forward_analysis_tag) {
|
||||
|
||||
TF.setCurrentBlock(B);
|
||||
|
||||
for (StmtItr I=ItrTraits::StmtBegin(B), E=ItrTraits::StmtEnd(B); I!=E;++I) {
|
||||
CFGElement El = *I;
|
||||
if (const CFGStmt *S = El.getAs<CFGStmt>())
|
||||
ProcessStmt(S->getStmt(), recordStmtValues, AnalysisDirTag());
|
||||
}
|
||||
|
||||
TF.VisitTerminator(const_cast<CFGBlock*>(B));
|
||||
}
|
||||
|
||||
void ProcessBlock(const CFGBlock *B, bool recordStmtValues,
|
||||
dataflow::backward_analysis_tag) {
|
||||
|
||||
TF.setCurrentBlock(B);
|
||||
|
||||
TF.VisitTerminator(const_cast<CFGBlock*>(B));
|
||||
|
||||
for (StmtItr I=ItrTraits::StmtBegin(B), E=ItrTraits::StmtEnd(B); I!=E;++I) {
|
||||
CFGElement El = *I;
|
||||
if (const CFGStmt *S = El.getAs<CFGStmt>())
|
||||
ProcessStmt(S->getStmt(), recordStmtValues, AnalysisDirTag());
|
||||
}
|
||||
}
|
||||
|
||||
void ProcessStmt(const Stmt *S, bool record, dataflow::forward_analysis_tag) {
|
||||
if (record) D.getStmtDataMap()[S] = TF.getVal();
|
||||
TF.BlockStmt_Visit(const_cast<Stmt*>(S));
|
||||
}
|
||||
|
||||
void ProcessStmt(const Stmt *S, bool record, dataflow::backward_analysis_tag){
|
||||
TF.BlockStmt_Visit(const_cast<Stmt*>(S));
|
||||
if (record) D.getStmtDataMap()[S] = TF.getVal();
|
||||
}
|
||||
|
||||
/// UpdateEdges - After processing the transfer functions for a
|
||||
/// block, update the dataflow value associated with the block's
|
||||
/// outgoing/incoming edges (depending on whether we do a
|
||||
// forward/backward analysis respectively)
|
||||
void UpdateEdges(CFG& cfg, const CFGBlock *B, ValTy& V) {
|
||||
for (NextBItr I=ItrTraits::NextBegin(B), E=ItrTraits::NextEnd(B); I!=E; ++I)
|
||||
if (CFGBlock *NextBlk = *I)
|
||||
UpdateEdgeValue(ItrTraits::NextEdge(B, NextBlk),V, NextBlk);
|
||||
}
|
||||
|
||||
/// UpdateEdgeValue - Update the value associated with a given edge.
|
||||
void UpdateEdgeValue(BlockEdge E, ValTy& V, const CFGBlock *TargetBlock) {
|
||||
EdgeDataMapTy& M = D.getEdgeDataMap();
|
||||
typename EdgeDataMapTy::iterator I = M.find(E);
|
||||
|
||||
if (I == M.end()) { // First computed value for this edge?
|
||||
M[E].copyValues(V);
|
||||
WorkList.enqueue(TargetBlock);
|
||||
}
|
||||
else if (!_Equal()(V,I->second)) {
|
||||
I->second.copyValues(V);
|
||||
WorkList.enqueue(TargetBlock);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
DFValuesTy& D;
|
||||
DataflowWorkListTy WorkList;
|
||||
TransferFuncsTy TF;
|
||||
};
|
||||
|
||||
} // end namespace clang
|
||||
#endif
|
Loading…
Reference in New Issue