forked from OSchip/llvm-project
Revert "Remove PlaceSafepoints pass"
This reverts commit cb66e123c6
. It was reported via https://reviews.llvm.org/rGcb66e123c6bc82a793300b6fb3ecbed79c58f557#1132969 that the Microsoft.NET compiler is still using this pass.
This commit is contained in:
parent
be0d427a14
commit
fe755af3a9
|
@ -505,7 +505,7 @@ The Statepoint Example GC
|
|||
|
||||
This GC provides an example of how one might use the infrastructure provided
|
||||
by ``gc.statepoint``. This example GC is compatible with the
|
||||
:ref:`RewriteStatepointsForGC` utility passes
|
||||
:ref:`PlaceSafepoints` and :ref:`RewriteStatepointsForGC` utility passes
|
||||
which simplify ``gc.statepoint`` sequence insertion. If you need to build a
|
||||
custom GC strategy around the ``gc.statepoints`` mechanisms, it is recommended
|
||||
that you use this one as a starting point.
|
||||
|
|
|
@ -669,6 +669,72 @@ pointer and offset pairs. For example:
|
|||
i64 %length)
|
||||
|
||||
|
||||
.. _PlaceSafepoints:
|
||||
|
||||
PlaceSafepoints
|
||||
^^^^^^^^^^^^^^^^
|
||||
|
||||
The pass PlaceSafepoints inserts safepoint polls sufficient to ensure running
|
||||
code checks for a safepoint request on a timely manner. This pass is expected
|
||||
to be run before RewriteStatepointsForGC and thus does not produce full
|
||||
relocation sequences.
|
||||
|
||||
As an example, given input IR of the following:
|
||||
|
||||
.. code-block:: llvm
|
||||
|
||||
define void @test() gc "statepoint-example" {
|
||||
call void @foo()
|
||||
ret void
|
||||
}
|
||||
|
||||
declare void @do_safepoint()
|
||||
define void @gc.safepoint_poll() {
|
||||
call void @do_safepoint()
|
||||
ret void
|
||||
}
|
||||
|
||||
|
||||
This pass would produce the following IR:
|
||||
|
||||
.. code-block:: llvm
|
||||
|
||||
define void @test() gc "statepoint-example" {
|
||||
call void @do_safepoint()
|
||||
call void @foo()
|
||||
ret void
|
||||
}
|
||||
|
||||
In this case, we've added an (unconditional) entry safepoint poll. Note that
|
||||
despite appearances, the entry poll is not necessarily redundant. We'd have to
|
||||
know that ``foo`` and ``test`` were not mutually recursive for the poll to be
|
||||
redundant. In practice, you'd probably want to your poll definition to contain
|
||||
a conditional branch of some form.
|
||||
|
||||
At the moment, PlaceSafepoints can insert safepoint polls at method entry and
|
||||
loop backedges locations. Extending this to work with return polls would be
|
||||
straight forward if desired.
|
||||
|
||||
PlaceSafepoints includes a number of optimizations to avoid placing safepoint
|
||||
polls at particular sites unless needed to ensure timely execution of a poll
|
||||
under normal conditions. PlaceSafepoints does not attempt to ensure timely
|
||||
execution of a poll under worst case conditions such as heavy system paging.
|
||||
|
||||
The implementation of a safepoint poll action is specified by looking up a
|
||||
function of the name ``gc.safepoint_poll`` in the containing Module. The body
|
||||
of this function is inserted at each poll site desired. While calls or invokes
|
||||
inside this method are transformed to a ``gc.statepoints``, recursive poll
|
||||
insertion is not performed.
|
||||
|
||||
This pass is useful for any language frontend which only has to support
|
||||
garbage collection semantics at safepoints. If you need other abstract
|
||||
frame information at safepoints (e.g. for deoptimization or introspection),
|
||||
you can insert safepoint polls in the frontend. If you have the later case,
|
||||
please ask on llvm-dev for suggestions. There's been a good amount of work
|
||||
done on making such a scheme work well in practice which is not yet documented
|
||||
here.
|
||||
|
||||
|
||||
Supported Architectures
|
||||
=======================
|
||||
|
||||
|
|
|
@ -332,6 +332,8 @@ void initializePatchableFunctionPass(PassRegistry&);
|
|||
void initializePeepholeOptimizerPass(PassRegistry&);
|
||||
void initializePhiValuesWrapperPassPass(PassRegistry&);
|
||||
void initializePhysicalRegisterUsageInfoPass(PassRegistry&);
|
||||
void initializePlaceBackedgeSafepointsImplPass(PassRegistry&);
|
||||
void initializePlaceSafepointsPass(PassRegistry&);
|
||||
void initializePostDomOnlyPrinterWrapperPassPass(PassRegistry &);
|
||||
void initializePostDomOnlyViewerWrapperPassPass(PassRegistry &);
|
||||
void initializePostDomPrinterWrapperPassPass(PassRegistry &);
|
||||
|
|
|
@ -462,6 +462,16 @@ FunctionPass *createSpeculativeExecutionIfHasBranchDivergencePass();
|
|||
//
|
||||
FunctionPass *createStraightLineStrengthReducePass();
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// PlaceSafepoints - Rewrite any IR calls to gc.statepoints and insert any
|
||||
// safepoint polls (method entry, backedge) that might be required. This pass
|
||||
// does not generate explicit relocation sequences - that's handled by
|
||||
// RewriteStatepointsForGC which can be run at an arbitrary point in the pass
|
||||
// order following this pass.
|
||||
//
|
||||
FunctionPass *createPlaceSafepointsPass();
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// RewriteStatepointsForGC - Rewrite any gc.statepoints which do not yet have
|
||||
|
|
|
@ -59,6 +59,7 @@ add_llvm_component_library(LLVMScalarOpts
|
|||
NaryReassociate.cpp
|
||||
NewGVN.cpp
|
||||
PartiallyInlineLibCalls.cpp
|
||||
PlaceSafepoints.cpp
|
||||
Reassociate.cpp
|
||||
Reg2Mem.cpp
|
||||
RewriteStatepointsForGC.cpp
|
||||
|
|
|
@ -0,0 +1,691 @@
|
|||
//===- PlaceSafepoints.cpp - Place GC Safepoints --------------------------===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Place garbage collection safepoints at appropriate locations in the IR. This
|
||||
// does not make relocation semantics or variable liveness explicit. That's
|
||||
// done by RewriteStatepointsForGC.
|
||||
//
|
||||
// Terminology:
|
||||
// - A call is said to be "parseable" if there is a stack map generated for the
|
||||
// return PC of the call. A runtime can determine where values listed in the
|
||||
// deopt arguments and (after RewriteStatepointsForGC) gc arguments are located
|
||||
// on the stack when the code is suspended inside such a call. Every parse
|
||||
// point is represented by a call wrapped in an gc.statepoint intrinsic.
|
||||
// - A "poll" is an explicit check in the generated code to determine if the
|
||||
// runtime needs the generated code to cooperate by calling a helper routine
|
||||
// and thus suspending its execution at a known state. The call to the helper
|
||||
// routine will be parseable. The (gc & runtime specific) logic of a poll is
|
||||
// assumed to be provided in a function of the name "gc.safepoint_poll".
|
||||
//
|
||||
// We aim to insert polls such that running code can quickly be brought to a
|
||||
// well defined state for inspection by the collector. In the current
|
||||
// implementation, this is done via the insertion of poll sites at method entry
|
||||
// and the backedge of most loops. We try to avoid inserting more polls than
|
||||
// are necessary to ensure a finite period between poll sites. This is not
|
||||
// because the poll itself is expensive in the generated code; it's not. Polls
|
||||
// do tend to impact the optimizer itself in negative ways; we'd like to avoid
|
||||
// perturbing the optimization of the method as much as we can.
|
||||
//
|
||||
// We also need to make most call sites parseable. The callee might execute a
|
||||
// poll (or otherwise be inspected by the GC). If so, the entire stack
|
||||
// (including the suspended frame of the current method) must be parseable.
|
||||
//
|
||||
// This pass will insert:
|
||||
// - Call parse points ("call safepoints") for any call which may need to
|
||||
// reach a safepoint during the execution of the callee function.
|
||||
// - Backedge safepoint polls and entry safepoint polls to ensure that
|
||||
// executing code reaches a safepoint poll in a finite amount of time.
|
||||
//
|
||||
// We do not currently support return statepoints, but adding them would not
|
||||
// be hard. They are not required for correctness - entry safepoints are an
|
||||
// alternative - but some GCs may prefer them. Patches welcome.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/InitializePasses.h"
|
||||
#include "llvm/Pass.h"
|
||||
|
||||
#include "llvm/ADT/SetVector.h"
|
||||
#include "llvm/ADT/Statistic.h"
|
||||
#include "llvm/Analysis/CFG.h"
|
||||
#include "llvm/Analysis/LoopInfo.h"
|
||||
#include "llvm/Analysis/ScalarEvolution.h"
|
||||
#include "llvm/Analysis/TargetLibraryInfo.h"
|
||||
#include "llvm/IR/Dominators.h"
|
||||
#include "llvm/IR/IntrinsicInst.h"
|
||||
#include "llvm/IR/LegacyPassManager.h"
|
||||
#include "llvm/IR/Statepoint.h"
|
||||
#include "llvm/Support/CommandLine.h"
|
||||
#include "llvm/Support/Debug.h"
|
||||
#include "llvm/Transforms/Scalar.h"
|
||||
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
||||
#include "llvm/Transforms/Utils/Cloning.h"
|
||||
#include "llvm/Transforms/Utils/Local.h"
|
||||
|
||||
#define DEBUG_TYPE "safepoint-placement"
|
||||
|
||||
STATISTIC(NumEntrySafepoints, "Number of entry safepoints inserted");
|
||||
STATISTIC(NumBackedgeSafepoints, "Number of backedge safepoints inserted");
|
||||
|
||||
STATISTIC(CallInLoop,
|
||||
"Number of loops without safepoints due to calls in loop");
|
||||
STATISTIC(FiniteExecution,
|
||||
"Number of loops without safepoints finite execution");
|
||||
|
||||
using namespace llvm;
|
||||
|
||||
// Ignore opportunities to avoid placing safepoints on backedges, useful for
|
||||
// validation
|
||||
static cl::opt<bool> AllBackedges("spp-all-backedges", cl::Hidden,
|
||||
cl::init(false));
|
||||
|
||||
/// How narrow does the trip count of a loop have to be to have to be considered
|
||||
/// "counted"? Counted loops do not get safepoints at backedges.
|
||||
static cl::opt<int> CountedLoopTripWidth("spp-counted-loop-trip-width",
|
||||
cl::Hidden, cl::init(32));
|
||||
|
||||
// If true, split the backedge of a loop when placing the safepoint, otherwise
|
||||
// split the latch block itself. Both are useful to support for
|
||||
// experimentation, but in practice, it looks like splitting the backedge
|
||||
// optimizes better.
|
||||
static cl::opt<bool> SplitBackedge("spp-split-backedge", cl::Hidden,
|
||||
cl::init(false));
|
||||
|
||||
namespace {
|
||||
|
||||
/// An analysis pass whose purpose is to identify each of the backedges in
|
||||
/// the function which require a safepoint poll to be inserted.
|
||||
struct PlaceBackedgeSafepointsImpl : public FunctionPass {
|
||||
static char ID;
|
||||
|
||||
/// The output of the pass - gives a list of each backedge (described by
|
||||
/// pointing at the branch) which need a poll inserted.
|
||||
std::vector<Instruction *> PollLocations;
|
||||
|
||||
/// True unless we're running spp-no-calls in which case we need to disable
|
||||
/// the call-dependent placement opts.
|
||||
bool CallSafepointsEnabled;
|
||||
|
||||
ScalarEvolution *SE = nullptr;
|
||||
DominatorTree *DT = nullptr;
|
||||
LoopInfo *LI = nullptr;
|
||||
TargetLibraryInfo *TLI = nullptr;
|
||||
|
||||
PlaceBackedgeSafepointsImpl(bool CallSafepoints = false)
|
||||
: FunctionPass(ID), CallSafepointsEnabled(CallSafepoints) {
|
||||
initializePlaceBackedgeSafepointsImplPass(*PassRegistry::getPassRegistry());
|
||||
}
|
||||
|
||||
bool runOnLoop(Loop *);
|
||||
void runOnLoopAndSubLoops(Loop *L) {
|
||||
// Visit all the subloops
|
||||
for (Loop *I : *L)
|
||||
runOnLoopAndSubLoops(I);
|
||||
runOnLoop(L);
|
||||
}
|
||||
|
||||
bool runOnFunction(Function &F) override {
|
||||
SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
|
||||
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
||||
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
|
||||
TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
|
||||
for (Loop *I : *LI) {
|
||||
runOnLoopAndSubLoops(I);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
||||
AU.addRequired<DominatorTreeWrapperPass>();
|
||||
AU.addRequired<ScalarEvolutionWrapperPass>();
|
||||
AU.addRequired<LoopInfoWrapperPass>();
|
||||
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
||||
// We no longer modify the IR at all in this pass. Thus all
|
||||
// analysis are preserved.
|
||||
AU.setPreservesAll();
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
static cl::opt<bool> NoEntry("spp-no-entry", cl::Hidden, cl::init(false));
|
||||
static cl::opt<bool> NoCall("spp-no-call", cl::Hidden, cl::init(false));
|
||||
static cl::opt<bool> NoBackedge("spp-no-backedge", cl::Hidden, cl::init(false));
|
||||
|
||||
namespace {
|
||||
struct PlaceSafepoints : public FunctionPass {
|
||||
static char ID; // Pass identification, replacement for typeid
|
||||
|
||||
PlaceSafepoints() : FunctionPass(ID) {
|
||||
initializePlaceSafepointsPass(*PassRegistry::getPassRegistry());
|
||||
}
|
||||
bool runOnFunction(Function &F) override;
|
||||
|
||||
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
||||
// We modify the graph wholesale (inlining, block insertion, etc). We
|
||||
// preserve nothing at the moment. We could potentially preserve dom tree
|
||||
// if that was worth doing
|
||||
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
// Insert a safepoint poll immediately before the given instruction. Does
|
||||
// not handle the parsability of state at the runtime call, that's the
|
||||
// callers job.
|
||||
static void
|
||||
InsertSafepointPoll(Instruction *InsertBefore,
|
||||
std::vector<CallBase *> &ParsePointsNeeded /*rval*/,
|
||||
const TargetLibraryInfo &TLI);
|
||||
|
||||
static bool needsStatepoint(CallBase *Call, const TargetLibraryInfo &TLI) {
|
||||
if (callsGCLeafFunction(Call, TLI))
|
||||
return false;
|
||||
if (auto *CI = dyn_cast<CallInst>(Call)) {
|
||||
if (CI->isInlineAsm())
|
||||
return false;
|
||||
}
|
||||
|
||||
return !(isa<GCStatepointInst>(Call) || isa<GCRelocateInst>(Call) ||
|
||||
isa<GCResultInst>(Call));
|
||||
}
|
||||
|
||||
/// Returns true if this loop is known to contain a call safepoint which
|
||||
/// must unconditionally execute on any iteration of the loop which returns
|
||||
/// to the loop header via an edge from Pred. Returns a conservative correct
|
||||
/// answer; i.e. false is always valid.
|
||||
static bool containsUnconditionalCallSafepoint(Loop *L, BasicBlock *Header,
|
||||
BasicBlock *Pred,
|
||||
DominatorTree &DT,
|
||||
const TargetLibraryInfo &TLI) {
|
||||
// In general, we're looking for any cut of the graph which ensures
|
||||
// there's a call safepoint along every edge between Header and Pred.
|
||||
// For the moment, we look only for the 'cuts' that consist of a single call
|
||||
// instruction in a block which is dominated by the Header and dominates the
|
||||
// loop latch (Pred) block. Somewhat surprisingly, walking the entire chain
|
||||
// of such dominating blocks gets substantially more occurrences than just
|
||||
// checking the Pred and Header blocks themselves. This may be due to the
|
||||
// density of loop exit conditions caused by range and null checks.
|
||||
// TODO: structure this as an analysis pass, cache the result for subloops,
|
||||
// avoid dom tree recalculations
|
||||
assert(DT.dominates(Header, Pred) && "loop latch not dominated by header?");
|
||||
|
||||
BasicBlock *Current = Pred;
|
||||
while (true) {
|
||||
for (Instruction &I : *Current) {
|
||||
if (auto *Call = dyn_cast<CallBase>(&I))
|
||||
// Note: Technically, needing a safepoint isn't quite the right
|
||||
// condition here. We should instead be checking if the target method
|
||||
// has an
|
||||
// unconditional poll. In practice, this is only a theoretical concern
|
||||
// since we don't have any methods with conditional-only safepoint
|
||||
// polls.
|
||||
if (needsStatepoint(Call, TLI))
|
||||
return true;
|
||||
}
|
||||
|
||||
if (Current == Header)
|
||||
break;
|
||||
Current = DT.getNode(Current)->getIDom()->getBlock();
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
/// Returns true if this loop is known to terminate in a finite number of
|
||||
/// iterations. Note that this function may return false for a loop which
|
||||
/// does actual terminate in a finite constant number of iterations due to
|
||||
/// conservatism in the analysis.
|
||||
static bool mustBeFiniteCountedLoop(Loop *L, ScalarEvolution *SE,
|
||||
BasicBlock *Pred) {
|
||||
// A conservative bound on the loop as a whole.
|
||||
const SCEV *MaxTrips = SE->getConstantMaxBackedgeTakenCount(L);
|
||||
if (!isa<SCEVCouldNotCompute>(MaxTrips) &&
|
||||
SE->getUnsignedRange(MaxTrips).getUnsignedMax().isIntN(
|
||||
CountedLoopTripWidth))
|
||||
return true;
|
||||
|
||||
// If this is a conditional branch to the header with the alternate path
|
||||
// being outside the loop, we can ask questions about the execution frequency
|
||||
// of the exit block.
|
||||
if (L->isLoopExiting(Pred)) {
|
||||
// This returns an exact expression only. TODO: We really only need an
|
||||
// upper bound here, but SE doesn't expose that.
|
||||
const SCEV *MaxExec = SE->getExitCount(L, Pred);
|
||||
if (!isa<SCEVCouldNotCompute>(MaxExec) &&
|
||||
SE->getUnsignedRange(MaxExec).getUnsignedMax().isIntN(
|
||||
CountedLoopTripWidth))
|
||||
return true;
|
||||
}
|
||||
|
||||
return /* not finite */ false;
|
||||
}
|
||||
|
||||
static void scanOneBB(Instruction *Start, Instruction *End,
|
||||
std::vector<CallInst *> &Calls,
|
||||
DenseSet<BasicBlock *> &Seen,
|
||||
std::vector<BasicBlock *> &Worklist) {
|
||||
for (BasicBlock::iterator BBI(Start), BBE0 = Start->getParent()->end(),
|
||||
BBE1 = BasicBlock::iterator(End);
|
||||
BBI != BBE0 && BBI != BBE1; BBI++) {
|
||||
if (CallInst *CI = dyn_cast<CallInst>(&*BBI))
|
||||
Calls.push_back(CI);
|
||||
|
||||
// FIXME: This code does not handle invokes
|
||||
assert(!isa<InvokeInst>(&*BBI) &&
|
||||
"support for invokes in poll code needed");
|
||||
|
||||
// Only add the successor blocks if we reach the terminator instruction
|
||||
// without encountering end first
|
||||
if (BBI->isTerminator()) {
|
||||
BasicBlock *BB = BBI->getParent();
|
||||
for (BasicBlock *Succ : successors(BB)) {
|
||||
if (Seen.insert(Succ).second) {
|
||||
Worklist.push_back(Succ);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void scanInlinedCode(Instruction *Start, Instruction *End,
|
||||
std::vector<CallInst *> &Calls,
|
||||
DenseSet<BasicBlock *> &Seen) {
|
||||
Calls.clear();
|
||||
std::vector<BasicBlock *> Worklist;
|
||||
Seen.insert(Start->getParent());
|
||||
scanOneBB(Start, End, Calls, Seen, Worklist);
|
||||
while (!Worklist.empty()) {
|
||||
BasicBlock *BB = Worklist.back();
|
||||
Worklist.pop_back();
|
||||
scanOneBB(&*BB->begin(), End, Calls, Seen, Worklist);
|
||||
}
|
||||
}
|
||||
|
||||
bool PlaceBackedgeSafepointsImpl::runOnLoop(Loop *L) {
|
||||
// Loop through all loop latches (branches controlling backedges). We need
|
||||
// to place a safepoint on every backedge (potentially).
|
||||
// Note: In common usage, there will be only one edge due to LoopSimplify
|
||||
// having run sometime earlier in the pipeline, but this code must be correct
|
||||
// w.r.t. loops with multiple backedges.
|
||||
BasicBlock *Header = L->getHeader();
|
||||
SmallVector<BasicBlock*, 16> LoopLatches;
|
||||
L->getLoopLatches(LoopLatches);
|
||||
for (BasicBlock *Pred : LoopLatches) {
|
||||
assert(L->contains(Pred));
|
||||
|
||||
// Make a policy decision about whether this loop needs a safepoint or
|
||||
// not. Note that this is about unburdening the optimizer in loops, not
|
||||
// avoiding the runtime cost of the actual safepoint.
|
||||
if (!AllBackedges) {
|
||||
if (mustBeFiniteCountedLoop(L, SE, Pred)) {
|
||||
LLVM_DEBUG(dbgs() << "skipping safepoint placement in finite loop\n");
|
||||
FiniteExecution++;
|
||||
continue;
|
||||
}
|
||||
if (CallSafepointsEnabled &&
|
||||
containsUnconditionalCallSafepoint(L, Header, Pred, *DT, *TLI)) {
|
||||
// Note: This is only semantically legal since we won't do any further
|
||||
// IPO or inlining before the actual call insertion.. If we hadn't, we
|
||||
// might latter loose this call safepoint.
|
||||
LLVM_DEBUG(
|
||||
dbgs()
|
||||
<< "skipping safepoint placement due to unconditional call\n");
|
||||
CallInLoop++;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: We can create an inner loop which runs a finite number of
|
||||
// iterations with an outer loop which contains a safepoint. This would
|
||||
// not help runtime performance that much, but it might help our ability to
|
||||
// optimize the inner loop.
|
||||
|
||||
// Safepoint insertion would involve creating a new basic block (as the
|
||||
// target of the current backedge) which does the safepoint (of all live
|
||||
// variables) and branches to the true header
|
||||
Instruction *Term = Pred->getTerminator();
|
||||
|
||||
LLVM_DEBUG(dbgs() << "[LSP] terminator instruction: " << *Term);
|
||||
|
||||
PollLocations.push_back(Term);
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
/// Returns true if an entry safepoint is not required before this callsite in
|
||||
/// the caller function.
|
||||
static bool doesNotRequireEntrySafepointBefore(CallBase *Call) {
|
||||
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call)) {
|
||||
switch (II->getIntrinsicID()) {
|
||||
case Intrinsic::experimental_gc_statepoint:
|
||||
case Intrinsic::experimental_patchpoint_void:
|
||||
case Intrinsic::experimental_patchpoint_i64:
|
||||
// The can wrap an actual call which may grow the stack by an unbounded
|
||||
// amount or run forever.
|
||||
return false;
|
||||
default:
|
||||
// Most LLVM intrinsics are things which do not expand to actual calls, or
|
||||
// at least if they do, are leaf functions that cause only finite stack
|
||||
// growth. In particular, the optimizer likes to form things like memsets
|
||||
// out of stores in the original IR. Another important example is
|
||||
// llvm.localescape which must occur in the entry block. Inserting a
|
||||
// safepoint before it is not legal since it could push the localescape
|
||||
// out of the entry block.
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
static Instruction *findLocationForEntrySafepoint(Function &F,
|
||||
DominatorTree &DT) {
|
||||
|
||||
// Conceptually, this poll needs to be on method entry, but in
|
||||
// practice, we place it as late in the entry block as possible. We
|
||||
// can place it as late as we want as long as it dominates all calls
|
||||
// that can grow the stack. This, combined with backedge polls,
|
||||
// give us all the progress guarantees we need.
|
||||
|
||||
// hasNextInstruction and nextInstruction are used to iterate
|
||||
// through a "straight line" execution sequence.
|
||||
|
||||
auto HasNextInstruction = [](Instruction *I) {
|
||||
if (!I->isTerminator())
|
||||
return true;
|
||||
|
||||
BasicBlock *nextBB = I->getParent()->getUniqueSuccessor();
|
||||
return nextBB && (nextBB->getUniquePredecessor() != nullptr);
|
||||
};
|
||||
|
||||
auto NextInstruction = [&](Instruction *I) {
|
||||
assert(HasNextInstruction(I) &&
|
||||
"first check if there is a next instruction!");
|
||||
|
||||
if (I->isTerminator())
|
||||
return &I->getParent()->getUniqueSuccessor()->front();
|
||||
return &*++I->getIterator();
|
||||
};
|
||||
|
||||
Instruction *Cursor = nullptr;
|
||||
for (Cursor = &F.getEntryBlock().front(); HasNextInstruction(Cursor);
|
||||
Cursor = NextInstruction(Cursor)) {
|
||||
|
||||
// We need to ensure a safepoint poll occurs before any 'real' call. The
|
||||
// easiest way to ensure finite execution between safepoints in the face of
|
||||
// recursive and mutually recursive functions is to enforce that each take
|
||||
// a safepoint. Additionally, we need to ensure a poll before any call
|
||||
// which can grow the stack by an unbounded amount. This isn't required
|
||||
// for GC semantics per se, but is a common requirement for languages
|
||||
// which detect stack overflow via guard pages and then throw exceptions.
|
||||
if (auto *Call = dyn_cast<CallBase>(Cursor)) {
|
||||
if (doesNotRequireEntrySafepointBefore(Call))
|
||||
continue;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
assert((HasNextInstruction(Cursor) || Cursor->isTerminator()) &&
|
||||
"either we stopped because of a call, or because of terminator");
|
||||
|
||||
return Cursor;
|
||||
}
|
||||
|
||||
const char GCSafepointPollName[] = "gc.safepoint_poll";
|
||||
|
||||
static bool isGCSafepointPoll(Function &F) {
|
||||
return F.getName().equals(GCSafepointPollName);
|
||||
}
|
||||
|
||||
/// Returns true if this function should be rewritten to include safepoint
|
||||
/// polls and parseable call sites. The main point of this function is to be
|
||||
/// an extension point for custom logic.
|
||||
static bool shouldRewriteFunction(Function &F) {
|
||||
// TODO: This should check the GCStrategy
|
||||
if (F.hasGC()) {
|
||||
const auto &FunctionGCName = F.getGC();
|
||||
const StringRef StatepointExampleName("statepoint-example");
|
||||
const StringRef CoreCLRName("coreclr");
|
||||
return (StatepointExampleName == FunctionGCName) ||
|
||||
(CoreCLRName == FunctionGCName);
|
||||
} else
|
||||
return false;
|
||||
}
|
||||
|
||||
// TODO: These should become properties of the GCStrategy, possibly with
|
||||
// command line overrides.
|
||||
static bool enableEntrySafepoints(Function &F) { return !NoEntry; }
|
||||
static bool enableBackedgeSafepoints(Function &F) { return !NoBackedge; }
|
||||
static bool enableCallSafepoints(Function &F) { return !NoCall; }
|
||||
|
||||
bool PlaceSafepoints::runOnFunction(Function &F) {
|
||||
if (F.isDeclaration() || F.empty()) {
|
||||
// This is a declaration, nothing to do. Must exit early to avoid crash in
|
||||
// dom tree calculation
|
||||
return false;
|
||||
}
|
||||
|
||||
if (isGCSafepointPoll(F)) {
|
||||
// Given we're inlining this inside of safepoint poll insertion, this
|
||||
// doesn't make any sense. Note that we do make any contained calls
|
||||
// parseable after we inline a poll.
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!shouldRewriteFunction(F))
|
||||
return false;
|
||||
|
||||
const TargetLibraryInfo &TLI =
|
||||
getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
|
||||
|
||||
bool Modified = false;
|
||||
|
||||
// In various bits below, we rely on the fact that uses are reachable from
|
||||
// defs. When there are basic blocks unreachable from the entry, dominance
|
||||
// and reachablity queries return non-sensical results. Thus, we preprocess
|
||||
// the function to ensure these properties hold.
|
||||
Modified |= removeUnreachableBlocks(F);
|
||||
|
||||
// STEP 1 - Insert the safepoint polling locations. We do not need to
|
||||
// actually insert parse points yet. That will be done for all polls and
|
||||
// calls in a single pass.
|
||||
|
||||
DominatorTree DT;
|
||||
DT.recalculate(F);
|
||||
|
||||
SmallVector<Instruction *, 16> PollsNeeded;
|
||||
std::vector<CallBase *> ParsePointNeeded;
|
||||
|
||||
if (enableBackedgeSafepoints(F)) {
|
||||
// Construct a pass manager to run the LoopPass backedge logic. We
|
||||
// need the pass manager to handle scheduling all the loop passes
|
||||
// appropriately. Doing this by hand is painful and just not worth messing
|
||||
// with for the moment.
|
||||
legacy::FunctionPassManager FPM(F.getParent());
|
||||
bool CanAssumeCallSafepoints = enableCallSafepoints(F);
|
||||
auto *PBS = new PlaceBackedgeSafepointsImpl(CanAssumeCallSafepoints);
|
||||
FPM.add(PBS);
|
||||
FPM.run(F);
|
||||
|
||||
// We preserve dominance information when inserting the poll, otherwise
|
||||
// we'd have to recalculate this on every insert
|
||||
DT.recalculate(F);
|
||||
|
||||
auto &PollLocations = PBS->PollLocations;
|
||||
|
||||
auto OrderByBBName = [](Instruction *a, Instruction *b) {
|
||||
return a->getParent()->getName() < b->getParent()->getName();
|
||||
};
|
||||
// We need the order of list to be stable so that naming ends up stable
|
||||
// when we split edges. This makes test cases much easier to write.
|
||||
llvm::sort(PollLocations, OrderByBBName);
|
||||
|
||||
// We can sometimes end up with duplicate poll locations. This happens if
|
||||
// a single loop is visited more than once. The fact this happens seems
|
||||
// wrong, but it does happen for the split-backedge.ll test case.
|
||||
PollLocations.erase(std::unique(PollLocations.begin(),
|
||||
PollLocations.end()),
|
||||
PollLocations.end());
|
||||
|
||||
// Insert a poll at each point the analysis pass identified
|
||||
// The poll location must be the terminator of a loop latch block.
|
||||
for (Instruction *Term : PollLocations) {
|
||||
// We are inserting a poll, the function is modified
|
||||
Modified = true;
|
||||
|
||||
if (SplitBackedge) {
|
||||
// Split the backedge of the loop and insert the poll within that new
|
||||
// basic block. This creates a loop with two latches per original
|
||||
// latch (which is non-ideal), but this appears to be easier to
|
||||
// optimize in practice than inserting the poll immediately before the
|
||||
// latch test.
|
||||
|
||||
// Since this is a latch, at least one of the successors must dominate
|
||||
// it. Its possible that we have a) duplicate edges to the same header
|
||||
// and b) edges to distinct loop headers. We need to insert pools on
|
||||
// each.
|
||||
SetVector<BasicBlock *> Headers;
|
||||
for (unsigned i = 0; i < Term->getNumSuccessors(); i++) {
|
||||
BasicBlock *Succ = Term->getSuccessor(i);
|
||||
if (DT.dominates(Succ, Term->getParent())) {
|
||||
Headers.insert(Succ);
|
||||
}
|
||||
}
|
||||
assert(!Headers.empty() && "poll location is not a loop latch?");
|
||||
|
||||
// The split loop structure here is so that we only need to recalculate
|
||||
// the dominator tree once. Alternatively, we could just keep it up to
|
||||
// date and use a more natural merged loop.
|
||||
SetVector<BasicBlock *> SplitBackedges;
|
||||
for (BasicBlock *Header : Headers) {
|
||||
BasicBlock *NewBB = SplitEdge(Term->getParent(), Header, &DT);
|
||||
PollsNeeded.push_back(NewBB->getTerminator());
|
||||
NumBackedgeSafepoints++;
|
||||
}
|
||||
} else {
|
||||
// Split the latch block itself, right before the terminator.
|
||||
PollsNeeded.push_back(Term);
|
||||
NumBackedgeSafepoints++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (enableEntrySafepoints(F)) {
|
||||
if (Instruction *Location = findLocationForEntrySafepoint(F, DT)) {
|
||||
PollsNeeded.push_back(Location);
|
||||
Modified = true;
|
||||
NumEntrySafepoints++;
|
||||
}
|
||||
// TODO: else we should assert that there was, in fact, a policy choice to
|
||||
// not insert a entry safepoint poll.
|
||||
}
|
||||
|
||||
// Now that we've identified all the needed safepoint poll locations, insert
|
||||
// safepoint polls themselves.
|
||||
for (Instruction *PollLocation : PollsNeeded) {
|
||||
std::vector<CallBase *> RuntimeCalls;
|
||||
InsertSafepointPoll(PollLocation, RuntimeCalls, TLI);
|
||||
llvm::append_range(ParsePointNeeded, RuntimeCalls);
|
||||
}
|
||||
|
||||
return Modified;
|
||||
}
|
||||
|
||||
char PlaceBackedgeSafepointsImpl::ID = 0;
|
||||
char PlaceSafepoints::ID = 0;
|
||||
|
||||
FunctionPass *llvm::createPlaceSafepointsPass() {
|
||||
return new PlaceSafepoints();
|
||||
}
|
||||
|
||||
INITIALIZE_PASS_BEGIN(PlaceBackedgeSafepointsImpl,
|
||||
"place-backedge-safepoints-impl",
|
||||
"Place Backedge Safepoints", false, false)
|
||||
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
|
||||
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
||||
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
|
||||
INITIALIZE_PASS_END(PlaceBackedgeSafepointsImpl,
|
||||
"place-backedge-safepoints-impl",
|
||||
"Place Backedge Safepoints", false, false)
|
||||
|
||||
INITIALIZE_PASS_BEGIN(PlaceSafepoints, "place-safepoints", "Place Safepoints",
|
||||
false, false)
|
||||
INITIALIZE_PASS_END(PlaceSafepoints, "place-safepoints", "Place Safepoints",
|
||||
false, false)
|
||||
|
||||
static void
|
||||
InsertSafepointPoll(Instruction *InsertBefore,
|
||||
std::vector<CallBase *> &ParsePointsNeeded /*rval*/,
|
||||
const TargetLibraryInfo &TLI) {
|
||||
BasicBlock *OrigBB = InsertBefore->getParent();
|
||||
Module *M = InsertBefore->getModule();
|
||||
assert(M && "must be part of a module");
|
||||
|
||||
// Inline the safepoint poll implementation - this will get all the branch,
|
||||
// control flow, etc.. Most importantly, it will introduce the actual slow
|
||||
// path call - where we need to insert a safepoint (parsepoint).
|
||||
|
||||
auto *F = M->getFunction(GCSafepointPollName);
|
||||
assert(F && "gc.safepoint_poll function is missing");
|
||||
assert(F->getValueType() ==
|
||||
FunctionType::get(Type::getVoidTy(M->getContext()), false) &&
|
||||
"gc.safepoint_poll declared with wrong type");
|
||||
assert(!F->empty() && "gc.safepoint_poll must be a non-empty function");
|
||||
CallInst *PollCall = CallInst::Create(F, "", InsertBefore);
|
||||
|
||||
// Record some information about the call site we're replacing
|
||||
BasicBlock::iterator Before(PollCall), After(PollCall);
|
||||
bool IsBegin = false;
|
||||
if (Before == OrigBB->begin())
|
||||
IsBegin = true;
|
||||
else
|
||||
Before--;
|
||||
|
||||
After++;
|
||||
assert(After != OrigBB->end() && "must have successor");
|
||||
|
||||
// Do the actual inlining
|
||||
InlineFunctionInfo IFI;
|
||||
bool InlineStatus = InlineFunction(*PollCall, IFI).isSuccess();
|
||||
assert(InlineStatus && "inline must succeed");
|
||||
(void)InlineStatus; // suppress warning in release-asserts
|
||||
|
||||
// Check post-conditions
|
||||
assert(IFI.StaticAllocas.empty() && "can't have allocs");
|
||||
|
||||
std::vector<CallInst *> Calls; // new calls
|
||||
DenseSet<BasicBlock *> BBs; // new BBs + insertee
|
||||
|
||||
// Include only the newly inserted instructions, Note: begin may not be valid
|
||||
// if we inserted to the beginning of the basic block
|
||||
BasicBlock::iterator Start = IsBegin ? OrigBB->begin() : std::next(Before);
|
||||
|
||||
// If your poll function includes an unreachable at the end, that's not
|
||||
// valid. Bugpoint likes to create this, so check for it.
|
||||
assert(isPotentiallyReachable(&*Start, &*After) &&
|
||||
"malformed poll function");
|
||||
|
||||
scanInlinedCode(&*Start, &*After, Calls, BBs);
|
||||
assert(!Calls.empty() && "slow path not found for safepoint poll");
|
||||
|
||||
// Record the fact we need a parsable state at the runtime call contained in
|
||||
// the poll function. This is required so that the runtime knows how to
|
||||
// parse the last frame when we actually take the safepoint (i.e. execute
|
||||
// the slow path)
|
||||
assert(ParsePointsNeeded.empty());
|
||||
for (auto *CI : Calls) {
|
||||
// No safepoint needed or wanted
|
||||
if (!needsStatepoint(CI, TLI))
|
||||
continue;
|
||||
|
||||
// These are likely runtime calls. Should we assert that via calling
|
||||
// convention or something?
|
||||
ParsePointsNeeded.push_back(CI);
|
||||
}
|
||||
assert(ParsePointsNeeded.size() <= Calls.size());
|
||||
}
|
|
@ -104,6 +104,8 @@ void llvm::initializeScalarOpts(PassRegistry &Registry) {
|
|||
initializeSeparateConstOffsetFromGEPLegacyPassPass(Registry);
|
||||
initializeSpeculativeExecutionLegacyPassPass(Registry);
|
||||
initializeStraightLineStrengthReduceLegacyPassPass(Registry);
|
||||
initializePlaceBackedgeSafepointsImplPass(Registry);
|
||||
initializePlaceSafepointsPass(Registry);
|
||||
initializeFloat2IntLegacyPassPass(Registry);
|
||||
initializeLoopDistributeLegacyPass(Registry);
|
||||
initializeLoopLoadEliminationPass(Registry);
|
||||
|
|
|
@ -0,0 +1,77 @@
|
|||
; RUN: opt < %s -S -place-safepoints -enable-new-pm=0 | FileCheck %s
|
||||
|
||||
|
||||
; Do we insert a simple entry safepoint?
|
||||
define void @test_entry() gc "statepoint-example" {
|
||||
; CHECK-LABEL: @test_entry
|
||||
entry:
|
||||
; CHECK-LABEL: entry
|
||||
; CHECK: call void @do_safepoint
|
||||
ret void
|
||||
}
|
||||
|
||||
; On a non-gc function, we should NOT get an entry safepoint
|
||||
define void @test_negative() {
|
||||
; CHECK-LABEL: @test_negative
|
||||
entry:
|
||||
; CHECK-NOT: do_safepoint
|
||||
ret void
|
||||
}
|
||||
|
||||
; Do we insert a backedge safepoint in a statically
|
||||
; infinite loop?
|
||||
define void @test_backedge() gc "statepoint-example" {
|
||||
; CHECK-LABEL: test_backedge
|
||||
entry:
|
||||
; CHECK-LABEL: entry
|
||||
; This statepoint is technically not required, but we don't exploit that yet.
|
||||
; CHECK: call void @do_safepoint
|
||||
br label %other
|
||||
|
||||
; CHECK-LABEL: other
|
||||
; CHECK: call void @do_safepoint
|
||||
other:
|
||||
br label %other
|
||||
}
|
||||
|
||||
; Check that we remove an unreachable block rather than trying
|
||||
; to insert a backedge safepoint
|
||||
define void @test_unreachable() gc "statepoint-example" {
|
||||
; CHECK-LABEL: test_unreachable
|
||||
entry:
|
||||
; CHECK-LABEL: entry
|
||||
; CHECK: call void @do_safepoint
|
||||
ret void
|
||||
|
||||
; CHECK-NOT: other
|
||||
; CHECK-NOT: do_safepoint
|
||||
other:
|
||||
br label %other
|
||||
}
|
||||
|
||||
declare void @foo()
|
||||
|
||||
declare zeroext i1 @i1_return_i1(i1)
|
||||
|
||||
define i1 @test_call_with_result() gc "statepoint-example" {
|
||||
; CHECK-LABEL: test_call_with_result
|
||||
; This is checking that a statepoint_poll is inserted for a function
|
||||
; that takes 1 argument.
|
||||
; CHECK: call void @do_safepoint
|
||||
entry:
|
||||
%call1 = tail call i1 (i1) @i1_return_i1(i1 false)
|
||||
ret i1 %call1
|
||||
}
|
||||
|
||||
; This function is inlined when inserting a poll. To avoid recursive
|
||||
; issues, make sure we don't place safepoints in it.
|
||||
declare void @do_safepoint()
|
||||
define void @gc.safepoint_poll() {
|
||||
; CHECK-LABEL: gc.safepoint_poll
|
||||
; CHECK-LABEL: entry
|
||||
; CHECK-NEXT: do_safepoint
|
||||
; CHECK-NEXT: ret void
|
||||
entry:
|
||||
call void @do_safepoint()
|
||||
ret void
|
||||
}
|
|
@ -0,0 +1,30 @@
|
|||
; If there's a call in the loop which dominates the backedge, we
|
||||
; don't need a safepoint poll (since the callee must contain a
|
||||
; poll test).
|
||||
;; RUN: opt < %s -place-safepoints -S -enable-new-pm=0 | FileCheck %s
|
||||
|
||||
declare void @foo()
|
||||
|
||||
define void @test1() gc "statepoint-example" {
|
||||
; CHECK-LABEL: test1
|
||||
|
||||
entry:
|
||||
; CHECK-LABEL: entry
|
||||
; CHECK: call void @do_safepoint
|
||||
br label %loop
|
||||
|
||||
loop:
|
||||
; CHECK-LABEL: loop
|
||||
; CHECK-NOT: call void @do_safepoint
|
||||
call void @foo()
|
||||
br label %loop
|
||||
}
|
||||
|
||||
; This function is inlined when inserting a poll.
|
||||
declare void @do_safepoint()
|
||||
define void @gc.safepoint_poll() {
|
||||
; CHECK-LABEL: gc.safepoint_poll
|
||||
entry:
|
||||
call void @do_safepoint()
|
||||
ret void
|
||||
}
|
|
@ -0,0 +1,143 @@
|
|||
; Tests to ensure that we are not placing backedge safepoints in
|
||||
; loops which are clearly finite.
|
||||
;; RUN: opt < %s -place-safepoints -spp-counted-loop-trip-width=32 -S -enable-new-pm=0 | FileCheck %s
|
||||
;; RUN: opt < %s -place-safepoints -spp-counted-loop-trip-width=64 -S -enable-new-pm=0 | FileCheck %s -check-prefix=COUNTED-64
|
||||
|
||||
|
||||
; A simple counted loop with trivially known range
|
||||
define void @test1(i32) gc "statepoint-example" {
|
||||
; CHECK-LABEL: test1
|
||||
; CHECK-LABEL: entry
|
||||
; CHECK: call void @do_safepoint
|
||||
; CHECK-LABEL: loop
|
||||
; CHECK-NOT: call void @do_safepoint
|
||||
; CHECK-LABEL: exit
|
||||
|
||||
entry:
|
||||
br label %loop
|
||||
|
||||
loop:
|
||||
%counter = phi i32 [ 0 , %entry ], [ %counter.inc , %loop ]
|
||||
%counter.inc = add i32 %counter, 1
|
||||
%counter.cmp = icmp slt i32 %counter.inc, 16
|
||||
br i1 %counter.cmp, label %loop, label %exit
|
||||
|
||||
exit:
|
||||
ret void
|
||||
}
|
||||
|
||||
; The same counted loop, but with an unknown early exit
|
||||
define void @test2(i32) gc "statepoint-example" {
|
||||
; CHECK-LABEL: test2
|
||||
; CHECK-LABEL: entry
|
||||
; CHECK: call void @do_safepoint
|
||||
; CHECK-LABEL: loop
|
||||
; CHECK-NOT: call void @do_safepoint
|
||||
; CHECK-LABEL: exit
|
||||
|
||||
entry:
|
||||
br label %loop
|
||||
|
||||
loop:
|
||||
%counter = phi i32 [ 0 , %entry ], [ %counter.inc , %continue ]
|
||||
%counter.inc = add i32 %counter, 1
|
||||
%counter.cmp = icmp slt i32 %counter.inc, 16
|
||||
br i1 undef, label %continue, label %exit
|
||||
|
||||
continue:
|
||||
br i1 %counter.cmp, label %loop, label %exit
|
||||
|
||||
exit:
|
||||
ret void
|
||||
}
|
||||
|
||||
; The range is a 8 bit value and we can't overflow
|
||||
define void @test3(i8 %upper) gc "statepoint-example" {
|
||||
; CHECK-LABEL: test3
|
||||
; CHECK-LABEL: entry
|
||||
; CHECK: call void @do_safepoint
|
||||
; CHECK-LABEL: loop
|
||||
; CHECK-NOT: call void @do_safepoint
|
||||
; CHECK-LABEL: exit
|
||||
|
||||
entry:
|
||||
br label %loop
|
||||
|
||||
loop:
|
||||
%counter = phi i8 [ 0 , %entry ], [ %counter.inc , %loop ]
|
||||
%counter.inc = add nsw i8 %counter, 1
|
||||
%counter.cmp = icmp slt i8 %counter.inc, %upper
|
||||
br i1 %counter.cmp, label %loop, label %exit
|
||||
|
||||
exit:
|
||||
ret void
|
||||
}
|
||||
|
||||
; The range is a 64 bit value
|
||||
define void @test4(i64 %upper) gc "statepoint-example" {
|
||||
; CHECK-LABEL: test4
|
||||
; CHECK-LABEL: entry
|
||||
; CHECK: call void @do_safepoint
|
||||
; CHECK-LABEL: loop
|
||||
; CHECK: call void @do_safepoint
|
||||
; CHECK-LABEL: exit
|
||||
|
||||
; COUNTED-64-LABEL: test4
|
||||
; COUNTED-64-LABEL: entry
|
||||
; COUNTED-64: call void @do_safepoint
|
||||
; COUNTED-64-LABEL: loop
|
||||
; COUNTED-64-NOT: call void @do_safepoint
|
||||
; COUNTED-64-LABEL: exit
|
||||
|
||||
entry:
|
||||
br label %loop
|
||||
|
||||
loop:
|
||||
%counter = phi i64 [ 0 , %entry ], [ %counter.inc , %loop ]
|
||||
%counter.inc = add i64 %counter, 1
|
||||
%counter.cmp = icmp slt i64 %counter.inc, %upper
|
||||
br i1 %counter.cmp, label %loop, label %exit
|
||||
|
||||
exit:
|
||||
ret void
|
||||
}
|
||||
|
||||
; This loop can run infinitely (for %upper == INT64_MAX) so it needs a
|
||||
; safepoint.
|
||||
define void @test5(i64 %upper) gc "statepoint-example" {
|
||||
; CHECK-LABEL: test5
|
||||
; CHECK-LABEL: entry
|
||||
; CHECK: call void @do_safepoint
|
||||
; CHECK-LABEL: loop
|
||||
; CHECK: call void @do_safepoint
|
||||
; CHECK-LABEL: exit
|
||||
|
||||
; COUNTED-64-LABEL: test5
|
||||
; COUNTED-64-LABEL: entry
|
||||
; COUNTED-64: call void @do_safepoint
|
||||
; COUNTED-64-LABEL: loop
|
||||
; COUNTED-64: call void @do_safepoint
|
||||
; COUNTED-64-LABEL: exit
|
||||
|
||||
entry:
|
||||
br label %loop
|
||||
|
||||
loop:
|
||||
%counter = phi i64 [ 0 , %entry ], [ %counter.inc , %loop ]
|
||||
%counter.inc = add i64 %counter, 1
|
||||
%counter.cmp = icmp sle i64 %counter.inc, %upper
|
||||
br i1 %counter.cmp, label %loop, label %exit
|
||||
|
||||
exit:
|
||||
ret void
|
||||
}
|
||||
|
||||
|
||||
; This function is inlined when inserting a poll.
|
||||
declare void @do_safepoint()
|
||||
define void @gc.safepoint_poll() {
|
||||
; CHECK-LABEL: gc.safepoint_poll
|
||||
entry:
|
||||
call void @do_safepoint()
|
||||
ret void
|
||||
}
|
|
@ -0,0 +1,37 @@
|
|||
; RUN: opt -S -place-safepoints < %s -enable-new-pm=0 | FileCheck %s
|
||||
|
||||
; Libcalls will not contain a safepoint poll, so check that we insert
|
||||
; a safepoint in a loop containing a libcall.
|
||||
declare double @ldexp(double %x, i32 %n) nounwind readnone
|
||||
define double @test_libcall(double %x) gc "statepoint-example" {
|
||||
; CHECK-LABEL: test_libcall
|
||||
|
||||
entry:
|
||||
; CHECK: entry
|
||||
; CHECK-NEXT: call void @do_safepoint
|
||||
; CHECK-NEXT: br label %loop
|
||||
br label %loop
|
||||
|
||||
loop:
|
||||
; CHECK: loop
|
||||
; CHECK-NEXT: %x_loop = phi double [ %x, %entry ], [ %x_exp, %loop ]
|
||||
; CHECK-NEXT: %x_exp = call double @ldexp(double %x_loop, i32 5)
|
||||
; CHECK-NEXT: %done = fcmp ogt double %x_exp, 1.5
|
||||
; CHECK-NEXT: call void @do_safepoint
|
||||
%x_loop = phi double [ %x, %entry ], [ %x_exp, %loop ]
|
||||
%x_exp = call double @ldexp(double %x_loop, i32 5) nounwind readnone
|
||||
%done = fcmp ogt double %x_exp, 1.5
|
||||
br i1 %done, label %end, label %loop
|
||||
end:
|
||||
%x_end = phi double [%x_exp, %loop]
|
||||
ret double %x_end
|
||||
}
|
||||
|
||||
; This function is inlined when inserting a poll.
|
||||
declare void @do_safepoint()
|
||||
define void @gc.safepoint_poll() {
|
||||
; CHECK-LABEL: gc.safepoint_poll
|
||||
entry:
|
||||
call void @do_safepoint()
|
||||
ret void
|
||||
}
|
|
@ -0,0 +1,20 @@
|
|||
; RUN: opt < %s -S -place-safepoints -enable-new-pm=0 | FileCheck %s
|
||||
|
||||
define void @test(i32, i8 addrspace(1)* %ptr) gc "statepoint-example" {
|
||||
; CHECK-LABEL: @test
|
||||
; CHECK-NEXT: llvm.memset
|
||||
; CHECK: do_safepoint
|
||||
; CHECK: @foo
|
||||
call void @llvm.memset.p1i8.i64(i8 addrspace(1)* align 8 %ptr, i8 0, i64 24, i1 false)
|
||||
call void @foo()
|
||||
ret void
|
||||
}
|
||||
|
||||
declare void @foo()
|
||||
declare void @llvm.memset.p1i8.i64(i8 addrspace(1)*, i8, i64, i1)
|
||||
|
||||
declare void @do_safepoint()
|
||||
define void @gc.safepoint_poll() {
|
||||
call void @do_safepoint()
|
||||
ret void
|
||||
}
|
|
@ -0,0 +1,23 @@
|
|||
; RUN: opt -S -place-safepoints < %s -enable-new-pm=0 | FileCheck %s
|
||||
|
||||
declare void @callee()
|
||||
|
||||
define void @test() gc "statepoint-example" {
|
||||
; CHECK-LABEL: test(
|
||||
entry:
|
||||
; CHECK: entry:
|
||||
; CHECK: call void @do_safepoint()
|
||||
br label %other
|
||||
|
||||
other:
|
||||
; CHECK: other:
|
||||
call void @callee() "gc-leaf-function"
|
||||
; CHECK: call void @do_safepoint()
|
||||
br label %other
|
||||
}
|
||||
|
||||
declare void @do_safepoint()
|
||||
define void @gc.safepoint_poll() {
|
||||
call void @do_safepoint()
|
||||
ret void
|
||||
}
|
|
@ -0,0 +1,46 @@
|
|||
;; A very basic test to make sure that splitting the backedge keeps working
|
||||
;; RUN: opt < %s -place-safepoints -spp-split-backedge=1 -S -enable-new-pm=0 | FileCheck %s
|
||||
|
||||
define void @test(i32, i1 %cond) gc "statepoint-example" {
|
||||
; CHECK-LABEL: @test
|
||||
; CHECK-LABEL: loop.loop_crit_edge
|
||||
; CHECK: call void @do_safepoint
|
||||
; CHECK-NEXT: br label %loop
|
||||
entry:
|
||||
br label %loop
|
||||
|
||||
loop:
|
||||
br i1 %cond, label %loop, label %exit
|
||||
|
||||
exit:
|
||||
ret void
|
||||
}
|
||||
|
||||
; Test for the case where a single conditional branch jumps to two
|
||||
; different loop header blocks. Since we're currently using LoopSimplfy
|
||||
; this doesn't hit the interesting case, but once we remove that, we need
|
||||
; to be sure this keeps working.
|
||||
define void @test2(i32, i1 %cond) gc "statepoint-example" {
|
||||
; CHECK-LABEL: @test2
|
||||
; CHECK-LABEL: loop2.loop2_crit_edge:
|
||||
; CHECK: call void @do_safepoint
|
||||
; CHECK-NEXT: br label %loop2
|
||||
; CHECK-LABEL: loop2.loop_crit_edge:
|
||||
; CHECK: call void @do_safepoint
|
||||
; CHECK-NEXT: br label %loop
|
||||
entry:
|
||||
br label %loop
|
||||
|
||||
loop:
|
||||
br label %loop2
|
||||
|
||||
loop2:
|
||||
br i1 %cond, label %loop, label %loop2
|
||||
}
|
||||
|
||||
declare void @do_safepoint()
|
||||
define void @gc.safepoint_poll() {
|
||||
entry:
|
||||
call void @do_safepoint()
|
||||
ret void
|
||||
}
|
|
@ -0,0 +1,29 @@
|
|||
; RUN: opt < %s -S -place-safepoints -enable-new-pm=0 | FileCheck %s
|
||||
|
||||
; Basic test to make sure that safepoints are placed
|
||||
; for CoreCLR GC
|
||||
|
||||
declare void @foo()
|
||||
|
||||
define void @test_simple_call() gc "coreclr" {
|
||||
; CHECK-LABEL: test_simple_call
|
||||
entry:
|
||||
; CHECK: call void @do_safepoint
|
||||
br label %other
|
||||
other:
|
||||
call void @foo()
|
||||
ret void
|
||||
}
|
||||
|
||||
; This function is inlined when inserting a poll. To avoid recursive
|
||||
; issues, make sure we don't place safepoints in it.
|
||||
declare void @do_safepoint()
|
||||
define void @gc.safepoint_poll() {
|
||||
; CHECK-LABEL: gc.safepoint_poll
|
||||
; CHECK-LABEL: entry
|
||||
; CHECK-NEXT: do_safepoint
|
||||
; CHECK-NEXT: ret void
|
||||
entry:
|
||||
call void @do_safepoint()
|
||||
ret void
|
||||
}
|
|
@ -0,0 +1,29 @@
|
|||
; RUN: opt < %s -S -place-safepoints -enable-new-pm=0 | FileCheck %s
|
||||
|
||||
declare void @llvm.localescape(...)
|
||||
|
||||
; Do we insert the entry safepoint after the localescape intrinsic?
|
||||
define void @parent() gc "statepoint-example" {
|
||||
; CHECK-LABEL: @parent
|
||||
entry:
|
||||
; CHECK-LABEL: entry
|
||||
; CHECK-NEXT: alloca
|
||||
; CHECK-NEXT: localescape
|
||||
; CHECK-NEXT: call void @do_safepoint
|
||||
%ptr = alloca i32
|
||||
call void (...) @llvm.localescape(i32* %ptr)
|
||||
ret void
|
||||
}
|
||||
|
||||
; This function is inlined when inserting a poll. To avoid recursive
|
||||
; issues, make sure we don't place safepoints in it.
|
||||
declare void @do_safepoint()
|
||||
define void @gc.safepoint_poll() {
|
||||
; CHECK-LABEL: gc.safepoint_poll
|
||||
; CHECK-LABEL: entry
|
||||
; CHECK-NEXT: do_safepoint
|
||||
; CHECK-NEXT: ret void
|
||||
entry:
|
||||
call void @do_safepoint()
|
||||
ret void
|
||||
}
|
|
@ -70,6 +70,7 @@ static_library("Scalar") {
|
|||
"NaryReassociate.cpp",
|
||||
"NewGVN.cpp",
|
||||
"PartiallyInlineLibCalls.cpp",
|
||||
"PlaceSafepoints.cpp",
|
||||
"Reassociate.cpp",
|
||||
"Reg2Mem.cpp",
|
||||
"RewriteStatepointsForGC.cpp",
|
||||
|
|
Loading…
Reference in New Issue