[WIP] Sketching IR and parsing support for affine maps, affine expressions

Run test case:

$ mlir-opt test/IR/parser-affine-map.mlir
test/IR/parser-affine-map.mlir:3:30: error: expect '(' at start of map range
#hello_world2 (i, j) [s0] -> i+s0, j)
                             ^

PiperOrigin-RevId: 202736856
This commit is contained in:
Uday Bondhugula 2018-06-29 18:09:29 -07:00 committed by jpienaar
parent 509da7907e
commit fdf7bc4e25
13 changed files with 616 additions and 40 deletions

View File

@ -23,12 +23,229 @@
#ifndef MLIR_IR_AFFINE_EXPR_H
#define MLIR_IR_AFFINE_EXPR_H
#include "mlir/Support/LLVM.h"
namespace mlir {
class AffineExpr {
class MLIRContext;
/// A one-dimensional affine expression.
/// AffineExpression's are immutable (like Type's)
class AffineExpr {
public:
AffineExpr();
// TODO(andydavis,bondhugula) Implement affine expressions.
enum class Kind {
// Add.
Add,
// Mul.
Mul,
// Mod.
Mod,
// Floordiv
FloorDiv,
// Ceildiv
CeilDiv,
/// This is a marker for the last affine binary op. The range of binary op's
/// is expected to be this element and earlier.
LAST_AFFINE_BINARY_OP = CeilDiv,
// Unary op negation
Neg,
// Constant integer.
Constant,
// Dimensional identifier.
DimId,
// Symbolic identifier.
SymbolId,
};
/// Return the classification for this type.
Kind getKind() const { return kind; }
~AffineExpr() = default;
void print(raw_ostream &os) const;
void dump() const;
protected:
explicit AffineExpr(Kind kind) : kind(kind) {}
private:
/// Classification of the subclass
const Kind kind;
};
/// Binary affine expression.
class AffineBinaryOpExpr : public AffineExpr {
public:
static AffineBinaryOpExpr *get(Kind kind, AffineExpr *lhsOperand,
AffineExpr *rhsOperand, MLIRContext *context);
AffineExpr *getLeftOperand() const { return lhsOperand; }
AffineExpr *getRightOperand() const { return rhsOperand; }
/// Methods for support type inquiry through isa, cast, and dyn_cast.
static bool classof(const AffineExpr *expr) {
return expr->getKind() <= Kind::LAST_AFFINE_BINARY_OP;
}
protected:
explicit AffineBinaryOpExpr(Kind kind, AffineExpr *lhsOperand,
AffineExpr *rhsOperand)
: AffineExpr(kind), lhsOperand(lhsOperand), rhsOperand(rhsOperand) {}
AffineExpr *const lhsOperand;
AffineExpr *const rhsOperand;
};
/// Binary affine add expression.
class AffineAddExpr : public AffineBinaryOpExpr {
public:
static AffineAddExpr *get(AffineExpr *lhsOperand, AffineExpr *rhsOperand,
MLIRContext *context);
/// Methods for support type inquiry through isa, cast, and dyn_cast.
static bool classof(const AffineExpr *expr) {
return expr->getKind() == Kind::Add;
}
private:
explicit AffineAddExpr(AffineExpr *lhsOperand, AffineExpr *rhsOperand)
: AffineBinaryOpExpr(Kind::Add, lhsOperand, rhsOperand) {}
};
/// Binary affine mul expression.
class AffineMulExpr : public AffineBinaryOpExpr {
public:
/// Methods for support type inquiry through isa, cast, and dyn_cast.
static bool classof(const AffineExpr *expr) {
return expr->getKind() == Kind::Mul;
}
private:
explicit AffineMulExpr(AffineExpr *lhsOperand, AffineExpr *rhsOperand)
: AffineBinaryOpExpr(Kind::Mul, lhsOperand, rhsOperand) {}
};
/// Binary affine mod expression.
class AffineModExpr : public AffineBinaryOpExpr {
public:
/// Methods for support type inquiry through isa, cast, and dyn_cast.
static bool classof(const AffineExpr *expr) {
return expr->getKind() == Kind::Mod;
}
private:
explicit AffineModExpr(AffineExpr *lhsOperand, AffineExpr *rhsOperand)
: AffineBinaryOpExpr(Kind::Mod, lhsOperand, rhsOperand) {}
};
/// Binary affine floordiv expression.
class AffineFloorDivExpr : public AffineBinaryOpExpr {
public:
/// Methods for support type inquiry through isa, cast, and dyn_cast.
static bool classof(const AffineExpr *expr) {
return expr->getKind() == Kind::FloorDiv;
}
private:
explicit AffineFloorDivExpr(AffineExpr *lhsOperand, AffineExpr *rhsOperand)
: AffineBinaryOpExpr(Kind::FloorDiv, lhsOperand, rhsOperand) {}
};
/// Binary affine ceildiv expression.
class AffineCeilDivExpr : public AffineBinaryOpExpr {
public:
/// Methods for support type inquiry through isa, cast, and dyn_cast.
static bool classof(const AffineExpr *expr) {
return expr->getKind() == Kind::CeilDiv;
}
private:
explicit AffineCeilDivExpr(AffineExpr *lhsOperand, AffineExpr *rhsOperand)
: AffineBinaryOpExpr(Kind::CeilDiv, lhsOperand, rhsOperand) {}
};
/// Unary affine expression.
class AffineUnaryOpExpr : public AffineExpr {
public:
static AffineUnaryOpExpr *get(const AffineExpr &operand,
MLIRContext *context);
static AffineUnaryOpExpr *get(const AffineExpr &operand);
AffineExpr *getOperand() const { return operand; }
/// Methods for support type inquiry through isa, cast, and dyn_cast.
static bool classof(const AffineExpr *expr) {
return expr->getKind() == Kind::Neg;
}
private:
explicit AffineUnaryOpExpr(Kind kind, AffineExpr *operand)
: AffineExpr(kind), operand(operand) {}
AffineExpr *operand;
};
/// A argument identifier appearing in an affine expression
class AffineDimExpr : public AffineExpr {
public:
static AffineDimExpr *get(unsigned position, MLIRContext *context);
unsigned getPosition() const { return position; }
/// Methods for support type inquiry through isa, cast, and dyn_cast.
static bool classof(const AffineExpr *expr) {
return expr->getKind() == Kind::DimId;
}
private:
explicit AffineDimExpr(unsigned position)
: AffineExpr(Kind::DimId), position(position) {}
/// Position of this identifier in the argument list.
unsigned position;
};
/// A symbolic identifier appearing in an affine expression
class AffineSymbolExpr : public AffineExpr {
public:
static AffineSymbolExpr *get(unsigned position, MLIRContext *context);
unsigned getPosition() const { return position; }
/// Methods for support type inquiry through isa, cast, and dyn_cast.
static bool classof(const AffineExpr *expr) {
return expr->getKind() == Kind::SymbolId;
}
private:
explicit AffineSymbolExpr(unsigned position)
: AffineExpr(Kind::SymbolId), position(position) {}
/// Position of this identifier in the symbol list.
unsigned position;
};
/// An integer constant appearing in affine expression.
class AffineConstantExpr : public AffineExpr {
public:
static AffineConstantExpr *get(int64_t constant, MLIRContext *context);
int64_t getValue() const { return constant; }
/// Methods for support type inquiry through isa, cast, and dyn_cast.
static bool classof(const AffineExpr *expr) {
return expr->getKind() == Kind::Constant;
}
private:
explicit AffineConstantExpr(int64_t constant)
: AffineExpr(Kind::Constant), constant(constant) {}
// The constant.
int64_t constant;
};
} // end namespace mlir

View File

@ -26,30 +26,43 @@
#include <vector>
#include "mlir/Support/LLVM.h"
#include "llvm/ADT/ArrayRef.h"
namespace mlir {
class MLIRContext;
class AffineExpr;
class AffineMap {
/// A multi-dimensional affine map
/// Affine map's are immutable like Type's, and they are uniqued.
/// Eg: (d0, d1) -> (d0/128, d0 mod 128, d1)
/// The names used (d0, d1) don't matter - it's the mathematical function that
/// is unique to this affine map.
class AffineMap {
public:
// Constructs an AffineMap with 'dimCount' dimension identifiers, and
// 'symbolCount' symbols.
// TODO(andydavis) Pass in ArrayRef<AffineExpr*> to populate list of exprs.
AffineMap(unsigned dimCount, unsigned symbolCount);
static AffineMap *get(unsigned dimCount, unsigned symbolCount,
ArrayRef<AffineExpr *> exprs,
MLIRContext *context);
// Prints affine map to 'os'.
void print(raw_ostream &os) const;
void dump() const;
unsigned dimCount() const { return numDims; }
unsigned symbolCount() const { return numSymbols; }
private:
// Number of dimensional indentifiers.
const unsigned dimCount;
// Number of symbols.
const unsigned symbolCount;
// TODO(andydavis) Do not use std::vector here (array size is not dynamic).
std::vector<AffineExpr*> exprs;
AffineMap(unsigned dimCount, unsigned symbolCount,
ArrayRef<AffineExpr *> exprs);
const unsigned numDims;
const unsigned numSymbols;
/// The affine expressions for this (multi-dimensional) map.
/// TODO: use trailing objects for these
ArrayRef<AffineExpr *> exprs;
};
} // end namespace mlir
} // end namespace mlir
#endif // MLIR_IR_AFFINE_MAP_H

View File

@ -22,10 +22,13 @@
#ifndef MLIR_IR_MODULE_H
#define MLIR_IR_MODULE_H
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Function.h"
#include <vector>
namespace mlir {
class AffineMap;
class Module {
public:
explicit Module();
@ -33,6 +36,9 @@ public:
// FIXME: wrong representation and API.
std::vector<Function*> functionList;
// FIXME: wrong representation and API.
// These affine maps are immutable
std::vector<const AffineMap *> affineMapList;
void print(raw_ostream &os) const;
void dump() const;

View File

@ -18,6 +18,3 @@
#include "mlir/IR/AffineExpr.h"
using namespace mlir;
AffineExpr::AffineExpr() {
}

View File

@ -17,15 +17,13 @@
#include "mlir/IR/AffineMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/raw_ostream.h"
using namespace mlir;
AffineMap::AffineMap(unsigned dimCount, unsigned symbolCount)
: dimCount(dimCount), symbolCount(symbolCount) {
}
void AffineMap::print(raw_ostream &os) const {
// TODO(andydavis) Print out affine map based on dimensionCount and
// symbolCount: (d0, d1) [S0, S1] -> (d0 + S0, d1 + S1)
// TODO(clattner): make this ctor take an LLVMContext. This will eventually
// copy the elements into the context.
AffineMap::AffineMap(unsigned dimCount, unsigned symbolCount,
ArrayRef<AffineExpr *> exprs)
: numDims(dimCount), numSymbols(symbolCount), exprs(exprs) {
// TODO(bondhugula)
}

View File

@ -20,13 +20,15 @@
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/CFGFunction.h"
#include "mlir/IR/MLFunction.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/Types.h"
#include "mlir/Support/STLExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/raw_ostream.h"
using namespace mlir;
@ -162,6 +164,15 @@ void Instruction::dump() const {
print(llvm::errs());
}
void AffineExpr::print(raw_ostream &os) const {
// TODO(bondhugula): print out affine expression
}
void AffineMap::print(raw_ostream &os) const {
// TODO(andydavis) Print out affine map based on dimensionCount and
// symbolCount: (d0, d1) [S0, S1] -> (d0 + S0, d1 + S1)
}
void BasicBlock::print(raw_ostream &os) const {
CFGFunctionState state(getFunction(), os);
state.print();
@ -208,6 +219,8 @@ void MLFunction::print(raw_ostream &os) const {
}
void Module::print(raw_ostream &os) const {
for (auto *map : affineMapList)
map->print(os);
for (auto *fn : functionList)
fn->print(os);
}

View File

@ -17,6 +17,8 @@
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/Identifier.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Types.h"
#include "mlir/Support/LLVM.h"
#include "llvm/ADT/DenseSet.h"
@ -44,6 +46,23 @@ struct FunctionTypeKeyInfo : DenseMapInfo<FunctionType*> {
return lhs == KeyTy(rhs->getInputs(), rhs->getResults());
}
};
struct AffineMapKeyInfo : DenseMapInfo<AffineMap *> {
// Affine maps are uniqued based on their arguments and affine expressions
using KeyTy = std::pair<unsigned, unsigned>;
using DenseMapInfo<AffineMap *>::getHashValue;
using DenseMapInfo<AffineMap *>::isEqual;
static unsigned getHashValue(KeyTy key) {
// FIXME(bondhugula): placeholder for now
return hash_combine(key.first, key.second);
}
static bool isEqual(const KeyTy &lhs, const FunctionType *rhs) {
// TODO(bondhugula)
return false;
}
};
struct VectorTypeKeyInfo : DenseMapInfo<VectorType*> {
// Vectors are uniqued based on their element type and shape.
using KeyTy = std::pair<Type*, ArrayRef<unsigned>>;
@ -97,6 +116,10 @@ public:
// Primitive type uniquing.
PrimitiveType *primitives[int(TypeKind::LAST_PRIMITIVE_TYPE)+1] = { nullptr };
// Affine map uniquing.
using AffineMapSet = DenseSet<AffineMap *, AffineMapKeyInfo>;
AffineMapSet affineMaps;
/// Function type uniquing.
using FunctionTypeSet = DenseSet<FunctionType*, FunctionTypeKeyInfo>;
FunctionTypeSet functions;
@ -316,3 +339,52 @@ UnrankedTensorType *UnrankedTensorType::get(Type *elementType) {
// Cache and return it.
return existing.first->second = result;
}
// TODO(bondhugula,andydavis): unique affine maps based on dim list,
// symbol list and all affine expressions contained
AffineMap *AffineMap::get(unsigned dimCount,
unsigned symbolCount,
ArrayRef<AffineExpr *> exprs,
MLIRContext *context) {
// TODO(bondhugula)
return new AffineMap(dimCount, symbolCount, exprs);
}
AffineBinaryOpExpr *AffineBinaryOpExpr::get(AffineExpr::Kind kind,
AffineExpr *lhsOperand,
AffineExpr *rhsOperand,
MLIRContext *context) {
// TODO(bondhugula): allocate this through context
// FIXME
return new AffineBinaryOpExpr(kind, lhsOperand, rhsOperand);
}
AffineAddExpr *AffineAddExpr::get(AffineExpr *lhsOperand,
AffineExpr *rhsOperand,
MLIRContext *context) {
// TODO(bondhugula): allocate this through context
// FIXME
return new AffineAddExpr(lhsOperand, rhsOperand);
}
// TODO(bondhugula): add functions for AffineMulExpr, mod, floordiv, ceildiv
AffineDimExpr *AffineDimExpr::get(unsigned position, MLIRContext *context) {
// TODO(bondhugula): complete this
// FIXME: this should be POD
return new AffineDimExpr(position);
}
AffineSymbolExpr *AffineSymbolExpr::get(unsigned position,
MLIRContext *context) {
// TODO(bondhugula): complete this
// FIXME: this should be POD
return new AffineSymbolExpr(position);
}
AffineConstantExpr *AffineConstantExpr::get(int64_t constant,
MLIRContext *context) {
// TODO(bondhugula): complete this
// FIXME: this should be POD
return new AffineConstantExpr(constant);
}

View File

@ -78,9 +78,14 @@ Token Lexer::lexToken() {
case ')': return formToken(Token::r_paren, tokStart);
case '{': return formToken(Token::l_brace, tokStart);
case '}': return formToken(Token::r_brace, tokStart);
case '[': return formToken(Token::l_bracket, tokStart);
case ']': return formToken(Token::r_bracket, tokStart);
case '<': return formToken(Token::less, tokStart);
case '>': return formToken(Token::greater, tokStart);
case '=': return formToken(Token::equal, tokStart);
case '+': return formToken(Token::plus, tokStart);
case '*': return formToken(Token::star, tokStart);
case '-':
if (*curPtr == '>') {
++curPtr;
@ -246,3 +251,4 @@ Token Lexer::lexString(const char *tokStart) {
}
}
}

View File

@ -18,12 +18,14 @@
// This file implements the parser for the MLIR textual form.
//
//===----------------------------------------------------------------------===//
#include <stack>
#include "mlir/Parser.h"
#include "Lexer.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/CFGFunction.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/MLFunction.h"
#include "mlir/IR/Types.h"
#include "llvm/Support/SourceMgr.h"
@ -33,6 +35,7 @@ using llvm::SMLoc;
namespace {
class CFGFunctionParserState;
class AffineMapParserState;
/// Simple enum to make code read better in cases that would otherwise return a
/// bool value. Failure is "true" in a boolean context.
@ -128,8 +131,19 @@ private:
Type *parseType();
ParseResult parseTypeList(SmallVectorImpl<Type*> &elements);
// Identifiers
ParseResult parseDimIdList(SmallVectorImpl<StringRef> &dims,
SmallVectorImpl<StringRef> &symbols);
ParseResult parseSymbolIdList(SmallVectorImpl<StringRef> &dims,
SmallVectorImpl<StringRef> &symbols);
StringRef parseDimOrSymbolId(SmallVectorImpl<StringRef> &dims,
SmallVectorImpl<StringRef> &symbols,
bool symbol);
// Polyhedral structures
ParseResult parseAffineMapDef();
AffineMap *parseAffineMapInline(StringRef mapId);
AffineExpr *parseAffineExpr(AffineMapParserState &state);
// Functions.
ParseResult parseFunctionSignature(StringRef &name, FunctionType *&type);
@ -476,6 +490,40 @@ ParseResult Parser::parseTypeList(SmallVectorImpl<Type*> &elements) {
return ParseSuccess;
}
namespace {
/// This class represents the transient parser state while parsing an affine
/// expression.
class AffineMapParserState {
public:
explicit AffineMapParserState(ArrayRef<StringRef> dims,
ArrayRef<StringRef> symbols) :
dims_(dims), symbols_(symbols) {}
unsigned dimCount() const { return dims_.size(); }
unsigned symbolCount() const { return symbols_.size(); }
// Stack operations for affine expression parsing
// TODO(bondhugula): all of this will be improved/made more principled
void pushAffineExpr(AffineExpr *expr) { exprStack.push(expr); }
AffineExpr *popAffineExpr() {
auto *t = exprStack.top();
exprStack.pop();
return t;
}
AffineExpr *topAffineExpr() { return exprStack.top(); }
ArrayRef<StringRef> getDims() const { return dims_; }
ArrayRef<StringRef> getSymbols() const { return symbols_; }
private:
const ArrayRef<StringRef> dims_;
const ArrayRef<StringRef> symbols_;
// TEMP: stack to hold affine expressions
std::stack<AffineExpr *> exprStack;
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Polyhedral structures.
//===----------------------------------------------------------------------===//
@ -483,24 +531,205 @@ ParseResult Parser::parseTypeList(SmallVectorImpl<Type*> &elements) {
/// Affine map declaration.
///
/// affine-map-def ::= affine-map-id `=` affine-map-inline
/// affine-map-inline ::= dim-and-symbol-id-lists `->` multi-dim-affine-expr
/// ( `size` `(` dim-size (`,` dim-size)* `)` )?
/// dim-size ::= affine-expr | `min` `(` affine-expr ( `,` affine-expr)+ `)`
///
ParseResult Parser::parseAffineMapDef() {
assert(curToken.is(Token::affine_map_identifier));
StringRef affineMapId = curToken.getSpelling().drop_front();
consumeToken(Token::affine_map_identifier);
// Check that 'affineMapId' is unique.
// TODO(andydavis) Add a unit test for this case.
if (affineMaps.count(affineMapId) > 0)
return emitError("redefinition of affine map id '" + affineMapId + "'");
// Parse the '='
if (!consumeIf(Token::equal))
return emitError("expected '=' in affine map outlined definition");
consumeToken(Token::affine_map_identifier);
auto *affineMap = parseAffineMapInline(affineMapId);
affineMaps[affineMapId].reset(affineMap);
if (!affineMap) return ParseFailure;
// TODO(andydavis,bondhugula) Parse affine map definition.
affineMaps[affineMapId].reset(new AffineMap(1, 0));
return ParseSuccess;
module->affineMapList.push_back(affineMap);
return affineMap ? ParseSuccess : ParseFailure;
}
///
/// Parse a multi-dimensional affine expression
/// affine-expr ::= `(` affine-expr `)`
/// | affine-expr `+` affine-expr
/// | affine-expr `-` affine-expr
/// | `-`? integer-literal `*` affine-expr
/// | `ceildiv` `(` affine-expr `,` integer-literal `)`
/// | `floordiv` `(` affine-expr `,` integer-literal `)`
/// | affine-expr `mod` integer-literal
/// | bare-id
/// | `-`? integer-literal
/// multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `)
///
/// Use 'state' to check if valid identifiers appear.
///
AffineExpr *Parser::parseAffineExpr(AffineMapParserState &state) {
// TODO(bondhugula): complete support for this
// The code below is all placeholder / it is wrong / not complete
// Operator precedence not considered; pure left to right associativity
if (curToken.is(Token::comma)) {
emitError("expecting affine expression");
return nullptr;
}
while (curToken.isNot(Token::comma, Token::r_paren,
Token::eof, Token::error)) {
switch (curToken.getKind()) {
case Token::bare_identifier: {
// TODO(bondhugula): look up state to see if it's a symbol or dim_id and
// get its position
AffineExpr *expr = AffineDimExpr::get(0, context);
state.pushAffineExpr(expr);
consumeToken(Token::bare_identifier);
break;
}
case Token::plus: {
consumeToken(Token::plus);
if (state.topAffineExpr()) {
auto lChild = state.popAffineExpr();
auto rChild = parseAffineExpr(state);
if (rChild) {
auto binaryOpExpr = AffineAddExpr::get(lChild, rChild, context);
state.popAffineExpr();
state.pushAffineExpr(binaryOpExpr);
} else {
emitError("right operand of + missing");
}
} else {
emitError("left operand of + missing");
}
break;
}
case Token::integer: {
AffineExpr *expr = AffineConstantExpr::get(
curToken.getUnsignedIntegerValue().getValue(), context);
state.pushAffineExpr(expr);
consumeToken(Token::integer);
break;
}
case Token::l_paren: {
consumeToken(Token::l_paren);
break;
}
case Token::r_paren: {
consumeToken(Token::r_paren);
break;
}
default: {
emitError("affine map expr parse impl incomplete/unexpected token");
return nullptr;
}
}
}
if (!state.topAffineExpr()) {
// An error will be emitted by parse comma separated list on an empty list
return nullptr;
}
return state.topAffineExpr();
}
// Return empty string if no bare id was found
StringRef Parser::parseDimOrSymbolId(SmallVectorImpl<StringRef> &dims,
SmallVectorImpl<StringRef> &symbols,
bool symbol = false) {
if (curToken.isNot(Token::bare_identifier)) {
emitError("expected bare identifier");
return StringRef();
}
// TODO(bondhugula): check whether the id already exists in either
// state.symbols or state.dims; report error if it does; otherwise create a
// new one.
StringRef ref = curToken.getSpelling();
consumeToken(Token::bare_identifier);
return ref;
}
ParseResult Parser::parseSymbolIdList(SmallVectorImpl<StringRef> &dims,
SmallVectorImpl<StringRef> &symbols) {
if (!consumeIf(Token::l_bracket)) return emitError("expected '['");
auto parseElt = [&]() -> ParseResult {
auto elt = parseDimOrSymbolId(dims, symbols, true);
// FIXME(bondhugula): assuming dim arg for now
if (!elt.empty()) {
symbols.push_back(elt);
return ParseSuccess;
}
return ParseFailure;
};
return parseCommaSeparatedList(Token::r_bracket, parseElt);
}
// TODO(andy,bondhugula)
ParseResult Parser::parseDimIdList(SmallVectorImpl<StringRef> &dims,
SmallVectorImpl<StringRef> &symbols) {
if (!consumeIf(Token::l_paren))
return emitError("expected '(' at start of dimensional identifiers list");
auto parseElt = [&]() -> ParseResult {
auto elt = parseDimOrSymbolId(dims, symbols, false);
if (!elt.empty()) {
dims.push_back(elt);
return ParseSuccess;
}
return ParseFailure;
};
return parseCommaSeparatedList(Token::r_paren, parseElt);
}
/// Affine map definition.
///
/// affine-map-inline ::= dim-and-symbol-id-lists `->` multi-dim-affine-expr
/// ( `size` `(` dim-size (`,` dim-size)* `)` )?
/// dim-size ::= affine-expr | `min` `(` affine-expr ( `,` affine-expr)+ `)`
///
AffineMap *Parser::parseAffineMapInline(StringRef mapId) {
SmallVector<StringRef, 4> dims;
SmallVector<StringRef, 4> symbols;
// List of dimensional identifiers.
if (parseDimIdList(dims, symbols)) return nullptr;
// Symbols are optional.
if (curToken.is(Token::l_bracket)) {
if (parseSymbolIdList(dims, symbols)) return nullptr;
}
if (!consumeIf(Token::arrow)) {
emitError("expected '->' or '['");
return nullptr;
}
if (!consumeIf(Token::l_paren)) {
emitError("expected '(' at start of affine map range");
return nullptr;
}
AffineMapParserState affState(dims, symbols);
SmallVector<AffineExpr *, 4> exprs;
auto parseElt = [&]() -> ParseResult {
auto elt = parseAffineExpr(affState);
ParseResult res = elt ? ParseSuccess : ParseFailure;
exprs.push_back(elt);
return res;
};
// Parse a multi-dimensional affine expression (a comma-separated list of 1-d
// affine expressions)
if (parseCommaSeparatedList(Token::r_paren, parseElt, false)) return nullptr;
// Parsed a valid affine map
auto *affineMap =
AffineMap::get(affState.dimCount(), affState.symbolCount(), exprs,
context);
return affineMap;
}
//===----------------------------------------------------------------------===//
@ -525,8 +754,8 @@ ParseResult Parser::parseFunctionSignature(StringRef &name,
if (curToken.isNot(Token::l_paren))
return emitError("expected '(' in function signature");
SmallVector<Type*, 4> arguments;
if (parseTypeList(arguments))
SmallVector<Type*, 4> arguments;
if (parseTypeList(arguments))
return ParseFailure;
// Parse the return type if present.
@ -563,7 +792,7 @@ namespace {
/// function as we are parsing it, e.g. the names for basic blocks. It handles
/// forward references.
class CFGFunctionParserState {
public:
public:
CFGFunction *function;
llvm::StringMap<std::pair<BasicBlock*, SMLoc>> blocksByName;
@ -851,3 +1080,4 @@ Module *mlir::parseSourceFile(llvm::SourceMgr &sourceMgr, MLIRContext *context,
const SMDiagnosticHandlerTy &errorReporter) {
return Parser(sourceMgr, context, errorReporter).parseModule();
}

View File

@ -65,6 +65,7 @@ StringRef Token::getTokenSpelling(Kind kind) {
switch (kind) {
default: assert(0 && "This token kind has no fixed spelling");
#define TOK_PUNCTUATION(NAME, SPELLING) case NAME: return SPELLING;
#define TOK_OPERATOR(NAME, SPELLING) case NAME: return SPELLING;
#define TOK_KEYWORD(SPELLING) case kw_##SPELLING: return #SPELLING;
#include "TokenKinds.def"
}

View File

@ -32,6 +32,7 @@ public:
#define TOK_IDENTIFIER(NAME) NAME,
#define TOK_LITERAL(NAME) NAME,
#define TOK_PUNCTUATION(NAME, SPELLING) NAME,
#define TOK_OPERATOR(NAME, SPELLING) NAME,
#define TOK_KEYWORD(SPELLING) kw_##SPELLING,
#include "TokenKinds.def"
};
@ -99,3 +100,4 @@ private:
} // end namespace mlir
#endif // MLIR_LIB_PARSER_TOKEN_H

View File

@ -21,7 +21,7 @@
//===----------------------------------------------------------------------===//
#if !defined(TOK_MARKER) && !defined(TOK_IDENTIFIER) && !defined(TOK_LITERAL)&&\
!defined(TOK_PUNCTUATION) && !defined(TOK_KEYWORD)
!defined(TOK_PUNCTUATION) && !defined(TOK_OPERATOR) && !defined(TOK_KEYWORD)
# error Must define one of the TOK_ macros.
#endif
@ -37,6 +37,9 @@
#ifndef TOK_PUNCTUATION
#define TOK_PUNCTUATION(NAME, SPELLING)
#endif
#ifndef TOK_OPERATOR
#define TOK_OPERATOR(NAME, SPELLING)
#endif
#ifndef TOK_KEYWORD
#define TOK_KEYWORD(SPELLING)
#endif
@ -66,10 +69,20 @@ TOK_PUNCTUATION(l_paren, "(")
TOK_PUNCTUATION(r_paren, ")")
TOK_PUNCTUATION(l_brace, "{")
TOK_PUNCTUATION(r_brace, "}")
TOK_PUNCTUATION(l_bracket, "[")
TOK_PUNCTUATION(r_bracket, "]")
TOK_PUNCTUATION(less, "<")
TOK_PUNCTUATION(greater, ">")
TOK_PUNCTUATION(equal, "=")
// TODO: More punctuation.
// Operators.
TOK_OPERATOR(plus, "+")
TOK_OPERATOR(star, "*")
TOK_OPERATOR(ceildiv, "ceildiv")
TOK_OPERATOR(floordiv, "floordiv")
// TODO: More operator tokens
// Keywords. These turn "foo" into Token::kw_foo enums.
TOK_KEYWORD(bf16)
TOK_KEYWORD(br)
@ -94,4 +107,5 @@ TOK_KEYWORD(vector)
#undef TOK_IDENTIFIER
#undef TOK_LITERAL
#undef TOK_PUNCTUATION
#undef TOK_OPERATOR
#undef TOK_KEYWORD

View File

@ -0,0 +1,7 @@
#hello_world0 = (i, j) [s0] -> (i, j)
#hello_world1 = (i, j) -> (i, j)
#hello_world2 = () -> (0)
#hello_world3 = (i, j) [s0] -> (i + s0, j)
#hello_world4 = (i, j) [s0] -> (i + s0, j + 5)
#hello_world5 (i, j) [s0] -> i + s0, j)
#hello_world5 = (i, j) [s0] -> i + s0, j)