forked from OSchip/llvm-project
parent
6e3c5fada6
commit
fda72b1aad
|
@ -98,7 +98,7 @@ public:
|
|||
// --------- Implement the FunctionPass interface ----------------------
|
||||
|
||||
// runOnFunction - Perform analysis, update internal data structures.
|
||||
virtual bool runOnFunction(Function *F);
|
||||
virtual bool runOnFunction(Function &F);
|
||||
|
||||
// releaseMemory - After LiveVariable analysis has been used, forget!
|
||||
virtual void releaseMemory();
|
||||
|
|
|
@ -7,8 +7,9 @@ class Value;
|
|||
// RAV - Used to print values in a form used by the register allocator.
|
||||
//
|
||||
struct RAV { // Register Allocator Value
|
||||
const Value *V;
|
||||
RAV(const Value *v) : V(v) {}
|
||||
const Value &V;
|
||||
RAV(const Value *v) : V(*v) {}
|
||||
RAV(const Value &v) : V(v) {}
|
||||
};
|
||||
std::ostream &operator<<(std::ostream &out, RAV Val);
|
||||
|
||||
|
|
|
@ -13,7 +13,10 @@
|
|||
class Argument : public Value { // Defined in the InstrType.cpp file
|
||||
Function *Parent;
|
||||
|
||||
friend class ValueHolder<Argument, Function, Function>;
|
||||
Argument *Prev, *Next; // Next and Prev links for our intrusive linked list
|
||||
void setNext(Argument *N) { Next = N; }
|
||||
void setPrev(Argument *N) { Prev = N; }
|
||||
friend class SymbolTableListTraits<Argument, Function, Function>;
|
||||
inline void setParent(Function *parent) { Parent = parent; }
|
||||
|
||||
public:
|
||||
|
@ -27,6 +30,12 @@ public:
|
|||
|
||||
inline const Function *getParent() const { return Parent; }
|
||||
inline Function *getParent() { return Parent; }
|
||||
|
||||
// getNext/Prev - Return the next or previous argument in the list.
|
||||
Argument *getNext() { return Next; }
|
||||
const Argument *getNext() const { return Next; }
|
||||
Argument *getPrev() { return Prev; }
|
||||
const Argument *getPrev() const { return Prev; }
|
||||
|
||||
virtual void print(std::ostream &OS) const;
|
||||
|
||||
|
|
|
@ -20,23 +20,37 @@
|
|||
#ifndef LLVM_BASICBLOCK_H
|
||||
#define LLVM_BASICBLOCK_H
|
||||
|
||||
#include "llvm/ValueHolder.h"
|
||||
#include "llvm/Value.h"
|
||||
#include "llvm/Instruction.h"
|
||||
#include "llvm/SymbolTableListTraits.h"
|
||||
#include "Support/ilist"
|
||||
|
||||
class TerminatorInst;
|
||||
class MachineCodeForBasicBlock;
|
||||
template <class _Term, class _BB> class SuccIterator; // Successor Iterator
|
||||
template <class _Ptr, class _USE_iterator> class PredIterator;
|
||||
|
||||
template<> struct ilist_traits<Instruction>
|
||||
: public SymbolTableListTraits<Instruction, BasicBlock, Function> {
|
||||
// createNode is used to create a node that marks the end of the list...
|
||||
static Instruction *createNode();
|
||||
static iplist<Instruction> &getList(BasicBlock *BB);
|
||||
};
|
||||
|
||||
class BasicBlock : public Value { // Basic blocks are data objects also
|
||||
public:
|
||||
typedef ValueHolder<Instruction, BasicBlock, Function> InstListType;
|
||||
typedef iplist<Instruction> InstListType;
|
||||
private :
|
||||
InstListType InstList;
|
||||
MachineCodeForBasicBlock* machineInstrVec;
|
||||
BasicBlock *Prev, *Next; // Next and Prev links for our intrusive linked list
|
||||
|
||||
friend class ValueHolder<BasicBlock,Function,Function>;
|
||||
void setParent(Function *parent);
|
||||
void setParent(Function *parent) { InstList.setParent(parent); }
|
||||
void setNext(BasicBlock *N) { Next = N; }
|
||||
void setPrev(BasicBlock *N) { Prev = N; }
|
||||
friend class SymbolTableListTraits<BasicBlock, Function, Function>;
|
||||
|
||||
BasicBlock(const BasicBlock &); // Do not implement
|
||||
void operator=(const BasicBlock &); // Do not implement
|
||||
|
||||
public:
|
||||
// Instruction iterators...
|
||||
|
@ -56,6 +70,12 @@ public:
|
|||
const Function *getParent() const { return InstList.getParent(); }
|
||||
Function *getParent() { return InstList.getParent(); }
|
||||
|
||||
// getNext/Prev - Return the next or previous basic block in the list.
|
||||
BasicBlock *getNext() { return Next; }
|
||||
const BasicBlock *getNext() const { return Next; }
|
||||
BasicBlock *getPrev() { return Prev; }
|
||||
const BasicBlock *getPrev() const { return Prev; }
|
||||
|
||||
// getTerminator() - If this is a well formed basic block, then this returns
|
||||
// a pointer to the terminator instruction. If it is not, then you get a null
|
||||
// pointer back.
|
||||
|
@ -93,10 +113,10 @@ public:
|
|||
|
||||
inline unsigned size() const { return InstList.size(); }
|
||||
inline bool empty() const { return InstList.empty(); }
|
||||
inline const Instruction *front() const { return InstList.front(); }
|
||||
inline Instruction *front() { return InstList.front(); }
|
||||
inline const Instruction *back() const { return InstList.back(); }
|
||||
inline Instruction *back() { return InstList.back(); }
|
||||
inline const Instruction &front() const { return InstList.front(); }
|
||||
inline Instruction &front() { return InstList.front(); }
|
||||
inline const Instruction &back() const { return InstList.back(); }
|
||||
inline Instruction &back() { return InstList.back(); }
|
||||
|
||||
// getInstList() - Return the underlying instruction list container. You need
|
||||
// to access it directly if you want to modify it currently.
|
||||
|
|
|
@ -25,8 +25,8 @@ public:
|
|||
if (DeleteStream) delete Out;
|
||||
}
|
||||
|
||||
bool run(Module *M) {
|
||||
WriteBytecodeToFile(M, *Out);
|
||||
bool run(Module &M) {
|
||||
WriteBytecodeToFile(&M, *Out);
|
||||
return false;
|
||||
}
|
||||
};
|
||||
|
|
|
@ -98,7 +98,7 @@ public:
|
|||
// --------- Implement the FunctionPass interface ----------------------
|
||||
|
||||
// runOnFunction - Perform analysis, update internal data structures.
|
||||
virtual bool runOnFunction(Function *F);
|
||||
virtual bool runOnFunction(Function &F);
|
||||
|
||||
// releaseMemory - After LiveVariable analysis has been used, forget!
|
||||
virtual void releaseMemory();
|
||||
|
|
|
@ -7,8 +7,9 @@ class Value;
|
|||
// RAV - Used to print values in a form used by the register allocator.
|
||||
//
|
||||
struct RAV { // Register Allocator Value
|
||||
const Value *V;
|
||||
RAV(const Value *v) : V(v) {}
|
||||
const Value &V;
|
||||
RAV(const Value *v) : V(*v) {}
|
||||
RAV(const Value &v) : V(v) {}
|
||||
};
|
||||
std::ostream &operator<<(std::ostream &out, RAV Val);
|
||||
|
||||
|
|
|
@ -75,7 +75,7 @@ public:
|
|||
return T->isDerivedType();
|
||||
}
|
||||
static inline bool classof(const Value *V) {
|
||||
return isa<Type>(V) && classof(cast<const Type>(V));
|
||||
return isa<Type>(V) && classof(cast<Type>(V));
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -377,7 +377,7 @@ public:
|
|||
return T->getPrimitiveID() == OpaqueTyID;
|
||||
}
|
||||
static inline bool classof(const Value *V) {
|
||||
return isa<Type>(V) && classof(cast<const Type>(V));
|
||||
return isa<Type>(V) && classof(cast<Type>(V));
|
||||
}
|
||||
};
|
||||
|
||||
|
|
|
@ -13,31 +13,59 @@
|
|||
#define LLVM_FUNCTION_H
|
||||
|
||||
#include "llvm/GlobalValue.h"
|
||||
#include "llvm/ValueHolder.h"
|
||||
#include "llvm/BasicBlock.h"
|
||||
#include "llvm/Argument.h"
|
||||
|
||||
class FunctionType;
|
||||
|
||||
// Traits for intrusive list of instructions...
|
||||
template<> struct ilist_traits<BasicBlock>
|
||||
: public SymbolTableListTraits<BasicBlock, Function, Function> {
|
||||
|
||||
// createNode is used to create a node that marks the end of the list...
|
||||
static BasicBlock *createNode() { return new BasicBlock(); }
|
||||
|
||||
static iplist<BasicBlock> &getList(Function *F);
|
||||
};
|
||||
|
||||
template<> struct ilist_traits<Argument>
|
||||
: public SymbolTableListTraits<Argument, Function, Function> {
|
||||
|
||||
// createNode is used to create a node that marks the end of the list...
|
||||
static Argument *createNode();
|
||||
static iplist<Argument> &getList(Function *F);
|
||||
};
|
||||
|
||||
class Function : public GlobalValue {
|
||||
public:
|
||||
typedef ValueHolder<Argument , Function, Function> ArgumentListType;
|
||||
typedef ValueHolder<BasicBlock, Function, Function> BasicBlocksType;
|
||||
typedef iplist<Argument> ArgumentListType;
|
||||
typedef iplist<BasicBlock> BasicBlockListType;
|
||||
|
||||
// BasicBlock iterators...
|
||||
typedef BasicBlocksType::iterator iterator;
|
||||
typedef BasicBlocksType::const_iterator const_iterator;
|
||||
typedef BasicBlockListType::iterator iterator;
|
||||
typedef BasicBlockListType::const_iterator const_iterator;
|
||||
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
|
||||
typedef std::reverse_iterator<iterator> reverse_iterator;
|
||||
|
||||
typedef ArgumentListType::iterator aiterator;
|
||||
typedef ArgumentListType::const_iterator const_aiterator;
|
||||
typedef std::reverse_iterator<const_aiterator> const_reverse_aiterator;
|
||||
typedef std::reverse_iterator<aiterator> reverse_aiterator;
|
||||
|
||||
private:
|
||||
|
||||
// Important things that make up a function!
|
||||
BasicBlocksType BasicBlocks; // The basic blocks
|
||||
BasicBlockListType BasicBlocks; // The basic blocks
|
||||
ArgumentListType ArgumentList; // The formal arguments
|
||||
|
||||
SymbolTable *SymTab, *ParentSymTab;
|
||||
|
||||
friend class ValueHolder<Function, Module, Module>;
|
||||
friend class SymbolTableListTraits<Function, Module, Module>;
|
||||
|
||||
void setParent(Module *parent);
|
||||
Function *Prev, *Next;
|
||||
void setNext(Function *N) { Next = N; }
|
||||
void setPrev(Function *N) { Prev = N; }
|
||||
|
||||
public:
|
||||
Function(const FunctionType *Ty, bool isInternal, const std::string &N = "");
|
||||
|
@ -53,17 +81,24 @@ public:
|
|||
// this is true for external functions, defined as forward "declare"ations
|
||||
bool isExternal() const { return BasicBlocks.empty(); }
|
||||
|
||||
// getNext/Prev - Return the next or previous instruction in the list. The
|
||||
// last node in the list is a terminator instruction.
|
||||
Function *getNext() { return Next; }
|
||||
const Function *getNext() const { return Next; }
|
||||
Function *getPrev() { return Prev; }
|
||||
const Function *getPrev() const { return Prev; }
|
||||
|
||||
// Get the underlying elements of the Function... both the argument list and
|
||||
// basic block list are empty for external functions.
|
||||
//
|
||||
inline const ArgumentListType &getArgumentList() const{ return ArgumentList; }
|
||||
inline ArgumentListType &getArgumentList() { return ArgumentList; }
|
||||
const ArgumentListType &getArgumentList() const { return ArgumentList; }
|
||||
ArgumentListType &getArgumentList() { return ArgumentList; }
|
||||
|
||||
inline const BasicBlocksType &getBasicBlocks() const { return BasicBlocks; }
|
||||
inline BasicBlocksType &getBasicBlocks() { return BasicBlocks; }
|
||||
const BasicBlockListType &getBasicBlockList() const { return BasicBlocks; }
|
||||
BasicBlockListType &getBasicBlockList() { return BasicBlocks; }
|
||||
|
||||
inline const BasicBlock *getEntryNode() const { return front(); }
|
||||
inline BasicBlock *getEntryNode() { return front(); }
|
||||
const BasicBlock &getEntryNode() const { return front(); }
|
||||
BasicBlock &getEntryNode() { return front(); }
|
||||
|
||||
//===--------------------------------------------------------------------===//
|
||||
// Symbol Table Accessing functions...
|
||||
|
@ -89,22 +124,42 @@ public:
|
|||
//===--------------------------------------------------------------------===//
|
||||
// BasicBlock iterator forwarding functions
|
||||
//
|
||||
inline iterator begin() { return BasicBlocks.begin(); }
|
||||
inline const_iterator begin() const { return BasicBlocks.begin(); }
|
||||
inline iterator end () { return BasicBlocks.end(); }
|
||||
inline const_iterator end () const { return BasicBlocks.end(); }
|
||||
iterator begin() { return BasicBlocks.begin(); }
|
||||
const_iterator begin() const { return BasicBlocks.begin(); }
|
||||
iterator end () { return BasicBlocks.end(); }
|
||||
const_iterator end () const { return BasicBlocks.end(); }
|
||||
|
||||
inline reverse_iterator rbegin() { return BasicBlocks.rbegin(); }
|
||||
inline const_reverse_iterator rbegin() const { return BasicBlocks.rbegin(); }
|
||||
inline reverse_iterator rend () { return BasicBlocks.rend(); }
|
||||
inline const_reverse_iterator rend () const { return BasicBlocks.rend(); }
|
||||
reverse_iterator rbegin() { return BasicBlocks.rbegin(); }
|
||||
const_reverse_iterator rbegin() const { return BasicBlocks.rbegin(); }
|
||||
reverse_iterator rend () { return BasicBlocks.rend(); }
|
||||
const_reverse_iterator rend () const { return BasicBlocks.rend(); }
|
||||
|
||||
inline unsigned size() const { return BasicBlocks.size(); }
|
||||
inline bool empty() const { return BasicBlocks.empty(); }
|
||||
inline const BasicBlock *front() const { return BasicBlocks.front(); }
|
||||
inline BasicBlock *front() { return BasicBlocks.front(); }
|
||||
inline const BasicBlock *back() const { return BasicBlocks.back(); }
|
||||
inline BasicBlock *back() { return BasicBlocks.back(); }
|
||||
unsigned size() const { return BasicBlocks.size(); }
|
||||
bool empty() const { return BasicBlocks.empty(); }
|
||||
const BasicBlock &front() const { return BasicBlocks.front(); }
|
||||
BasicBlock &front() { return BasicBlocks.front(); }
|
||||
const BasicBlock &back() const { return BasicBlocks.back(); }
|
||||
BasicBlock &back() { return BasicBlocks.back(); }
|
||||
|
||||
//===--------------------------------------------------------------------===//
|
||||
// Argument iterator forwarding functions
|
||||
//
|
||||
aiterator abegin() { return ArgumentList.begin(); }
|
||||
const_aiterator abegin() const { return ArgumentList.begin(); }
|
||||
aiterator aend () { return ArgumentList.end(); }
|
||||
const_aiterator aend () const { return ArgumentList.end(); }
|
||||
|
||||
reverse_aiterator arbegin() { return ArgumentList.rbegin(); }
|
||||
const_reverse_aiterator arbegin() const { return ArgumentList.rbegin(); }
|
||||
reverse_aiterator arend () { return ArgumentList.rend(); }
|
||||
const_reverse_aiterator arend () const { return ArgumentList.rend(); }
|
||||
|
||||
unsigned asize() const { return ArgumentList.size(); }
|
||||
bool aempty() const { return ArgumentList.empty(); }
|
||||
const Argument &afront() const { return ArgumentList.front(); }
|
||||
Argument &afront() { return ArgumentList.front(); }
|
||||
const Argument &aback() const { return ArgumentList.back(); }
|
||||
Argument &aback() { return ArgumentList.back(); }
|
||||
|
||||
virtual void print(std::ostream &OS) const;
|
||||
|
||||
|
|
|
@ -17,11 +17,19 @@
|
|||
class Module;
|
||||
class Constant;
|
||||
class PointerType;
|
||||
template<typename SC> struct ilist_traits;
|
||||
template<typename ValueSubClass, typename ItemParentClass, typename SymTabClass,
|
||||
typename SubClass> class SymbolTableListTraits;
|
||||
|
||||
class GlobalVariable : public GlobalValue {
|
||||
friend class ValueHolder<GlobalVariable, Module, Module>;
|
||||
friend class SymbolTableListTraits<GlobalVariable, Module, Module,
|
||||
ilist_traits<GlobalVariable> >;
|
||||
void setParent(Module *parent) { Parent = parent; }
|
||||
|
||||
GlobalVariable *Prev, *Next;
|
||||
void setNext(GlobalVariable *N) { Next = N; }
|
||||
void setPrev(GlobalVariable *N) { Prev = N; }
|
||||
|
||||
bool isConstantGlobal; // Is this a global constant?
|
||||
public:
|
||||
GlobalVariable(const Type *Ty, bool isConstant, bool isInternal,
|
||||
|
@ -52,6 +60,12 @@ public:
|
|||
}
|
||||
}
|
||||
|
||||
// getNext/Prev - Return the next or previous instruction in the list. The
|
||||
// last node in the list is a terminator instruction.
|
||||
GlobalVariable *getNext() { return Next; }
|
||||
const GlobalVariable *getNext() const { return Next; }
|
||||
GlobalVariable *getPrev() { return Prev; }
|
||||
const GlobalVariable *getPrev() const { return Prev; }
|
||||
|
||||
// If the value is a global constant, its value is immutable throughout the
|
||||
// runtime execution of the program. Assigning a value into the constant
|
||||
|
|
|
@ -9,11 +9,19 @@
|
|||
#define LLVM_INSTRUCTION_H
|
||||
|
||||
#include "llvm/User.h"
|
||||
template<typename SC> struct ilist_traits;
|
||||
template<typename ValueSubClass, typename ItemParentClass, typename SymTabClass,
|
||||
typename SubClass> class SymbolTableListTraits;
|
||||
|
||||
class Instruction : public User {
|
||||
BasicBlock *Parent;
|
||||
Instruction *Prev, *Next; // Next and Prev links for our intrusive linked list
|
||||
|
||||
friend class ValueHolder<Instruction,BasicBlock,Function>;
|
||||
void setNext(Instruction *N) { Next = N; }
|
||||
void setPrev(Instruction *N) { Prev = N; }
|
||||
|
||||
friend class SymbolTableListTraits<Instruction, BasicBlock, Function,
|
||||
ilist_traits<Instruction> >;
|
||||
inline void setParent(BasicBlock *P) { Parent = P; }
|
||||
protected:
|
||||
unsigned iType; // InstructionType
|
||||
|
@ -37,6 +45,14 @@ public:
|
|||
//
|
||||
inline const BasicBlock *getParent() const { return Parent; }
|
||||
inline BasicBlock *getParent() { return Parent; }
|
||||
|
||||
// getNext/Prev - Return the next or previous instruction in the list. The
|
||||
// last node in the list is a terminator instruction.
|
||||
Instruction *getNext() { return Next; }
|
||||
const Instruction *getNext() const { return Next; }
|
||||
Instruction *getPrev() { return Prev; }
|
||||
const Instruction *getPrev() const { return Prev; }
|
||||
|
||||
virtual bool hasSideEffects() const { return false; } // Memory & Call insts
|
||||
|
||||
// ---------------------------------------------------------------------------
|
||||
|
|
|
@ -12,18 +12,31 @@
|
|||
#ifndef LLVM_MODULE_H
|
||||
#define LLVM_MODULE_H
|
||||
|
||||
#include "llvm/Value.h"
|
||||
#include "llvm/ValueHolder.h"
|
||||
#include "llvm/Function.h"
|
||||
#include "llvm/GlobalVariable.h"
|
||||
class GlobalVariable;
|
||||
class GlobalValueRefMap; // Used by ConstantVals.cpp
|
||||
class ConstantPointerRef;
|
||||
class FunctionType;
|
||||
class SymbolTable;
|
||||
|
||||
template<> struct ilist_traits<Function>
|
||||
: public SymbolTableListTraits<Function, Module, Module> {
|
||||
// createNode is used to create a node that marks the end of the list...
|
||||
static Function *createNode();
|
||||
static iplist<Function> &getList(Module *M);
|
||||
};
|
||||
template<> struct ilist_traits<GlobalVariable>
|
||||
: public SymbolTableListTraits<GlobalVariable, Module, Module> {
|
||||
// createNode is used to create a node that marks the end of the list...
|
||||
static GlobalVariable *createNode();
|
||||
static iplist<GlobalVariable> &getList(Module *M);
|
||||
};
|
||||
|
||||
class Module : public Annotable {
|
||||
public:
|
||||
typedef ValueHolder<GlobalVariable, Module, Module> GlobalListType;
|
||||
typedef ValueHolder<Function, Module, Module> FunctionListType;
|
||||
typedef iplist<GlobalVariable> GlobalListType;
|
||||
typedef iplist<Function> FunctionListType;
|
||||
|
||||
// Global Variable iterators...
|
||||
typedef GlobalListType::iterator giterator;
|
||||
|
@ -119,10 +132,10 @@ public:
|
|||
|
||||
inline unsigned gsize() const { return GlobalList.size(); }
|
||||
inline bool gempty() const { return GlobalList.empty(); }
|
||||
inline const GlobalVariable *gfront() const { return GlobalList.front(); }
|
||||
inline GlobalVariable *gfront() { return GlobalList.front(); }
|
||||
inline const GlobalVariable *gback() const { return GlobalList.back(); }
|
||||
inline GlobalVariable *gback() { return GlobalList.back(); }
|
||||
inline const GlobalVariable &gfront() const { return GlobalList.front(); }
|
||||
inline GlobalVariable &gfront() { return GlobalList.front(); }
|
||||
inline const GlobalVariable &gback() const { return GlobalList.back(); }
|
||||
inline GlobalVariable &gback() { return GlobalList.back(); }
|
||||
|
||||
|
||||
|
||||
|
@ -138,10 +151,10 @@ public:
|
|||
|
||||
inline unsigned size() const { return FunctionList.size(); }
|
||||
inline bool empty() const { return FunctionList.empty(); }
|
||||
inline const Function *front() const { return FunctionList.front(); }
|
||||
inline Function *front() { return FunctionList.front(); }
|
||||
inline const Function *back() const { return FunctionList.back(); }
|
||||
inline Function *back() { return FunctionList.back(); }
|
||||
inline const Function &front() const { return FunctionList.front(); }
|
||||
inline Function &front() { return FunctionList.front(); }
|
||||
inline const Function &back() const { return FunctionList.back(); }
|
||||
inline Function &back() { return FunctionList.back(); }
|
||||
|
||||
void print(std::ostream &OS) const;
|
||||
|
||||
|
|
|
@ -50,7 +50,7 @@ public:
|
|||
// run - Run this pass, returning true if a modification was made to the
|
||||
// module argument. This should be implemented by all concrete subclasses.
|
||||
//
|
||||
virtual bool run(Module *M) = 0;
|
||||
virtual bool run(Module &M) = 0;
|
||||
|
||||
// getAnalysisUsage - This function should be overriden by passes that need
|
||||
// analysis information to do their job. If a pass specifies that it uses a
|
||||
|
@ -122,26 +122,26 @@ struct FunctionPass : public Pass {
|
|||
// doInitialization - Virtual method overridden by subclasses to do
|
||||
// any neccesary per-module initialization.
|
||||
//
|
||||
virtual bool doInitialization(Module *M) { return false; }
|
||||
virtual bool doInitialization(Module &M) { return false; }
|
||||
|
||||
// runOnFunction - Virtual method overriden by subclasses to do the
|
||||
// per-function processing of the pass.
|
||||
//
|
||||
virtual bool runOnFunction(Function *F) = 0;
|
||||
virtual bool runOnFunction(Function &F) = 0;
|
||||
|
||||
// doFinalization - Virtual method overriden by subclasses to do any post
|
||||
// processing needed after all passes have run.
|
||||
//
|
||||
virtual bool doFinalization(Module *M) { return false; }
|
||||
virtual bool doFinalization(Module &M) { return false; }
|
||||
|
||||
// run - On a module, we run this pass by initializing, ronOnFunction'ing once
|
||||
// for every function in the module, then by finalizing.
|
||||
//
|
||||
virtual bool run(Module *M);
|
||||
virtual bool run(Module &M);
|
||||
|
||||
// run - On a function, we simply initialize, run the function, then finalize.
|
||||
//
|
||||
bool run(Function *F);
|
||||
bool run(Function &F);
|
||||
|
||||
private:
|
||||
friend class PassManagerT<Module>;
|
||||
|
@ -167,17 +167,17 @@ struct BasicBlockPass : public FunctionPass {
|
|||
// runOnBasicBlock - Virtual method overriden by subclasses to do the
|
||||
// per-basicblock processing of the pass.
|
||||
//
|
||||
virtual bool runOnBasicBlock(BasicBlock *M) = 0;
|
||||
virtual bool runOnBasicBlock(BasicBlock &BB) = 0;
|
||||
|
||||
// To run this pass on a function, we simply call runOnBasicBlock once for
|
||||
// each function.
|
||||
//
|
||||
virtual bool runOnFunction(Function *F);
|
||||
virtual bool runOnFunction(Function &F);
|
||||
|
||||
// To run directly on the basic block, we initialize, runOnBasicBlock, then
|
||||
// finalize.
|
||||
//
|
||||
bool run(BasicBlock *BB);
|
||||
bool run(BasicBlock &BB);
|
||||
|
||||
private:
|
||||
friend class PassManagerT<Function>;
|
||||
|
|
|
@ -30,7 +30,7 @@ public:
|
|||
// run - Execute all of the passes scheduled for execution. Keep track of
|
||||
// whether any of the functions modifies the program, and if so, return true.
|
||||
//
|
||||
bool run(Module *M);
|
||||
bool run(Module &M);
|
||||
};
|
||||
|
||||
#endif
|
||||
|
|
|
@ -0,0 +1,68 @@
|
|||
//===-- llvm/SymbolTableListTraits.h - Traits for iplist -------*- C++ -*--===//
|
||||
//
|
||||
// This file defines a generic class that is used to implement the automatic
|
||||
// symbol table manipulation that occurs when you put (for example) a named
|
||||
// instruction into a basic block.
|
||||
//
|
||||
// The way that this is implemented is by using a special traits class with the
|
||||
// intrusive list that makes up the list of instructions in a basic block. When
|
||||
// a new element is added to the list of instructions, the traits class is
|
||||
// notified, allowing the symbol table to be updated.
|
||||
//
|
||||
// This generic class implements the traits class. It must be generic so that
|
||||
// it can work for all uses it, which include lists of instructions, basic
|
||||
// blocks, arguments, functions, global variables, etc...
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_SYMBOLTABLELISTTRAITS_H
|
||||
#define LLVM_SYMBOLTABLELISTTRAITS_H
|
||||
|
||||
template<typename NodeTy> class ilist_iterator;
|
||||
template<typename NodeTy, typename Traits> class iplist;
|
||||
template<typename Ty> struct ilist_traits;
|
||||
|
||||
// ValueSubClass - The type of objects that I hold
|
||||
// ItemParentType - I call setParent() on all of my "ValueSubclass" items, and
|
||||
// this is the value that I pass in.
|
||||
// SymTabType - This is the class type, whose symtab I insert my
|
||||
// ValueSubClass items into. Most of the time it is
|
||||
// ItemParentType, but Instructions have item parents of BB's
|
||||
// but symtabtype's of a Function
|
||||
//
|
||||
template<typename ValueSubClass, typename ItemParentClass, typename SymTabClass,
|
||||
typename SubClass=ilist_traits<ValueSubClass> >
|
||||
class SymbolTableListTraits {
|
||||
SymTabClass *SymTabObject;
|
||||
ItemParentClass *ItemParent;
|
||||
public:
|
||||
SymbolTableListTraits() : SymTabObject(0), ItemParent(0) {}
|
||||
|
||||
SymTabClass *getParent() { return SymTabObject; }
|
||||
const SymTabClass *getParent() const { return SymTabObject; }
|
||||
|
||||
static ValueSubClass *getPrev(ValueSubClass *V) { return V->getPrev(); }
|
||||
static ValueSubClass *getNext(ValueSubClass *V) { return V->getNext(); }
|
||||
static const ValueSubClass *getPrev(const ValueSubClass *V) {
|
||||
return V->getPrev();
|
||||
}
|
||||
static const ValueSubClass *getNext(const ValueSubClass *V) {
|
||||
return V->getNext();
|
||||
}
|
||||
|
||||
static void setPrev(ValueSubClass *V, ValueSubClass *P) { V->setPrev(P); }
|
||||
static void setNext(ValueSubClass *V, ValueSubClass *N) { V->setNext(N); }
|
||||
|
||||
void addNodeToList(ValueSubClass *V);
|
||||
void removeNodeFromList(ValueSubClass *V);
|
||||
void transferNodesFromList(iplist<ValueSubClass,
|
||||
ilist_traits<ValueSubClass> > &L2,
|
||||
ilist_iterator<ValueSubClass> first,
|
||||
ilist_iterator<ValueSubClass> last);
|
||||
|
||||
//private:
|
||||
void setItemParent(ItemParentClass *IP) { ItemParent = IP; }//This is private!
|
||||
void setParent(SymTabClass *Parent); // This is private!
|
||||
};
|
||||
|
||||
#endif
|
|
@ -7,7 +7,6 @@
|
|||
#ifndef LLVM_TRANSFORMS_FUNCTION_INLINING_H
|
||||
#define LLVM_TRANSFORMS_FUNCTION_INLINING_H
|
||||
|
||||
#include "llvm/BasicBlock.h"
|
||||
class CallInst;
|
||||
class Pass;
|
||||
|
||||
|
@ -24,6 +23,5 @@ Pass *createFunctionInliningPass();
|
|||
// function by one level.
|
||||
//
|
||||
bool InlineFunction(CallInst *C);
|
||||
bool InlineFunction(BasicBlock::iterator CI); // *CI must be CallInst
|
||||
|
||||
#endif
|
||||
|
|
|
@ -8,10 +8,6 @@
|
|||
// Algorithm: ConstantMerge is designed to build up a map of available constants
|
||||
// and elminate duplicates when it is initialized.
|
||||
//
|
||||
// The DynamicConstantMerge method is a superset of the ConstantMerge algorithm
|
||||
// that checks for each method to see if constants have been added to the
|
||||
// constant pool since it was last run... if so, it processes them.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_TRANSFORMS_CONSTANTMERGE_H
|
||||
|
@ -19,6 +15,5 @@
|
|||
|
||||
class Pass;
|
||||
Pass *createConstantMergePass();
|
||||
Pass *createDynamicConstantMergePass();
|
||||
|
||||
#endif
|
||||
|
|
|
@ -34,12 +34,4 @@ void ReplaceInstWithInst(BasicBlock::InstListType &BIL,
|
|||
//
|
||||
void ReplaceInstWithInst(Instruction *From, Instruction *To);
|
||||
|
||||
// InsertInstBeforeInst - Insert 'NewInst' into the basic block that 'Existing'
|
||||
// is already in, and put it right before 'Existing'. This instruction should
|
||||
// only be used when there is no iterator to Existing already around. The
|
||||
// returned iterator points to the new instruction.
|
||||
//
|
||||
BasicBlock::iterator InsertInstBeforeInst(Instruction *NewInst,
|
||||
Instruction *Existing);
|
||||
|
||||
#endif
|
||||
|
|
|
@ -52,12 +52,11 @@ bool dceInstruction(BasicBlock::iterator &BBI);
|
|||
// SimplifyCFG - This function is used to do simplification of a CFG. For
|
||||
// example, it adjusts branches to branches to eliminate the extra hop, it
|
||||
// eliminates unreachable basic blocks, and does other "peephole" optimization
|
||||
// of the CFG. It returns true if a modification was made, and returns an
|
||||
// iterator that designates the first element remaining after the block that
|
||||
// was deleted.
|
||||
// of the CFG. It returns true if a modification was made, possibly deleting
|
||||
// the basic block that was pointed to.
|
||||
//
|
||||
// WARNING: The entry node of a method may not be simplified.
|
||||
//
|
||||
bool SimplifyCFG(Function::iterator &BBIt);
|
||||
bool SimplifyCFG(BasicBlock *BB);
|
||||
|
||||
#endif
|
||||
|
|
|
@ -23,7 +23,7 @@ public:
|
|||
BasicBlock *getExitNode() const { return ExitNode; }
|
||||
|
||||
virtual const char *getPassName() const { return "Unify Function Exit Nodes";}
|
||||
virtual bool runOnFunction(Function *F);
|
||||
virtual bool runOnFunction(Function &F);
|
||||
virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addProvided(ID); }
|
||||
};
|
||||
|
||||
|
|
|
@ -294,11 +294,8 @@ template <> struct GraphTraits<const Type*> {
|
|||
}
|
||||
};
|
||||
|
||||
template <> inline bool isa<PointerType, const Type*>(const Type *Ty) {
|
||||
return Ty->getPrimitiveID() == Type::PointerTyID;
|
||||
}
|
||||
template <> inline bool isa<PointerType, Type*>(Type *Ty) {
|
||||
return Ty->getPrimitiveID() == Type::PointerTyID;
|
||||
template <> inline bool isa_impl<PointerType, Type>(const Type &Ty) {
|
||||
return Ty.getPrimitiveID() == Type::PointerTyID;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -25,8 +25,6 @@ class GlobalValue;
|
|||
class Function;
|
||||
class GlobalVariable;
|
||||
class SymbolTable;
|
||||
template<class ValueSubclass, class ItemParentType, class SymTabType>
|
||||
class ValueHolder;
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Value Class
|
||||
|
@ -128,6 +126,11 @@ inline std::ostream &operator<<(std::ostream &OS, const Value *V) {
|
|||
return OS;
|
||||
}
|
||||
|
||||
inline std::ostream &operator<<(std::ostream &OS, const Value &V) {
|
||||
V.print(OS);
|
||||
return OS;
|
||||
}
|
||||
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// UseTy Class
|
||||
|
@ -178,61 +181,46 @@ public:
|
|||
|
||||
typedef UseTy<Value> Use; // Provide Use as a common UseTy type
|
||||
|
||||
// Provide a specialization of real_type to work with use's... to make them a
|
||||
// bit more transparent.
|
||||
//
|
||||
template <class X> class real_type <class UseTy<X> > { typedef X *Type; };
|
||||
|
||||
template<typename From> struct simplify_type<UseTy<From> > {
|
||||
typedef typename simplify_type<From*>::SimpleType SimpleType;
|
||||
|
||||
static SimpleType getSimplifiedValue(const UseTy<From> &Val) {
|
||||
return (SimpleType)Val.get();
|
||||
}
|
||||
};
|
||||
template<typename From> struct simplify_type<const UseTy<From> > {
|
||||
typedef typename simplify_type<From*>::SimpleType SimpleType;
|
||||
|
||||
static SimpleType getSimplifiedValue(const UseTy<From> &Val) {
|
||||
return (SimpleType)Val.get();
|
||||
}
|
||||
};
|
||||
|
||||
// isa - Provide some specializations of isa so that we don't have to include
|
||||
// the subtype header files to test to see if the value is a subclass...
|
||||
//
|
||||
template <> inline bool isa<Type, const Value*>(const Value *Val) {
|
||||
return Val->getValueType() == Value::TypeVal;
|
||||
template <> inline bool isa_impl<Type, Value>(const Value &Val) {
|
||||
return Val.getValueType() == Value::TypeVal;
|
||||
}
|
||||
template <> inline bool isa<Type, Value*>(Value *Val) {
|
||||
return Val->getValueType() == Value::TypeVal;
|
||||
template <> inline bool isa_impl<Constant, Value>(const Value &Val) {
|
||||
return Val.getValueType() == Value::ConstantVal;
|
||||
}
|
||||
template <> inline bool isa<Constant, const Value*>(const Value *Val) {
|
||||
return Val->getValueType() == Value::ConstantVal;
|
||||
template <> inline bool isa_impl<Argument, Value>(const Value &Val) {
|
||||
return Val.getValueType() == Value::ArgumentVal;
|
||||
}
|
||||
template <> inline bool isa<Constant, Value*>(Value *Val) {
|
||||
return Val->getValueType() == Value::ConstantVal;
|
||||
template <> inline bool isa_impl<Instruction, Value>(const Value &Val) {
|
||||
return Val.getValueType() == Value::InstructionVal;
|
||||
}
|
||||
template <> inline bool isa<Argument, const Value*>(const Value *Val) {
|
||||
return Val->getValueType() == Value::ArgumentVal;
|
||||
template <> inline bool isa_impl<BasicBlock, Value>(const Value &Val) {
|
||||
return Val.getValueType() == Value::BasicBlockVal;
|
||||
}
|
||||
template <> inline bool isa<Argument, Value*>(Value *Val) {
|
||||
return Val->getValueType() == Value::ArgumentVal;
|
||||
template <> inline bool isa_impl<Function, Value>(const Value &Val) {
|
||||
return Val.getValueType() == Value::FunctionVal;
|
||||
}
|
||||
template <> inline bool isa<Instruction, const Value*>(const Value *Val) {
|
||||
return Val->getValueType() == Value::InstructionVal;
|
||||
template <> inline bool isa_impl<GlobalVariable, Value>(const Value &Val) {
|
||||
return Val.getValueType() == Value::GlobalVariableVal;
|
||||
}
|
||||
template <> inline bool isa<Instruction, Value*>(Value *Val) {
|
||||
return Val->getValueType() == Value::InstructionVal;
|
||||
}
|
||||
template <> inline bool isa<BasicBlock, const Value*>(const Value *Val) {
|
||||
return Val->getValueType() == Value::BasicBlockVal;
|
||||
}
|
||||
template <> inline bool isa<BasicBlock, Value*>(Value *Val) {
|
||||
return Val->getValueType() == Value::BasicBlockVal;
|
||||
}
|
||||
template <> inline bool isa<Function, const Value*>(const Value *Val) {
|
||||
return Val->getValueType() == Value::FunctionVal;
|
||||
}
|
||||
template <> inline bool isa<Function, Value*>(Value *Val) {
|
||||
return Val->getValueType() == Value::FunctionVal;
|
||||
}
|
||||
template <> inline bool isa<GlobalVariable, const Value*>(const Value *Val) {
|
||||
return Val->getValueType() == Value::GlobalVariableVal;
|
||||
}
|
||||
template <> inline bool isa<GlobalVariable, Value*>(Value *Val) {
|
||||
return Val->getValueType() == Value::GlobalVariableVal;
|
||||
}
|
||||
template <> inline bool isa<GlobalValue, const Value*>(const Value *Val) {
|
||||
return isa<GlobalVariable>(Val) || isa<Function>(Val);
|
||||
}
|
||||
template <> inline bool isa<GlobalValue, Value*>(Value *Val) {
|
||||
template <> inline bool isa_impl<GlobalValue, Value>(const Value &Val) {
|
||||
return isa<GlobalVariable>(Val) || isa<Function>(Val);
|
||||
}
|
||||
|
||||
|
|
|
@ -1,132 +0,0 @@
|
|||
//===-- llvm/ValueHolder.h - Class to hold multiple values -------*- C++ -*--=//
|
||||
//
|
||||
// This defines a class that is used as a fancy Definition container. It is
|
||||
// special because it helps keep the symbol table of the container function up
|
||||
// to date with the goings on inside of it.
|
||||
//
|
||||
// This is used to represent things like the instructions of a basic block and
|
||||
// the arguments to a function.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_VALUEHOLDER_H
|
||||
#define LLVM_VALUEHOLDER_H
|
||||
|
||||
#include <vector>
|
||||
|
||||
// ValueSubClass - The type of objects that I hold
|
||||
// ItemParentType - I call setParent() on all of my "ValueSubclass" items, and
|
||||
// this is the value that I pass in.
|
||||
// SymTabType - This is the class type, whose symtab I insert my
|
||||
// ValueSubClass items into. Most of the time it is
|
||||
// ItemParentType, but Instructions have item parents of BB's
|
||||
// but symtabtype's of a Function
|
||||
//
|
||||
template<class ValueSubclass, class ItemParentType, class SymTabType>
|
||||
class ValueHolder {
|
||||
std::vector<ValueSubclass*> ValueList;
|
||||
|
||||
ItemParentType *ItemParent;
|
||||
SymTabType *Parent;
|
||||
|
||||
ValueHolder(const ValueHolder &V); // DO NOT IMPLEMENT
|
||||
public:
|
||||
inline ValueHolder(ItemParentType *IP, SymTabType *parent = 0) {
|
||||
assert(IP && "Item parent may not be null!");
|
||||
ItemParent = IP;
|
||||
Parent = 0;
|
||||
setParent(parent);
|
||||
}
|
||||
|
||||
inline ~ValueHolder() {
|
||||
// The caller should have called delete_all first...
|
||||
assert(empty() && "ValueHolder contains definitions!");
|
||||
assert(Parent == 0 && "Should have been unlinked from function!");
|
||||
}
|
||||
|
||||
inline const SymTabType *getParent() const { return Parent; }
|
||||
inline SymTabType *getParent() { return Parent; }
|
||||
void setParent(SymTabType *Parent); // Defined in ValueHolderImpl.h
|
||||
|
||||
inline unsigned size() const { return ValueList.size(); }
|
||||
inline bool empty() const { return ValueList.empty(); }
|
||||
inline const ValueSubclass *front() const { return ValueList.front(); }
|
||||
inline ValueSubclass *front() { return ValueList.front(); }
|
||||
inline const ValueSubclass *back() const { return ValueList.back(); }
|
||||
inline ValueSubclass *back() { return ValueList.back(); }
|
||||
inline const ValueSubclass *operator[](unsigned i) const {
|
||||
return ValueList[i];
|
||||
}
|
||||
inline ValueSubclass *operator[](unsigned i) {
|
||||
return ValueList[i];
|
||||
}
|
||||
|
||||
//===--------------------------------------------------------------------===//
|
||||
// sub-Definition iterator code
|
||||
//===--------------------------------------------------------------------===//
|
||||
//
|
||||
typedef std::vector<ValueSubclass*>::iterator iterator;
|
||||
typedef std::vector<ValueSubclass*>::const_iterator const_iterator;
|
||||
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
|
||||
typedef std::reverse_iterator<iterator> reverse_iterator;
|
||||
|
||||
inline iterator begin() { return ValueList.begin(); }
|
||||
inline const_iterator begin() const { return ValueList.begin(); }
|
||||
inline iterator end () { return ValueList.end(); }
|
||||
inline const_iterator end () const { return ValueList.end(); }
|
||||
|
||||
inline reverse_iterator rbegin() { return ValueList.rbegin(); }
|
||||
inline const_reverse_iterator rbegin() const { return ValueList.rbegin(); }
|
||||
inline reverse_iterator rend () { return ValueList.rend(); }
|
||||
inline const_reverse_iterator rend () const { return ValueList.rend(); }
|
||||
|
||||
// ValueHolder::remove(iterator &) this removes the element at the location
|
||||
// specified by the iterator, and leaves the iterator pointing to the element
|
||||
// that used to follow the element deleted.
|
||||
//
|
||||
ValueSubclass *remove(iterator &DI);
|
||||
ValueSubclass *remove(const iterator &DI);
|
||||
void remove(ValueSubclass *D);
|
||||
void remove(iterator Start, iterator End);
|
||||
ValueSubclass *pop_back();
|
||||
|
||||
// replaceWith - This removes the element pointed to by 'Where', and inserts
|
||||
// NewValue in it's place. The old value is returned. 'Where' must be a
|
||||
// valid iterator!
|
||||
//
|
||||
ValueSubclass *replaceWith(iterator &Where, ValueSubclass *NewValue);
|
||||
|
||||
// delete_span - Remove the elements from begin to end, deleting them as we
|
||||
// go. This leaves the iterator pointing to the element that used to be end.
|
||||
//
|
||||
iterator delete_span(iterator begin, iterator end) {
|
||||
while (end != begin)
|
||||
delete remove(--end);
|
||||
return end;
|
||||
}
|
||||
|
||||
void delete_all() { // Delete all removes and deletes all elements
|
||||
delete_span(begin(), end());
|
||||
}
|
||||
|
||||
void push_front(ValueSubclass *Inst); // Defined in ValueHolderImpl.h
|
||||
void push_back(ValueSubclass *Inst); // Defined in ValueHolderImpl.h
|
||||
|
||||
// ValueHolder::insert - This method inserts the specified value *BEFORE* the
|
||||
// indicated iterator position, and returns an interator to the newly inserted
|
||||
// value.
|
||||
//
|
||||
iterator insert(iterator Pos, ValueSubclass *Inst);
|
||||
|
||||
// ValueHolder::insert - This method inserts the specified _range_ of values
|
||||
// before the 'Pos' iterator, returning a new iterator that points to the
|
||||
// first item inserted. *This currently only works for vector iterators...*
|
||||
//
|
||||
// FIXME: This is not generic so that the code does not have to be around
|
||||
// to be used... is this ok?
|
||||
//
|
||||
iterator insert(iterator Pos, // Where to insert
|
||||
iterator First, iterator Last); // Vector to read insts from
|
||||
};
|
||||
|
||||
#endif
|
|
@ -6,7 +6,6 @@
|
|||
|
||||
#include "llvm/Analysis/DataStructure.h"
|
||||
#include "llvm/Module.h"
|
||||
#include "llvm/Function.h"
|
||||
#include <fstream>
|
||||
#include <algorithm>
|
||||
|
||||
|
@ -42,9 +41,9 @@ void DataStructure::print(std::ostream &O, Module *M) const {
|
|||
timeval TV1, TV2;
|
||||
gettimeofday(&TV1, 0);
|
||||
for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
|
||||
if (!(*I)->isExternal()) {
|
||||
getDSGraph(*I);
|
||||
getClosedDSGraph(*I);
|
||||
if (!I->isExternal() && I->getName() == "main") {
|
||||
//getDSGraph(*I);
|
||||
getClosedDSGraph(I);
|
||||
}
|
||||
gettimeofday(&TV2, 0);
|
||||
cerr << "Analysis took "
|
||||
|
@ -53,9 +52,9 @@ void DataStructure::print(std::ostream &O, Module *M) const {
|
|||
}
|
||||
|
||||
for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
|
||||
if (!(*I)->isExternal()) {
|
||||
if (!I->isExternal()) {
|
||||
|
||||
string Filename = "ds." + (*I)->getName() + ".dot";
|
||||
string Filename = "ds." + I->getName() + ".dot";
|
||||
O << "Writing '" << Filename << "'...";
|
||||
ofstream F(Filename.c_str());
|
||||
if (F.good()) {
|
||||
|
@ -65,8 +64,8 @@ void DataStructure::print(std::ostream &O, Module *M) const {
|
|||
<< "\tsize=\"10,7.5\";\n"
|
||||
<< "\trotate=\"90\";\n";
|
||||
|
||||
getDSGraph(*I).printFunction(F, "Local");
|
||||
getClosedDSGraph(*I).printFunction(F, "Closed");
|
||||
getDSGraph(I).printFunction(F, "Local");
|
||||
getClosedDSGraph(I).printFunction(F, "Closed");
|
||||
|
||||
F << "}\n";
|
||||
} else {
|
||||
|
@ -74,8 +73,8 @@ void DataStructure::print(std::ostream &O, Module *M) const {
|
|||
}
|
||||
|
||||
if (Time)
|
||||
O << " [" << getDSGraph(*I).getGraphSize() << ", "
|
||||
<< getClosedDSGraph(*I).getGraphSize() << "]\n";
|
||||
O << " [" << getDSGraph(I).getGraphSize() << ", "
|
||||
<< getClosedDSGraph(I).getGraphSize() << "]\n";
|
||||
else
|
||||
O << "\n";
|
||||
}
|
||||
|
|
|
@ -68,12 +68,12 @@ void InitVisitor::visitOperand(Value *V) {
|
|||
// node if the call returns a pointer value. Check to see if the call node
|
||||
// uses any global variables...
|
||||
//
|
||||
void InitVisitor::visitCallInst(CallInst *CI) {
|
||||
CallDSNode *C = new CallDSNode(CI);
|
||||
void InitVisitor::visitCallInst(CallInst &CI) {
|
||||
CallDSNode *C = new CallDSNode(&CI);
|
||||
Rep->CallNodes.push_back(C);
|
||||
Rep->CallMap[CI] = C;
|
||||
Rep->CallMap[&CI] = C;
|
||||
|
||||
if (PointerType *PT = dyn_cast<PointerType>(CI->getType())) {
|
||||
if (const PointerType *PT = dyn_cast<PointerType>(CI.getType())) {
|
||||
// Create a critical shadow node to represent the memory object that the
|
||||
// return value points to...
|
||||
ShadowDSNode *Shad = new ShadowDSNode(PT->getElementType(),
|
||||
|
@ -86,17 +86,17 @@ void InitVisitor::visitCallInst(CallInst *CI) {
|
|||
C->getLink(0).add(Shad);
|
||||
|
||||
// The call instruction returns a pointer to the shadow block...
|
||||
Rep->ValueMap[CI].add(Shad, CI);
|
||||
Rep->ValueMap[&CI].add(Shad, &CI);
|
||||
|
||||
// If the call returns a value with pointer type, add all of the users
|
||||
// of the call instruction to the work list...
|
||||
Rep->addAllUsesToWorkList(CI);
|
||||
Rep->addAllUsesToWorkList(&CI);
|
||||
}
|
||||
|
||||
// Loop over all of the operands of the call instruction (except the first
|
||||
// one), to look for global variable references...
|
||||
//
|
||||
for_each(CI->op_begin(), CI->op_end(),
|
||||
for_each(CI.op_begin(), CI.op_end(),
|
||||
bind_obj(this, &InitVisitor::visitOperand));
|
||||
}
|
||||
|
||||
|
@ -105,22 +105,22 @@ void InitVisitor::visitCallInst(CallInst *CI) {
|
|||
// allocation instructions do not take pointer arguments, they cannot refer to
|
||||
// global vars...
|
||||
//
|
||||
void InitVisitor::visitAllocationInst(AllocationInst *AI) {
|
||||
AllocDSNode *N = new AllocDSNode(AI);
|
||||
void InitVisitor::visitAllocationInst(AllocationInst &AI) {
|
||||
AllocDSNode *N = new AllocDSNode(&AI);
|
||||
Rep->AllocNodes.push_back(N);
|
||||
|
||||
Rep->ValueMap[AI].add(N, AI);
|
||||
Rep->ValueMap[&AI].add(N, &AI);
|
||||
|
||||
// Add all of the users of the malloc instruction to the work list...
|
||||
Rep->addAllUsesToWorkList(AI);
|
||||
Rep->addAllUsesToWorkList(&AI);
|
||||
}
|
||||
|
||||
|
||||
// Visit all other instruction types. Here we just scan, looking for uses of
|
||||
// global variables...
|
||||
//
|
||||
void InitVisitor::visitInstruction(Instruction *I) {
|
||||
for_each(I->op_begin(), I->op_end(),
|
||||
void InitVisitor::visitInstruction(Instruction &I) {
|
||||
for_each(I.op_begin(), I.op_end(),
|
||||
bind_obj(this, &InitVisitor::visitOperand));
|
||||
}
|
||||
|
||||
|
@ -150,20 +150,18 @@ void FunctionRepBuilder::initializeWorkList(Function *Func) {
|
|||
// Add all of the arguments to the method to the graph and add all users to
|
||||
// the worklists...
|
||||
//
|
||||
for (Function::ArgumentListType::iterator I = Func->getArgumentList().begin(),
|
||||
E = Func->getArgumentList().end(); I != E; ++I) {
|
||||
Value *Arg = (Value*)(*I);
|
||||
for (Function::aiterator I = Func->abegin(), E = Func->aend(); I != E; ++I) {
|
||||
// Only process arguments that are of pointer type...
|
||||
if (PointerType *PT = dyn_cast<PointerType>(Arg->getType())) {
|
||||
if (const PointerType *PT = dyn_cast<PointerType>(I->getType())) {
|
||||
// Add a shadow value for it to represent what it is pointing to and add
|
||||
// this to the value map...
|
||||
ShadowDSNode *Shad = new ShadowDSNode(PT->getElementType(),
|
||||
Func->getParent());
|
||||
ShadowNodes.push_back(Shad);
|
||||
ValueMap[Arg].add(PointerVal(Shad), Arg);
|
||||
ValueMap[I].add(PointerVal(Shad), I);
|
||||
|
||||
// Make sure that all users of the argument are processed...
|
||||
addAllUsesToWorkList(Arg);
|
||||
addAllUsesToWorkList(I);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -179,15 +177,15 @@ void FunctionRepBuilder::initializeWorkList(Function *Func) {
|
|||
|
||||
|
||||
PointerVal FunctionRepBuilder::getIndexedPointerDest(const PointerVal &InP,
|
||||
const MemAccessInst *MAI) {
|
||||
const MemAccessInst &MAI) {
|
||||
unsigned Index = InP.Index;
|
||||
const Type *SrcTy = MAI->getPointerOperand()->getType();
|
||||
const Type *SrcTy = MAI.getPointerOperand()->getType();
|
||||
|
||||
for (MemAccessInst::const_op_iterator I = MAI->idx_begin(),
|
||||
E = MAI->idx_end(); I != E; ++I)
|
||||
for (MemAccessInst::const_op_iterator I = MAI.idx_begin(),
|
||||
E = MAI.idx_end(); I != E; ++I)
|
||||
if ((*I)->getType() == Type::UByteTy) { // Look for struct indices...
|
||||
StructType *STy = cast<StructType>(SrcTy);
|
||||
unsigned StructIdx = cast<ConstantUInt>(*I)->getValue();
|
||||
const StructType *STy = cast<StructType>(SrcTy);
|
||||
unsigned StructIdx = cast<ConstantUInt>(I->get())->getValue();
|
||||
for (unsigned i = 0; i != StructIdx; ++i)
|
||||
Index += countPointerFields(STy->getContainedType(i));
|
||||
|
||||
|
@ -211,11 +209,11 @@ static PointerValSet &getField(const PointerVal &DestPtr) {
|
|||
// changing. This means that the set of possible values for the GEP
|
||||
// needs to be expanded.
|
||||
//
|
||||
void FunctionRepBuilder::visitGetElementPtrInst(GetElementPtrInst *GEP) {
|
||||
PointerValSet &GEPPVS = ValueMap[GEP]; // PointerValSet to expand
|
||||
void FunctionRepBuilder::visitGetElementPtrInst(GetElementPtrInst &GEP) {
|
||||
PointerValSet &GEPPVS = ValueMap[&GEP]; // PointerValSet to expand
|
||||
|
||||
// Get the input pointer val set...
|
||||
const PointerValSet &SrcPVS = ValueMap[GEP->getOperand(0)];
|
||||
const PointerValSet &SrcPVS = ValueMap[GEP.getOperand(0)];
|
||||
|
||||
bool Changed = false; // Process each input value... propogating it.
|
||||
for (unsigned i = 0, e = SrcPVS.size(); i != e; ++i) {
|
||||
|
@ -230,20 +228,20 @@ void FunctionRepBuilder::visitGetElementPtrInst(GetElementPtrInst *GEP) {
|
|||
// If our current value set changed, notify all of the users of our
|
||||
// value.
|
||||
//
|
||||
if (Changed) addAllUsesToWorkList(GEP);
|
||||
if (Changed) addAllUsesToWorkList(&GEP);
|
||||
}
|
||||
|
||||
void FunctionRepBuilder::visitReturnInst(ReturnInst *RI) {
|
||||
RetNode.add(ValueMap[RI->getOperand(0)]);
|
||||
void FunctionRepBuilder::visitReturnInst(ReturnInst &RI) {
|
||||
RetNode.add(ValueMap[RI.getOperand(0)]);
|
||||
}
|
||||
|
||||
void FunctionRepBuilder::visitLoadInst(LoadInst *LI) {
|
||||
void FunctionRepBuilder::visitLoadInst(LoadInst &LI) {
|
||||
// Only loads that return pointers are interesting...
|
||||
const PointerType *DestTy = dyn_cast<PointerType>(LI->getType());
|
||||
const PointerType *DestTy = dyn_cast<PointerType>(LI.getType());
|
||||
if (DestTy == 0) return;
|
||||
|
||||
const PointerValSet &SrcPVS = ValueMap[LI->getOperand(0)];
|
||||
PointerValSet &LIPVS = ValueMap[LI];
|
||||
const PointerValSet &SrcPVS = ValueMap[LI.getOperand(0)];
|
||||
PointerValSet &LIPVS = ValueMap[&LI];
|
||||
|
||||
bool Changed = false;
|
||||
for (unsigned si = 0, se = SrcPVS.size(); si != se; ++si) {
|
||||
|
@ -264,18 +262,18 @@ void FunctionRepBuilder::visitLoadInst(LoadInst *LI) {
|
|||
}
|
||||
}
|
||||
|
||||
if (Changed) addAllUsesToWorkList(LI);
|
||||
if (Changed) addAllUsesToWorkList(&LI);
|
||||
}
|
||||
|
||||
void FunctionRepBuilder::visitStoreInst(StoreInst *SI) {
|
||||
void FunctionRepBuilder::visitStoreInst(StoreInst &SI) {
|
||||
// The only stores that are interesting are stores the store pointers
|
||||
// into data structures...
|
||||
//
|
||||
if (!isa<PointerType>(SI->getOperand(0)->getType())) return;
|
||||
if (!ValueMap.count(SI->getOperand(0))) return; // Src scalar has no values!
|
||||
if (!isa<PointerType>(SI.getOperand(0)->getType())) return;
|
||||
if (!ValueMap.count(SI.getOperand(0))) return; // Src scalar has no values!
|
||||
|
||||
const PointerValSet &SrcPVS = ValueMap[SI->getOperand(0)];
|
||||
const PointerValSet &PtrPVS = ValueMap[SI->getOperand(1)];
|
||||
const PointerValSet &SrcPVS = ValueMap[SI.getOperand(0)];
|
||||
const PointerValSet &PtrPVS = ValueMap[SI.getOperand(1)];
|
||||
|
||||
for (unsigned si = 0, se = SrcPVS.size(); si != se; ++si) {
|
||||
const PointerVal &SrcPtr = SrcPVS[si];
|
||||
|
@ -301,24 +299,24 @@ void FunctionRepBuilder::visitStoreInst(StoreInst *SI) {
|
|||
}
|
||||
}
|
||||
|
||||
void FunctionRepBuilder::visitCallInst(CallInst *CI) {
|
||||
CallDSNode *DSN = CallMap[CI];
|
||||
void FunctionRepBuilder::visitCallInst(CallInst &CI) {
|
||||
CallDSNode *DSN = CallMap[&CI];
|
||||
unsigned PtrNum = 0;
|
||||
for (unsigned i = 0, e = CI->getNumOperands(); i != e; ++i)
|
||||
if (isa<PointerType>(CI->getOperand(i)->getType()))
|
||||
DSN->addArgValue(PtrNum++, ValueMap[CI->getOperand(i)]);
|
||||
for (unsigned i = 0, e = CI.getNumOperands(); i != e; ++i)
|
||||
if (isa<PointerType>(CI.getOperand(i)->getType()))
|
||||
DSN->addArgValue(PtrNum++, ValueMap[CI.getOperand(i)]);
|
||||
}
|
||||
|
||||
void FunctionRepBuilder::visitPHINode(PHINode *PN) {
|
||||
assert(isa<PointerType>(PN->getType()) && "Should only update ptr phis");
|
||||
void FunctionRepBuilder::visitPHINode(PHINode &PN) {
|
||||
assert(isa<PointerType>(PN.getType()) && "Should only update ptr phis");
|
||||
|
||||
PointerValSet &PN_PVS = ValueMap[PN];
|
||||
PointerValSet &PN_PVS = ValueMap[&PN];
|
||||
bool Changed = false;
|
||||
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
|
||||
Changed |= PN_PVS.add(ValueMap[PN->getIncomingValue(i)],
|
||||
PN->getIncomingValue(i));
|
||||
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
|
||||
Changed |= PN_PVS.add(ValueMap[PN.getIncomingValue(i)],
|
||||
PN.getIncomingValue(i));
|
||||
|
||||
if (Changed) addAllUsesToWorkList(PN);
|
||||
if (Changed) addAllUsesToWorkList(&PN);
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -27,9 +27,9 @@ class InitVisitor : public InstVisitor<InitVisitor> {
|
|||
public:
|
||||
InitVisitor(FunctionRepBuilder *R, Function *F) : Rep(R), Func(F) {}
|
||||
|
||||
void visitCallInst(CallInst *CI);
|
||||
void visitAllocationInst(AllocationInst *AI);
|
||||
void visitInstruction(Instruction *I);
|
||||
void visitCallInst(CallInst &CI);
|
||||
void visitAllocationInst(AllocationInst &AI);
|
||||
void visitInstruction(Instruction &I);
|
||||
|
||||
// visitOperand - If the specified instruction operand is a global value, add
|
||||
// a node for it...
|
||||
|
@ -90,7 +90,7 @@ public:
|
|||
const map<Value*, PointerValSet> &getValueMap() const { return ValueMap; }
|
||||
private:
|
||||
static PointerVal getIndexedPointerDest(const PointerVal &InP,
|
||||
const MemAccessInst *MAI);
|
||||
const MemAccessInst &MAI);
|
||||
|
||||
void initializeWorkList(Function *Func);
|
||||
void processWorkList() {
|
||||
|
@ -101,7 +101,7 @@ private:
|
|||
cerr << "Processing worklist inst: " << I;
|
||||
#endif
|
||||
|
||||
visit(I); // Dispatch to a visitXXX function based on instruction type...
|
||||
visit(*I); // Dispatch to a visitXXX function based on instruction type...
|
||||
#ifdef DEBUG_DATA_STRUCTURE_CONSTRUCTION
|
||||
if (I->hasName() && ValueMap.count(I)) {
|
||||
cerr << "Inst %" << I->getName() << " value is:\n";
|
||||
|
@ -117,18 +117,16 @@ private:
|
|||
// Allow the visitor base class to invoke these methods...
|
||||
friend class InstVisitor<FunctionRepBuilder>;
|
||||
|
||||
void visitGetElementPtrInst(GetElementPtrInst *GEP);
|
||||
void visitReturnInst(ReturnInst *RI);
|
||||
void visitLoadInst(LoadInst *LI);
|
||||
void visitStoreInst(StoreInst *SI);
|
||||
void visitCallInst(CallInst *CI);
|
||||
void visitPHINode(PHINode *PN);
|
||||
void visitSetCondInst(SetCondInst *SCI) {} // SetEQ & friends are ignored
|
||||
void visitFreeInst(FreeInst *FI) {} // Ignore free instructions
|
||||
void visitInstruction(Instruction *I) {
|
||||
std::cerr << "\n\n\nUNKNOWN INSTRUCTION type: ";
|
||||
I->dump();
|
||||
std::cerr << "\n\n\n";
|
||||
void visitGetElementPtrInst(GetElementPtrInst &GEP);
|
||||
void visitReturnInst(ReturnInst &RI);
|
||||
void visitLoadInst(LoadInst &LI);
|
||||
void visitStoreInst(StoreInst &SI);
|
||||
void visitCallInst(CallInst &CI);
|
||||
void visitPHINode(PHINode &PN);
|
||||
void visitSetCondInst(SetCondInst &SCI) {} // SetEQ & friends are ignored
|
||||
void visitFreeInst(FreeInst &FI) {} // Ignore free instructions
|
||||
void visitInstruction(Instruction &I) {
|
||||
std::cerr << "\n\n\nUNKNOWN INSTRUCTION type: " << I << "\n\n\n";
|
||||
assert(0 && "Cannot proceed");
|
||||
}
|
||||
};
|
||||
|
|
|
@ -8,7 +8,6 @@
|
|||
#include "llvm/Assembly/Writer.h"
|
||||
#include "llvm/DerivedTypes.h"
|
||||
#include "llvm/Function.h"
|
||||
#include "llvm/BasicBlock.h"
|
||||
#include "llvm/iMemory.h"
|
||||
#include "llvm/iOther.h"
|
||||
#include "Support/STLExtras.h"
|
||||
|
@ -18,6 +17,7 @@
|
|||
bool AllocDSNode::isEquivalentTo(DSNode *Node) const {
|
||||
if (AllocDSNode *N = dyn_cast<AllocDSNode>(Node))
|
||||
return getType() == Node->getType();
|
||||
//&& isAllocaNode() == N->isAllocaNode();
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -423,12 +423,11 @@ PointerValSet FunctionDSGraph::cloneFunctionIntoSelf(const FunctionDSGraph &DSG,
|
|||
|
||||
// Convert over the arguments...
|
||||
Function *OF = DSG.getFunction();
|
||||
for (Function::ArgumentListType::iterator I = OF->getArgumentList().begin(),
|
||||
E = OF->getArgumentList().end(); I != E; ++I)
|
||||
if (isa<PointerType>(((Value*)*I)->getType())) {
|
||||
for (Function::aiterator I = OF->abegin(), E = OF->aend(); I != E; ++I)
|
||||
if (isa<PointerType>(I->getType())) {
|
||||
PointerValSet ArgPVS;
|
||||
assert(DSG.getValueMap().find((Value*)*I) != DSG.getValueMap().end());
|
||||
MapPVS(ArgPVS, DSG.getValueMap().find((Value*)*I)->second, NodeMap);
|
||||
assert(DSG.getValueMap().find(I) != DSG.getValueMap().end());
|
||||
MapPVS(ArgPVS, DSG.getValueMap().find(I)->second, NodeMap);
|
||||
assert(!ArgPVS.empty() && "Argument has no links!");
|
||||
Args.push_back(ArgPVS);
|
||||
}
|
||||
|
|
|
@ -18,23 +18,23 @@ using std::cerr;
|
|||
|
||||
static AnnotationID AID(AnnotationManager::getID("Analysis::BBLiveVar"));
|
||||
|
||||
BBLiveVar *BBLiveVar::CreateOnBB(const BasicBlock *BB, unsigned POID) {
|
||||
BBLiveVar *BBLiveVar::CreateOnBB(const BasicBlock &BB, unsigned POID) {
|
||||
BBLiveVar *Result = new BBLiveVar(BB, POID);
|
||||
BB->addAnnotation(Result);
|
||||
BB.addAnnotation(Result);
|
||||
return Result;
|
||||
}
|
||||
|
||||
BBLiveVar *BBLiveVar::GetFromBB(const BasicBlock *BB) {
|
||||
return (BBLiveVar*)BB->getAnnotation(AID);
|
||||
BBLiveVar *BBLiveVar::GetFromBB(const BasicBlock &BB) {
|
||||
return (BBLiveVar*)BB.getAnnotation(AID);
|
||||
}
|
||||
|
||||
void BBLiveVar::RemoveFromBB(const BasicBlock *BB) {
|
||||
bool Deleted = BB->deleteAnnotation(AID);
|
||||
void BBLiveVar::RemoveFromBB(const BasicBlock &BB) {
|
||||
bool Deleted = BB.deleteAnnotation(AID);
|
||||
assert(Deleted && "BBLiveVar annotation did not exist!");
|
||||
}
|
||||
|
||||
|
||||
BBLiveVar::BBLiveVar(const BasicBlock *bb, unsigned id)
|
||||
BBLiveVar::BBLiveVar(const BasicBlock &bb, unsigned id)
|
||||
: Annotation(AID), BB(bb), POID(id) {
|
||||
InSetChanged = OutSetChanged = false;
|
||||
|
||||
|
@ -50,7 +50,7 @@ BBLiveVar::BBLiveVar(const BasicBlock *bb, unsigned id)
|
|||
|
||||
void BBLiveVar::calcDefUseSets() {
|
||||
// get the iterator for machine instructions
|
||||
const MachineCodeForBasicBlock &MIVec = BB->getMachineInstrVec();
|
||||
const MachineCodeForBasicBlock &MIVec = BB.getMachineInstrVec();
|
||||
|
||||
// iterate over all the machine instructions in BB
|
||||
for (MachineCodeForBasicBlock::const_reverse_iterator MII = MIVec.rbegin(),
|
||||
|
@ -129,7 +129,7 @@ void BBLiveVar::calcDefUseSets() {
|
|||
//-----------------------------------------------------------------------------
|
||||
// To add an operand which is a def
|
||||
//-----------------------------------------------------------------------------
|
||||
void BBLiveVar::addDef(const Value *Op) {
|
||||
void BBLiveVar::addDef(const Value *Op) {
|
||||
DefSet.insert(Op); // operand is a def - so add to def set
|
||||
InSet.erase(Op); // this definition kills any later uses
|
||||
InSetChanged = true;
|
||||
|
@ -211,9 +211,9 @@ bool BBLiveVar::applyFlowFunc() {
|
|||
//
|
||||
bool needAnotherIt = false;
|
||||
|
||||
for (pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
|
||||
for (pred_const_iterator PI = pred_begin(&BB), PE = pred_end(&BB);
|
||||
PI != PE ; ++PI) {
|
||||
BBLiveVar *PredLVBB = BBLiveVar::GetFromBB(*PI);
|
||||
BBLiveVar *PredLVBB = BBLiveVar::GetFromBB(**PI);
|
||||
|
||||
// do set union
|
||||
if (setPropagate(&PredLVBB->OutSet, &InSet, *PI)) {
|
||||
|
|
|
@ -24,7 +24,7 @@ enum LiveVarDebugLevel_t {
|
|||
extern LiveVarDebugLevel_t DEBUG_LV;
|
||||
|
||||
class BBLiveVar : public Annotation {
|
||||
const BasicBlock *BB; // pointer to BasicBlock
|
||||
const BasicBlock &BB; // pointer to BasicBlock
|
||||
unsigned POID; // Post-Order ID
|
||||
|
||||
ValueSet DefSet; // Def set (with no preceding uses) for LV analysis
|
||||
|
@ -49,12 +49,12 @@ class BBLiveVar : public Annotation {
|
|||
|
||||
void calcDefUseSets(); // calculates the Def & Use sets for this BB
|
||||
|
||||
BBLiveVar(const BasicBlock *BB, unsigned POID);
|
||||
BBLiveVar(const BasicBlock &BB, unsigned POID);
|
||||
~BBLiveVar() {} // make dtor private
|
||||
public:
|
||||
static BBLiveVar *CreateOnBB(const BasicBlock *BB, unsigned POID);
|
||||
static BBLiveVar *GetFromBB(const BasicBlock *BB);
|
||||
static void RemoveFromBB(const BasicBlock *BB);
|
||||
static BBLiveVar *CreateOnBB(const BasicBlock &BB, unsigned POID);
|
||||
static BBLiveVar *GetFromBB(const BasicBlock &BB);
|
||||
static void RemoveFromBB(const BasicBlock &BB);
|
||||
|
||||
inline bool isInSetChanged() const { return InSetChanged; }
|
||||
inline bool isOutSetChanged() const { return OutSetChanged; }
|
||||
|
|
|
@ -33,12 +33,12 @@ static cl::Enum<LiveVarDebugLevel_t> DEBUG_LV_opt(DEBUG_LV, "dlivevar", cl::Hidd
|
|||
|
||||
// gets OutSet of a BB
|
||||
const ValueSet &FunctionLiveVarInfo::getOutSetOfBB(const BasicBlock *BB) const {
|
||||
return BBLiveVar::GetFromBB(BB)->getOutSet();
|
||||
return BBLiveVar::GetFromBB(*BB)->getOutSet();
|
||||
}
|
||||
|
||||
// gets InSet of a BB
|
||||
const ValueSet &FunctionLiveVarInfo::getInSetOfBB(const BasicBlock *BB) const {
|
||||
return BBLiveVar::GetFromBB(BB)->getInSet();
|
||||
return BBLiveVar::GetFromBB(*BB)->getInSet();
|
||||
}
|
||||
|
||||
|
||||
|
@ -46,15 +46,15 @@ const ValueSet &FunctionLiveVarInfo::getInSetOfBB(const BasicBlock *BB) const {
|
|||
// Performs live var analysis for a function
|
||||
//-----------------------------------------------------------------------------
|
||||
|
||||
bool FunctionLiveVarInfo::runOnFunction(Function *Meth) {
|
||||
M = Meth;
|
||||
bool FunctionLiveVarInfo::runOnFunction(Function &F) {
|
||||
M = &F;
|
||||
if (DEBUG_LV) std::cerr << "Analysing live variables ...\n";
|
||||
|
||||
// create and initialize all the BBLiveVars of the CFG
|
||||
constructBBs(Meth);
|
||||
constructBBs(M);
|
||||
|
||||
unsigned int iter=0;
|
||||
while (doSingleBackwardPass(Meth, iter++))
|
||||
while (doSingleBackwardPass(M, iter++))
|
||||
; // Iterate until we are done.
|
||||
|
||||
if (DEBUG_LV) std::cerr << "Live Variable Analysis complete!\n";
|
||||
|
@ -71,7 +71,7 @@ void FunctionLiveVarInfo::constructBBs(const Function *M) {
|
|||
|
||||
for(po_iterator<const Function*> BBI = po_begin(M), BBE = po_end(M);
|
||||
BBI != BBE; ++BBI, ++POId) {
|
||||
const BasicBlock *BB = *BBI; // get the current BB
|
||||
const BasicBlock &BB = **BBI; // get the current BB
|
||||
|
||||
if (DEBUG_LV) std::cerr << " For BB " << RAV(BB) << ":\n";
|
||||
|
||||
|
@ -105,7 +105,7 @@ bool FunctionLiveVarInfo::doSingleBackwardPass(const Function *M,
|
|||
bool NeedAnotherIteration = false;
|
||||
for (po_iterator<const Function*> BBI = po_begin(M), BBE = po_end(M);
|
||||
BBI != BBE; ++BBI) {
|
||||
BBLiveVar *LVBB = BBLiveVar::GetFromBB(*BBI);
|
||||
BBLiveVar *LVBB = BBLiveVar::GetFromBB(**BBI);
|
||||
assert(LVBB && "BasicBlock information not set for block!");
|
||||
|
||||
if (DEBUG_LV) std::cerr << " For BB " << (*BBI)->getName() << ":\n";
|
||||
|
|
|
@ -6,13 +6,13 @@
|
|||
#include <iostream>
|
||||
|
||||
std::ostream &operator<<(std::ostream &O, RAV V) { // func to print a Value
|
||||
const Value *v = V.V;
|
||||
if (v->hasName())
|
||||
return O << (void*)v << "(" << v->getName() << ") ";
|
||||
const Value &v = V.V;
|
||||
if (v.hasName())
|
||||
return O << (void*)&v << "(" << v.getName() << ") ";
|
||||
else if (isa<Constant>(v))
|
||||
return O << (void*)v << "(" << v << ") ";
|
||||
return O << (void*)&v << "(" << v << ") ";
|
||||
else
|
||||
return O << (void*)v << " ";
|
||||
return O << (void*)&v << " ";
|
||||
}
|
||||
|
||||
void printSet(const ValueSet &S) {
|
||||
|
|
|
@ -15,19 +15,18 @@
|
|||
//
|
||||
void ReplaceInstWithValue(BasicBlock::InstListType &BIL,
|
||||
BasicBlock::iterator &BI, Value *V) {
|
||||
Instruction *I = *BI;
|
||||
Instruction &I = *BI;
|
||||
// Replaces all of the uses of the instruction with uses of the value
|
||||
I->replaceAllUsesWith(V);
|
||||
I.replaceAllUsesWith(V);
|
||||
|
||||
// Remove the unneccesary instruction now...
|
||||
BIL.remove(BI);
|
||||
std::string OldName = I.getName();
|
||||
|
||||
// Delete the unneccesary instruction now...
|
||||
BI = BIL.erase(BI);
|
||||
|
||||
// Make sure to propogate a name if there is one already...
|
||||
if (I->hasName() && !V->hasName())
|
||||
V->setName(I->getName(), BIL.getParent()->getSymbolTable());
|
||||
|
||||
// Remove the dead instruction now...
|
||||
delete I;
|
||||
if (OldName.size() && !V->hasName())
|
||||
V->setName(OldName, BIL.getParent()->getSymbolTable());
|
||||
}
|
||||
|
||||
|
||||
|
@ -41,13 +40,13 @@ void ReplaceInstWithInst(BasicBlock::InstListType &BIL,
|
|||
"ReplaceInstWithInst: Instruction already inserted into basic block!");
|
||||
|
||||
// Insert the new instruction into the basic block...
|
||||
BI = BIL.insert(BI, I)+1; // Increment BI to point to instruction to delete
|
||||
BasicBlock::iterator New = BIL.insert(BI, I);
|
||||
|
||||
// Replace all uses of the old instruction, and delete it.
|
||||
ReplaceInstWithValue(BIL, BI, I);
|
||||
|
||||
// Move BI back to point to the newly inserted instruction
|
||||
--BI;
|
||||
BI = New;
|
||||
}
|
||||
|
||||
// ReplaceInstWithInst - Replace the instruction specified by From with the
|
||||
|
@ -56,24 +55,6 @@ void ReplaceInstWithInst(BasicBlock::InstListType &BIL,
|
|||
// for the instruction.
|
||||
//
|
||||
void ReplaceInstWithInst(Instruction *From, Instruction *To) {
|
||||
BasicBlock *BB = From->getParent();
|
||||
BasicBlock::InstListType &BIL = BB->getInstList();
|
||||
BasicBlock::iterator BI = find(BIL.begin(), BIL.end(), From);
|
||||
assert(BI != BIL.end() && "Inst not in it's parents BB!");
|
||||
ReplaceInstWithInst(BIL, BI, To);
|
||||
BasicBlock::iterator BI(From);
|
||||
ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
|
||||
}
|
||||
|
||||
// InsertInstBeforeInst - Insert 'NewInst' into the basic block that 'Existing'
|
||||
// is already in, and put it right before 'Existing'. This instruction should
|
||||
// only be used when there is no iterator to Existing already around. The
|
||||
// returned iterator points to the new instruction.
|
||||
//
|
||||
BasicBlock::iterator InsertInstBeforeInst(Instruction *NewInst,
|
||||
Instruction *Existing) {
|
||||
BasicBlock *BB = Existing->getParent();
|
||||
BasicBlock::InstListType &BIL = BB->getInstList();
|
||||
BasicBlock::iterator BI = find(BIL.begin(), BIL.end(), Existing);
|
||||
assert(BI != BIL.end() && "Inst not in it's parents BB!");
|
||||
return BIL.insert(BI, NewInst);
|
||||
}
|
||||
|
||||
|
|
|
@ -36,10 +36,9 @@ static inline void RemapInstruction(Instruction *I,
|
|||
//
|
||||
void CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
|
||||
const std::vector<Value*> &ArgMap) {
|
||||
assert(OldFunc->getArgumentList().empty() ||
|
||||
!NewFunc->getArgumentList().empty() &&
|
||||
assert(OldFunc->aempty() || !NewFunc->aempty() &&
|
||||
"Synthesization of arguments is not implemented yet!");
|
||||
assert(OldFunc->getArgumentList().size() == ArgMap.size() &&
|
||||
assert(OldFunc->asize() == ArgMap.size() &&
|
||||
"Improper number of argument values to map specified!");
|
||||
|
||||
// Keep a mapping between the original function's values and the new
|
||||
|
@ -49,8 +48,10 @@ void CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
|
|||
std::map<const Value *, Value*> ValueMap;
|
||||
|
||||
// Add all of the function arguments to the mapping...
|
||||
for (unsigned i = 0, e = ArgMap.size(); i != e; ++i)
|
||||
ValueMap[(Value*)OldFunc->getArgumentList()[i]] = ArgMap[i];
|
||||
unsigned i = 0;
|
||||
for (Function::const_aiterator I = OldFunc->abegin(), E = OldFunc->aend();
|
||||
I != E; ++I, ++i)
|
||||
ValueMap[I] = ArgMap[i];
|
||||
|
||||
|
||||
// Loop over all of the basic blocks in the function, cloning them as
|
||||
|
@ -58,33 +59,32 @@ void CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
|
|||
//
|
||||
for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
|
||||
BI != BE; ++BI) {
|
||||
const BasicBlock *BB = *BI;
|
||||
assert(BB->getTerminator() && "BasicBlock doesn't have terminator!?!?");
|
||||
const BasicBlock &BB = *BI;
|
||||
assert(BB.getTerminator() && "BasicBlock doesn't have terminator!?!?");
|
||||
|
||||
// Create a new basic block to copy instructions into!
|
||||
BasicBlock *CBB = new BasicBlock(BB->getName(), NewFunc);
|
||||
ValueMap[BB] = CBB; // Add basic block mapping.
|
||||
BasicBlock *CBB = new BasicBlock(BB.getName(), NewFunc);
|
||||
ValueMap[&BB] = CBB; // Add basic block mapping.
|
||||
|
||||
// Loop over all instructions copying them over...
|
||||
for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
|
||||
for (BasicBlock::const_iterator II = BB.begin(), IE = BB.end();
|
||||
II != IE; ++II) {
|
||||
Instruction *NewInst = (*II)->clone();
|
||||
NewInst->setName((*II)->getName()); // Name is not cloned...
|
||||
Instruction *NewInst = II->clone();
|
||||
NewInst->setName(II->getName()); // Name is not cloned...
|
||||
CBB->getInstList().push_back(NewInst);
|
||||
ValueMap[*II] = NewInst; // Add instruction map to value.
|
||||
ValueMap[II] = NewInst; // Add instruction map to value.
|
||||
}
|
||||
}
|
||||
|
||||
// Loop over all of the instructions in the function, fixing up operand
|
||||
// references as we go. This uses ValueMap to do all the hard work.
|
||||
//
|
||||
for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
|
||||
BI != BE; ++BI) {
|
||||
const BasicBlock *BB = *BI;
|
||||
for (Function::const_iterator BB = OldFunc->begin(), BE = OldFunc->end();
|
||||
BB != BE; ++BB) {
|
||||
BasicBlock *NBB = cast<BasicBlock>(ValueMap[BB]);
|
||||
|
||||
// Loop over all instructions, fixing each one as we find it...
|
||||
for (BasicBlock::iterator II = NBB->begin(); II != NBB->end(); II++)
|
||||
RemapInstruction(*II, ValueMap);
|
||||
for (BasicBlock::iterator II = NBB->begin(); II != NBB->end(); ++II)
|
||||
RemapInstruction(II, ValueMap);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -96,20 +96,20 @@ static Value *RemapOperand(const Value *In, map<const Value*, Value*> &LocalMap,
|
|||
}
|
||||
|
||||
// Check to see if it's a constant that we are interesting in transforming...
|
||||
if (Constant *CPV = dyn_cast<Constant>(In)) {
|
||||
if (const Constant *CPV = dyn_cast<Constant>(In)) {
|
||||
if (!isa<DerivedType>(CPV->getType()))
|
||||
return CPV; // Simple constants stay identical...
|
||||
return const_cast<Constant*>(CPV); // Simple constants stay identical...
|
||||
|
||||
Constant *Result = 0;
|
||||
|
||||
if (ConstantArray *CPA = dyn_cast<ConstantArray>(CPV)) {
|
||||
if (const ConstantArray *CPA = dyn_cast<ConstantArray>(CPV)) {
|
||||
const std::vector<Use> &Ops = CPA->getValues();
|
||||
std::vector<Constant*> Operands(Ops.size());
|
||||
for (unsigned i = 0; i < Ops.size(); ++i)
|
||||
Operands[i] =
|
||||
cast<Constant>(RemapOperand(Ops[i], LocalMap, GlobalMap));
|
||||
Result = ConstantArray::get(cast<ArrayType>(CPA->getType()), Operands);
|
||||
} else if (ConstantStruct *CPS = dyn_cast<ConstantStruct>(CPV)) {
|
||||
} else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(CPV)) {
|
||||
const std::vector<Use> &Ops = CPS->getValues();
|
||||
std::vector<Constant*> Operands(Ops.size());
|
||||
for (unsigned i = 0; i < Ops.size(); ++i)
|
||||
|
@ -117,8 +117,9 @@ static Value *RemapOperand(const Value *In, map<const Value*, Value*> &LocalMap,
|
|||
cast<Constant>(RemapOperand(Ops[i], LocalMap, GlobalMap));
|
||||
Result = ConstantStruct::get(cast<StructType>(CPS->getType()), Operands);
|
||||
} else if (isa<ConstantPointerNull>(CPV)) {
|
||||
Result = CPV;
|
||||
} else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(CPV)) {
|
||||
Result = const_cast<Constant*>(CPV);
|
||||
} else if (const ConstantPointerRef *CPR =
|
||||
dyn_cast<ConstantPointerRef>(CPV)) {
|
||||
Value *V = RemapOperand(CPR->getValue(), LocalMap, GlobalMap);
|
||||
Result = ConstantPointerRef::get(cast<GlobalValue>(V));
|
||||
} else {
|
||||
|
@ -126,7 +127,7 @@ static Value *RemapOperand(const Value *In, map<const Value*, Value*> &LocalMap,
|
|||
}
|
||||
|
||||
// Cache the mapping in our local map structure...
|
||||
LocalMap.insert(std::make_pair(In, CPV));
|
||||
LocalMap.insert(std::make_pair(In, const_cast<Constant*>(CPV)));
|
||||
return Result;
|
||||
}
|
||||
|
||||
|
@ -158,7 +159,7 @@ static bool LinkGlobals(Module *Dest, const Module *Src,
|
|||
// Loop over all of the globals in the src module, mapping them over as we go
|
||||
//
|
||||
for (Module::const_giterator I = Src->gbegin(), E = Src->gend(); I != E; ++I){
|
||||
const GlobalVariable *SGV = *I;
|
||||
const GlobalVariable *SGV = I;
|
||||
Value *V;
|
||||
|
||||
// If the global variable has a name, and that name is already in use in the
|
||||
|
@ -211,7 +212,7 @@ static bool LinkGlobalInits(Module *Dest, const Module *Src,
|
|||
// Loop over all of the globals in the src module, mapping them over as we go
|
||||
//
|
||||
for (Module::const_giterator I = Src->gbegin(), E = Src->gend(); I != E; ++I){
|
||||
const GlobalVariable *SGV = *I;
|
||||
const GlobalVariable *SGV = I;
|
||||
|
||||
if (SGV->hasInitializer()) { // Only process initialized GV's
|
||||
// Figure out what the initializer looks like in the dest module...
|
||||
|
@ -249,41 +250,41 @@ static bool LinkFunctionProtos(Module *Dest, const Module *Src,
|
|||
// go
|
||||
//
|
||||
for (Module::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
|
||||
const Function *SM = *I; // SrcFunction
|
||||
const Function *SF = I; // SrcFunction
|
||||
Value *V;
|
||||
|
||||
// If the function has a name, and that name is already in use in the Dest
|
||||
// module, make sure that the name is a compatible function...
|
||||
//
|
||||
if (SM->hasExternalLinkage() && SM->hasName() &&
|
||||
(V = ST->lookup(SM->getType(), SM->getName())) &&
|
||||
if (SF->hasExternalLinkage() && SF->hasName() &&
|
||||
(V = ST->lookup(SF->getType(), SF->getName())) &&
|
||||
cast<Function>(V)->hasExternalLinkage()) {
|
||||
// The same named thing is a Function, because the only two things
|
||||
// that may be in a module level symbol table are Global Vars and
|
||||
// Functions, and they both have distinct, nonoverlapping, possible types.
|
||||
//
|
||||
Function *DM = cast<Function>(V); // DestFunction
|
||||
Function *DF = cast<Function>(V); // DestFunction
|
||||
|
||||
// Check to make sure the function is not defined in both modules...
|
||||
if (!SM->isExternal() && !DM->isExternal())
|
||||
if (!SF->isExternal() && !DF->isExternal())
|
||||
return Error(Err, "Function '" +
|
||||
SM->getFunctionType()->getDescription() + "':\"" +
|
||||
SM->getName() + "\" - Function is already defined!");
|
||||
SF->getFunctionType()->getDescription() + "':\"" +
|
||||
SF->getName() + "\" - Function is already defined!");
|
||||
|
||||
// Otherwise, just remember this mapping...
|
||||
ValueMap.insert(std::make_pair(SM, DM));
|
||||
ValueMap.insert(std::make_pair(SF, DF));
|
||||
} else {
|
||||
// Function does not already exist, simply insert an external function
|
||||
// signature identical to SM into the dest module...
|
||||
Function *DM = new Function(SM->getFunctionType(),
|
||||
SM->hasInternalLinkage(),
|
||||
SM->getName());
|
||||
// signature identical to SF into the dest module...
|
||||
Function *DF = new Function(SF->getFunctionType(),
|
||||
SF->hasInternalLinkage(),
|
||||
SF->getName());
|
||||
|
||||
// Add the function signature to the dest module...
|
||||
Dest->getFunctionList().push_back(DM);
|
||||
Dest->getFunctionList().push_back(DF);
|
||||
|
||||
// ... and remember this mapping...
|
||||
ValueMap.insert(std::make_pair(SM, DM));
|
||||
ValueMap.insert(std::make_pair(SF, DF));
|
||||
}
|
||||
}
|
||||
return false;
|
||||
|
@ -300,27 +301,22 @@ static bool LinkFunctionBody(Function *Dest, const Function *Src,
|
|||
map<const Value*, Value*> LocalMap; // Map for function local values
|
||||
|
||||
// Go through and convert function arguments over...
|
||||
for (Function::ArgumentListType::const_iterator
|
||||
I = Src->getArgumentList().begin(),
|
||||
E = Src->getArgumentList().end(); I != E; ++I) {
|
||||
const Argument *SMA = *I;
|
||||
|
||||
for (Function::const_aiterator I = Src->abegin(), E = Src->aend();
|
||||
I != E; ++I) {
|
||||
// Create the new function argument and add to the dest function...
|
||||
Argument *DMA = new Argument(SMA->getType(), SMA->getName());
|
||||
Dest->getArgumentList().push_back(DMA);
|
||||
Argument *DFA = new Argument(I->getType(), I->getName());
|
||||
Dest->getArgumentList().push_back(DFA);
|
||||
|
||||
// Add a mapping to our local map
|
||||
LocalMap.insert(std::make_pair(SMA, DMA));
|
||||
LocalMap.insert(std::make_pair(I, DFA));
|
||||
}
|
||||
|
||||
// Loop over all of the basic blocks, copying the instructions over...
|
||||
//
|
||||
for (Function::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
|
||||
const BasicBlock *SBB = *I;
|
||||
|
||||
// Create new basic block and add to mapping and the Dest function...
|
||||
BasicBlock *DBB = new BasicBlock(SBB->getName(), Dest);
|
||||
LocalMap.insert(std::make_pair(SBB, DBB));
|
||||
BasicBlock *DBB = new BasicBlock(I->getName(), Dest);
|
||||
LocalMap.insert(std::make_pair(I, DBB));
|
||||
|
||||
// Loop over all of the instructions in the src basic block, copying them
|
||||
// over. Note that this is broken in a strict sense because the cloned
|
||||
|
@ -328,13 +324,12 @@ static bool LinkFunctionBody(Function *Dest, const Function *Src,
|
|||
// the remapped values. In our case, however, we will not get caught and
|
||||
// so we can delay patching the values up until later...
|
||||
//
|
||||
for (BasicBlock::const_iterator II = SBB->begin(), IE = SBB->end();
|
||||
for (BasicBlock::const_iterator II = I->begin(), IE = I->end();
|
||||
II != IE; ++II) {
|
||||
const Instruction *SI = *II;
|
||||
Instruction *DI = SI->clone();
|
||||
DI->setName(SI->getName());
|
||||
Instruction *DI = II->clone();
|
||||
DI->setName(II->getName());
|
||||
DBB->getInstList().push_back(DI);
|
||||
LocalMap.insert(std::make_pair(SI, DI));
|
||||
LocalMap.insert(std::make_pair(II, DI));
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -343,17 +338,11 @@ static bool LinkFunctionBody(Function *Dest, const Function *Src,
|
|||
// the Source function as operands. Loop through all of the operands of the
|
||||
// functions and patch them up to point to the local versions...
|
||||
//
|
||||
for (Function::iterator BI = Dest->begin(), BE = Dest->end();
|
||||
BI != BE; ++BI) {
|
||||
BasicBlock *BB = *BI;
|
||||
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
|
||||
Instruction *Inst = *I;
|
||||
|
||||
for (Instruction::op_iterator OI = Inst->op_begin(), OE = Inst->op_end();
|
||||
for (Function::iterator BB = Dest->begin(), BE = Dest->end(); BB != BE; ++BB)
|
||||
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
|
||||
for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
|
||||
OI != OE; ++OI)
|
||||
*OI = RemapOperand(*OI, LocalMap, &GlobalMap);
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
@ -370,20 +359,19 @@ static bool LinkFunctionBodies(Module *Dest, const Module *Src,
|
|||
// Loop over all of the functions in the src module, mapping them over as we
|
||||
// go
|
||||
//
|
||||
for (Module::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) {
|
||||
const Function *SM = *I; // Source Function
|
||||
if (!SM->isExternal()) { // No body if function is external
|
||||
Function *DM = cast<Function>(ValueMap[SM]); // Destination function
|
||||
for (Module::const_iterator SF = Src->begin(), E = Src->end(); SF != E; ++SF){
|
||||
if (!SF->isExternal()) { // No body if function is external
|
||||
Function *DF = cast<Function>(ValueMap[SF]); // Destination function
|
||||
|
||||
// DM not external SM external?
|
||||
if (!DM->isExternal()) {
|
||||
// DF not external SF external?
|
||||
if (!DF->isExternal()) {
|
||||
if (Err)
|
||||
*Err = "Function '" + (SM->hasName() ? SM->getName() : string("")) +
|
||||
*Err = "Function '" + (SF->hasName() ? SF->getName() : string("")) +
|
||||
"' body multiply defined!";
|
||||
return true;
|
||||
}
|
||||
|
||||
if (LinkFunctionBody(DM, SM, ValueMap, Err)) return true;
|
||||
if (LinkFunctionBody(DF, SF, ValueMap, Err)) return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
|
|
|
@ -17,13 +17,12 @@
|
|||
// them together...
|
||||
//
|
||||
bool doConstantPropogation(BasicBlock::iterator &II) {
|
||||
Instruction *Inst = *II;
|
||||
if (Constant *C = ConstantFoldInstruction(Inst)) {
|
||||
if (Constant *C = ConstantFoldInstruction(II)) {
|
||||
// Replaces all of the uses of a variable with uses of the constant.
|
||||
Inst->replaceAllUsesWith(C);
|
||||
II->replaceAllUsesWith(C);
|
||||
|
||||
// Remove the instruction from the basic block...
|
||||
delete Inst->getParent()->getInstList().remove(II);
|
||||
II = II->getParent()->getInstList().erase(II);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -102,9 +101,8 @@ bool isInstructionTriviallyDead(Instruction *I) {
|
|||
//
|
||||
bool dceInstruction(BasicBlock::iterator &BBI) {
|
||||
// Look for un"used" definitions...
|
||||
Instruction *I = *BBI;
|
||||
if (isInstructionTriviallyDead(I)) {
|
||||
delete I->getParent()->getInstList().remove(BBI); // Bye bye
|
||||
if (isInstructionTriviallyDead(BBI)) {
|
||||
BBI = BBI->getParent()->getInstList().erase(BBI); // Bye bye
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
|
|
|
@ -46,7 +46,7 @@ static bool PropogatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
|
|||
|
||||
// Loop over all of the PHI nodes in the successor BB
|
||||
for (BasicBlock::iterator I = Succ->begin();
|
||||
PHINode *PN = dyn_cast<PHINode>(*I); ++I) {
|
||||
PHINode *PN = dyn_cast<PHINode>(&*I); ++I) {
|
||||
Value *OldVal = PN->removeIncomingValue(BB);
|
||||
assert(OldVal && "No entry in PHI for Pred BB!");
|
||||
|
||||
|
@ -69,13 +69,12 @@ static bool PropogatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
|
|||
//
|
||||
// WARNING: The entry node of a function may not be simplified.
|
||||
//
|
||||
bool SimplifyCFG(Function::iterator &BBIt) {
|
||||
BasicBlock *BB = *BBIt;
|
||||
bool SimplifyCFG(BasicBlock *BB) {
|
||||
Function *M = BB->getParent();
|
||||
|
||||
assert(BB && BB->getParent() && "Block not embedded in function!");
|
||||
assert(BB->getTerminator() && "Degenerate basic block encountered!");
|
||||
assert(BB->getParent()->front() != BB && "Can't Simplify entry block!");
|
||||
assert(&BB->getParent()->front() != BB && "Can't Simplify entry block!");
|
||||
|
||||
|
||||
// Remove basic blocks that have no predecessors... which are unreachable.
|
||||
|
@ -89,20 +88,20 @@ bool SimplifyCFG(Function::iterator &BBIt) {
|
|||
std::bind2nd(std::mem_fun(&BasicBlock::removePredecessor), BB));
|
||||
|
||||
while (!BB->empty()) {
|
||||
Instruction *I = BB->back();
|
||||
Instruction &I = BB->back();
|
||||
// If this instruction is used, replace uses with an arbitrary
|
||||
// constant value. Because control flow can't get here, we don't care
|
||||
// what we replace the value with. Note that since this block is
|
||||
// unreachable, and all values contained within it must dominate their
|
||||
// uses, that all uses will eventually be removed.
|
||||
if (!I->use_empty())
|
||||
if (!I.use_empty())
|
||||
// Make all users of this instruction reference the constant instead
|
||||
I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
|
||||
I.replaceAllUsesWith(Constant::getNullValue(I.getType()));
|
||||
|
||||
// Remove the instruction from the basic block
|
||||
delete BB->getInstList().pop_back();
|
||||
BB->getInstList().pop_back();
|
||||
}
|
||||
delete M->getBasicBlocks().remove(BBIt);
|
||||
M->getBasicBlockList().erase(BB);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -110,7 +109,7 @@ bool SimplifyCFG(Function::iterator &BBIt) {
|
|||
// successor. If so, replace block references with successor.
|
||||
succ_iterator SI(succ_begin(BB));
|
||||
if (SI != succ_end(BB) && ++SI == succ_end(BB)) { // One succ?
|
||||
if (BB->front()->isTerminator()) { // Terminator is the only instruction!
|
||||
if (BB->front().isTerminator()) { // Terminator is the only instruction!
|
||||
BasicBlock *Succ = *succ_begin(BB); // There is exactly one successor
|
||||
|
||||
if (Succ != BB) { // Arg, don't hurt infinite loops!
|
||||
|
@ -125,11 +124,13 @@ bool SimplifyCFG(Function::iterator &BBIt) {
|
|||
//cerr << "Killing Trivial BB: \n" << BB;
|
||||
|
||||
BB->replaceAllUsesWith(Succ);
|
||||
BB = M->getBasicBlocks().remove(BBIt);
|
||||
std::string OldName = BB->getName();
|
||||
|
||||
// Delete the old basic block...
|
||||
M->getBasicBlockList().erase(BB);
|
||||
|
||||
if (BB->hasName() && !Succ->hasName()) // Transfer name if we can
|
||||
Succ->setName(BB->getName());
|
||||
delete BB; // Delete basic block
|
||||
if (!OldName.empty() && !Succ->hasName()) // Transfer name if we can
|
||||
Succ->setName(OldName);
|
||||
|
||||
//cerr << "Function after removal: \n" << M;
|
||||
return true;
|
||||
|
@ -168,28 +169,24 @@ bool SimplifyCFG(Function::iterator &BBIt) {
|
|||
TerminatorInst *Term = OnlyPred->getTerminator();
|
||||
|
||||
// Delete the unconditional branch from the predecessor...
|
||||
BasicBlock::iterator DI = OnlyPred->end();
|
||||
delete OnlyPred->getInstList().remove(--DI); // Destroy branch
|
||||
OnlyPred->getInstList().pop_back();
|
||||
|
||||
// Move all definitions in the succecessor to the predecessor...
|
||||
std::vector<Instruction*> Insts(BB->begin(), BB->end());
|
||||
BB->getInstList().remove(BB->begin(), BB->end());
|
||||
OnlyPred->getInstList().insert(OnlyPred->end(),
|
||||
Insts.begin(), Insts.end());
|
||||
|
||||
// Remove basic block from the function... and advance iterator to the
|
||||
// next valid block...
|
||||
M->getBasicBlocks().remove(BBIt);
|
||||
|
||||
OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
|
||||
|
||||
// Make all PHI nodes that refered to BB now refer to Pred as their
|
||||
// source...
|
||||
BB->replaceAllUsesWith(OnlyPred);
|
||||
|
||||
|
||||
std::string OldName = BB->getName();
|
||||
|
||||
// Erase basic block from the function...
|
||||
M->getBasicBlockList().erase(BB);
|
||||
|
||||
// Inherit predecessors name if it exists...
|
||||
if (BB->hasName() && !OnlyPred->hasName())
|
||||
OnlyPred->setName(BB->getName());
|
||||
if (!OldName.empty() && !OnlyPred->hasName())
|
||||
OnlyPred->setName(OldName);
|
||||
|
||||
delete BB; // You ARE the weakest link... goodbye
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -24,14 +24,14 @@ AnalysisID UnifyFunctionExitNodes::ID(AnalysisID::create<UnifyFunctionExitNodes>
|
|||
//
|
||||
// If there are no return stmts in the Function, a null pointer is returned.
|
||||
//
|
||||
bool UnifyFunctionExitNodes::runOnFunction(Function *M) {
|
||||
bool UnifyFunctionExitNodes::runOnFunction(Function &F) {
|
||||
// Loop over all of the blocks in a function, tracking all of the blocks that
|
||||
// return.
|
||||
//
|
||||
vector<BasicBlock*> ReturningBlocks;
|
||||
for(Function::iterator I = M->begin(), E = M->end(); I != E; ++I)
|
||||
if (isa<ReturnInst>((*I)->getTerminator()))
|
||||
ReturningBlocks.push_back(*I);
|
||||
for(Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
|
||||
if (isa<ReturnInst>(I->getTerminator()))
|
||||
ReturningBlocks.push_back(I);
|
||||
|
||||
if (ReturningBlocks.empty()) {
|
||||
ExitNode = 0;
|
||||
|
@ -45,11 +45,11 @@ bool UnifyFunctionExitNodes::runOnFunction(Function *M) {
|
|||
// node (if the function returns a value), and convert all of the return
|
||||
// instructions into unconditional branches.
|
||||
//
|
||||
BasicBlock *NewRetBlock = new BasicBlock("UnifiedExitNode", M);
|
||||
BasicBlock *NewRetBlock = new BasicBlock("UnifiedExitNode", &F);
|
||||
|
||||
if (M->getReturnType() != Type::VoidTy) {
|
||||
if (F.getReturnType() != Type::VoidTy) {
|
||||
// If the function doesn't return void... add a PHI node to the block...
|
||||
PHINode *PN = new PHINode(M->getReturnType(), "UnifiedRetVal");
|
||||
PHINode *PN = new PHINode(F.getReturnType(), "UnifiedRetVal");
|
||||
NewRetBlock->getInstList().push_back(PN);
|
||||
|
||||
// Add an incoming element to the PHI node for every return instruction that
|
||||
|
@ -70,7 +70,7 @@ bool UnifyFunctionExitNodes::runOnFunction(Function *M) {
|
|||
//
|
||||
for (vector<BasicBlock*>::iterator I = ReturningBlocks.begin(),
|
||||
E = ReturningBlocks.end(); I != E; ++I) {
|
||||
delete (*I)->getInstList().pop_back(); // Remove the return insn
|
||||
(*I)->getInstList().pop_back(); // Remove the return insn
|
||||
(*I)->getInstList().push_back(new BranchInst(NewRetBlock));
|
||||
}
|
||||
ExitNode = NewRetBlock;
|
||||
|
|
Loading…
Reference in New Issue