[WinEHPrepare] Add rudimentary support for the new EH instructions

This adds somewhat basic preparation functionality including:
- Formation of funclets via coloring basic blocks.
- Cloning of polychromatic blocks to ensure that funclets have unique
  program counters.
- Demotion of values used between different funclets.
- Some amount of cleanup once we have removed predecessors from basic
  blocks.
- Verification that we are left with a CFG that makes some amount of
  sense.

N.B. Arguments and numbering still need to be done.

Differential Revision: http://reviews.llvm.org/D11750

llvm-svn: 244558
This commit is contained in:
David Majnemer 2015-08-11 01:15:26 +00:00
parent f97999dc46
commit fd9f47756a
2 changed files with 379 additions and 14 deletions

View File

@ -23,6 +23,7 @@
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/LibCallSemantics.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/CodeGen/WinEHFuncInfo.h"
@ -121,6 +122,9 @@ private:
void processSEHCatchHandler(CatchHandler *Handler, BasicBlock *StartBB);
bool prepareExplicitEH(Function &F);
void numberFunclet(BasicBlock *InitialBB, BasicBlock *FuncletBB);
Triple TheTriple;
// All fields are reset by runOnFunction.
@ -160,6 +164,9 @@ private:
DenseMap<Function *, Value *> HandlerToParentFP;
AllocaInst *SEHExceptionCodeSlot = nullptr;
std::map<BasicBlock *, std::set<BasicBlock *>> BlockColors;
std::map<BasicBlock *, std::set<BasicBlock *>> FuncletBlocks;
};
class WinEHFrameVariableMaterializer : public ValueMaterializer {
@ -361,21 +368,11 @@ FunctionPass *llvm::createWinEHPass(const TargetMachine *TM) {
}
bool WinEHPrepare::runOnFunction(Function &Fn) {
// No need to prepare outlined handlers.
if (Fn.hasFnAttribute("wineh-parent"))
if (!Fn.hasPersonalityFn())
return false;
SmallVector<LandingPadInst *, 4> LPads;
SmallVector<ResumeInst *, 4> Resumes;
for (BasicBlock &BB : Fn) {
if (auto *LP = BB.getLandingPadInst())
LPads.push_back(LP);
if (auto *Resume = dyn_cast<ResumeInst>(BB.getTerminator()))
Resumes.push_back(Resume);
}
// No need to prepare functions that lack landing pads.
if (LPads.empty())
// No need to prepare outlined handlers.
if (Fn.hasFnAttribute("wineh-parent"))
return false;
// Classify the personality to see what kind of preparation we need.
@ -385,6 +382,27 @@ bool WinEHPrepare::runOnFunction(Function &Fn) {
if (!isMSVCEHPersonality(Personality))
return false;
SmallVector<LandingPadInst *, 4> LPads;
SmallVector<ResumeInst *, 4> Resumes;
bool ForExplicitEH = false;
for (BasicBlock &BB : Fn) {
if (auto *LP = BB.getLandingPadInst()) {
LPads.push_back(LP);
} else if (BB.getFirstNonPHI()->isEHPad()) {
ForExplicitEH = true;
break;
}
if (auto *Resume = dyn_cast<ResumeInst>(BB.getTerminator()))
Resumes.push_back(Resume);
}
if (ForExplicitEH)
return prepareExplicitEH(Fn);
// No need to prepare functions that lack landing pads.
if (LPads.empty())
return false;
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
@ -2894,3 +2912,350 @@ void llvm::calculateWinCXXEHStateNumbers(const Function *ParentFn,
while (!Num.HandlerStack.empty())
Num.processCallSite(None, ImmutableCallSite());
}
void WinEHPrepare::numberFunclet(BasicBlock *InitialBB, BasicBlock *FuncletBB) {
Instruction *FirstNonPHI = FuncletBB->getFirstNonPHI();
bool IsCatch = isa<CatchPadInst>(FirstNonPHI);
bool IsCleanup = isa<CleanupPadInst>(FirstNonPHI);
// Initialize the worklist with the funclet's entry point.
std::vector<BasicBlock *> Worklist;
Worklist.push_back(InitialBB);
while (!Worklist.empty()) {
BasicBlock *BB = Worklist.back();
Worklist.pop_back();
// There can be only one "pad" basic block in the funclet: the initial one.
if (BB != FuncletBB && BB->isEHPad())
continue;
// Add 'FuncletBB' as a possible color for 'BB'.
if (BlockColors[BB].insert(FuncletBB).second == false) {
// Skip basic blocks which we have already visited.
continue;
}
FuncletBlocks[FuncletBB].insert(BB);
Instruction *Terminator = BB->getTerminator();
// The catchret's successors cannot be part of the funclet.
if (IsCatch && isa<CatchReturnInst>(Terminator))
continue;
// The cleanupret's successors cannot be part of the funclet.
if (IsCleanup && isa<CleanupReturnInst>(Terminator))
continue;
Worklist.insert(Worklist.end(), succ_begin(BB), succ_end(BB));
}
}
bool WinEHPrepare::prepareExplicitEH(Function &F) {
LLVMContext &Context = F.getContext();
// Remove unreachable blocks. It is not valuable to assign them a color and
// their existence can trick us into thinking values are alive when they are
// not.
removeUnreachableBlocks(F);
BasicBlock *EntryBlock = &F.getEntryBlock();
// Number everything starting from the entry block.
numberFunclet(EntryBlock, EntryBlock);
for (BasicBlock &BB : F) {
// Remove single entry PHIs to simplify preparation.
if (auto *PN = dyn_cast<PHINode>(BB.begin()))
if (PN->getNumIncomingValues() == 1)
FoldSingleEntryPHINodes(&BB);
// EH pad instructions are always the first non-PHI nodes in a block if they
// are at all present.
Instruction *I = BB.getFirstNonPHI();
if (I->isEHPad())
numberFunclet(&BB, &BB);
// It is possible for a normal basic block to only be reachable via an
// exceptional basic block. The successor of a catchret is the only case
// where this is possible.
if (auto *CRI = dyn_cast<CatchReturnInst>(BB.getTerminator()))
numberFunclet(CRI->getSuccessor(), EntryBlock);
}
// Insert cleanuppads before EH blocks with PHI nodes.
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE;) {
BasicBlock *BB = FI++;
// Skip any BBs which aren't EH pads.
if (!BB->isEHPad())
continue;
// Skip any cleanuppads, they can hold non-PHI instructions.
if (isa<CleanupPadInst>(BB->getFirstNonPHI()))
continue;
// Skip any EH pads without PHIs, we don't need to worry about demoting into
// them.
if (!isa<PHINode>(BB->begin()))
continue;
// Create our new cleanuppad BB, terminate it with a cleanupret.
auto *NewCleanupBB = BasicBlock::Create(
Context, Twine(BB->getName(), ".wineh.phibb"), &F, BB);
auto *CPI = CleanupPadInst::Create(Type::getVoidTy(Context), {BB}, "",
NewCleanupBB);
CleanupReturnInst::Create(Context, /*RetVal=*/nullptr, BB, NewCleanupBB);
// Update the funclet data structures to keep them in the loop.
BlockColors[NewCleanupBB].insert(NewCleanupBB);
FuncletBlocks[NewCleanupBB].insert(NewCleanupBB);
// Reparent PHIs from the old EH BB into the cleanuppad.
for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
Instruction *I = BI++;
auto *PN = dyn_cast<PHINode>(I);
// Stop at the first non-PHI.
if (!PN)
break;
PN->removeFromParent();
PN->insertBefore(CPI);
}
// Redirect predecessors from the old EH BB to the cleanuppad.
std::set<BasicBlock *> Preds;
Preds.insert(pred_begin(BB), pred_end(BB));
for (BasicBlock *Pred : Preds) {
// Don't redirect the new cleanuppad to itself!
if (Pred == NewCleanupBB)
continue;
TerminatorInst *TI = Pred->getTerminator();
for (unsigned TII = 0, TIE = TI->getNumSuccessors(); TII != TIE; ++TII) {
BasicBlock *Successor = TI->getSuccessor(TII);
if (Successor == BB)
TI->setSuccessor(TII, NewCleanupBB);
}
}
}
// Get rid of polychromatic PHI nodes.
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE;) {
BasicBlock *BB = FI++;
std::set<BasicBlock *> &ColorsForBB = BlockColors[BB];
bool IsEHPad = BB->isEHPad();
for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
Instruction *I = BI++;
auto *PN = dyn_cast<PHINode>(I);
// Stop at the first non-PHI node.
if (!PN)
break;
// EH pads cannot be lowered with PHI nodes prefacing them.
if (IsEHPad) {
// We should have removed PHIs from all non-cleanuppad blocks.
if (!isa<CleanupPadInst>(BB->getFirstNonPHI()))
report_fatal_error("Unexpected PHI on EH Pad");
DemotePHIToStack(PN);
continue;
}
// See if *all* the basic blocks involved in this PHI node are in the
// same, lone, color. If so, demotion is not needed.
bool SameColor = ColorsForBB.size() == 1;
if (SameColor) {
for (unsigned PNI = 0, PNE = PN->getNumIncomingValues(); PNI != PNE;
++PNI) {
BasicBlock *IncomingBB = PN->getIncomingBlock(PNI);
std::set<BasicBlock *> &ColorsForIncomingBB = BlockColors[IncomingBB];
// If the colors differ, bail out early and demote.
if (ColorsForIncomingBB != ColorsForBB) {
SameColor = false;
break;
}
}
}
if (!SameColor)
DemotePHIToStack(PN);
}
}
// Turn all inter-funclet uses of a Value into loads and stores.
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE;) {
BasicBlock *BB = FI++;
std::set<BasicBlock *> &ColorsForBB = BlockColors[BB];
for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
Instruction *I = BI++;
// Funclets are permitted to use static allocas.
if (auto *AI = dyn_cast<AllocaInst>(I))
if (AI->isStaticAlloca())
continue;
// FIXME: Our spill-placement algorithm is incredibly naive. We should
// try to sink+hoist as much as possible to avoid redundant stores and reloads.
DenseMap<BasicBlock *, Value *> Loads;
AllocaInst *SpillSlot = nullptr;
for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
UI != UE;) {
Use &U = *UI++;
auto *UsingInst = cast<Instruction>(U.getUser());
BasicBlock *UsingBB = UsingInst->getParent();
// Is the Use inside a block which is colored with a subset of the Def?
// If so, we don't need to escape the Def because we will clone
// ourselves our own private copy.
std::set<BasicBlock *> &ColorsForUsingBB = BlockColors[UsingBB];
if (std::includes(ColorsForBB.begin(), ColorsForBB.end(),
ColorsForUsingBB.begin(), ColorsForUsingBB.end()))
continue;
// Lazilly create the spill slot. We spill immediately after the value
// in the BasicBlock.
// FIXME: This can be improved to spill at the block exit points.
if (!SpillSlot)
SpillSlot = new AllocaInst(I->getType(), nullptr,
Twine(I->getName(), ".wineh.spillslot"),
EntryBlock->begin());
if (auto *PN = dyn_cast<PHINode>(UsingInst)) {
// If this is a PHI node, we can't insert a load of the value before
// the use. Instead insert the load in the predecessor block
// corresponding to the incoming value.
//
// Note that if there are multiple edges from a basic block to this
// PHI node that we cannot have multiple loads. The problem is that
// the resulting PHI node will have multiple values (from each load)
// coming in from the same block, which is illegal SSA form.
// For this reason, we keep track of and reuse loads we insert.
BasicBlock *IncomingBlock = PN->getIncomingBlock(U);
Value *&V = Loads[IncomingBlock];
// Insert the load into the predecessor block
if (!V)
V = new LoadInst(SpillSlot, Twine(I->getName(), ".wineh.reload"),
/*Volatile=*/false,
IncomingBlock->getTerminator());
U.set(V);
} else {
// Reload right before the old use.
// FIXME: This can be improved to reload at a block entry point.
Value *V =
new LoadInst(SpillSlot, Twine(I->getName(), ".wineh.reload"),
/*Volatile=*/false, UsingInst);
U.set(V);
}
}
if (SpillSlot) {
// Insert stores of the computed value into the stack slot.
// We have to be careful if I is an invoke instruction,
// because we can't insert the store AFTER the terminator instruction.
BasicBlock::iterator InsertPt;
if (!isa<TerminatorInst>(I)) {
InsertPt = I;
++InsertPt;
// Don't insert before PHI nodes or EH pad instrs.
for (; isa<PHINode>(InsertPt) || InsertPt->isEHPad(); ++InsertPt)
;
} else {
auto *II = cast<InvokeInst>(I);
// We cannot demote invoke instructions to the stack if their normal
// edge is critical. Therefore, split the critical edge and create a
// basic block into which the store can be inserted.
if (!II->getNormalDest()->getSinglePredecessor()) {
unsigned SuccNum = GetSuccessorNumber(BB, II->getNormalDest());
assert(isCriticalEdge(II, SuccNum) && "Expected a critical edge!");
BasicBlock *NewBlock = SplitCriticalEdge(II, SuccNum);
assert(NewBlock && "Unable to split critical edge.");
// Update the color mapping for the newly split edge.
std::set<BasicBlock *> &ColorsForUsingBB =
BlockColors[II->getParent()];
BlockColors[NewBlock] = ColorsForUsingBB;
for (BasicBlock *FuncletPad : ColorsForUsingBB)
FuncletBlocks[FuncletPad].insert(NewBlock);
}
InsertPt = II->getNormalDest()->getFirstInsertionPt();
}
new StoreInst(I, SpillSlot, InsertPt);
}
}
}
// We need to clone all blocks which belong to multiple funclets. Values are
// remapped throughout the funclet to propogate both the new instructions
// *and* the new basic blocks themselves.
for (auto &Funclet : FuncletBlocks) {
BasicBlock *FuncletPadBB = Funclet.first;
std::set<BasicBlock *> &BlocksInFunclet = Funclet.second;
std::map<BasicBlock *, BasicBlock *> Orig2Clone;
ValueToValueMapTy VMap;
for (BasicBlock *BB : BlocksInFunclet) {
std::set<BasicBlock *> &ColorsForBB = BlockColors[BB];
// We don't need to do anything if the block is monochromatic.
size_t NumColorsForBB = ColorsForBB.size();
if (NumColorsForBB == 1)
continue;
assert(!isa<PHINode>(BB->front()) &&
"Polychromatic PHI nodes should have been demoted!");
// Create a new basic block and copy instructions into it!
BasicBlock *CBB = CloneBasicBlock(
BB, VMap, Twine(".for.", FuncletPadBB->getName()), &F);
// Add basic block mapping.
VMap[BB] = CBB;
// Record delta operations that we need to perform to our color mappings.
Orig2Clone[BB] = CBB;
}
// Update our color mappings to reflect that one block has lost a color and
// another has gained a color.
for (auto &BBMapping : Orig2Clone) {
BasicBlock *OldBlock = BBMapping.first;
BasicBlock *NewBlock = BBMapping.second;
BlocksInFunclet.insert(NewBlock);
BlockColors[NewBlock].insert(FuncletPadBB);
BlocksInFunclet.erase(OldBlock);
BlockColors[OldBlock].erase(FuncletPadBB);
}
// Loop over all of the instructions in the function, fixing up operand
// references as we go. This uses VMap to do all the hard work.
for (BasicBlock *BB : BlocksInFunclet)
// Loop over all instructions, fixing each one as we find it...
for (Instruction &I : *BB)
RemapInstruction(&I, VMap, RF_IgnoreMissingEntries);
}
// Clean-up some of the mess we made by removing useles PHI nodes, trivial
// branches, etc.
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE;) {
BasicBlock *BB = FI++;
SimplifyInstructionsInBlock(BB);
ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true);
MergeBlockIntoPredecessor(BB);
}
// TODO: Do something about cleanupblocks which branch to implausible
// cleanuprets.
// We might have some unreachable blocks after cleaning up some impossible
// control flow.
removeUnreachableBlocks(F);
// Recolor the CFG to verify that all is well.
for (BasicBlock &BB : F) {
size_t NumColors = BlockColors[&BB].size();
assert(NumColors == 1 && "Expected monochromatic BB!");
if (NumColors == 0)
report_fatal_error("Uncolored BB!");
if (NumColors > 1)
report_fatal_error("Multicolor BB!");
bool EHPadHasPHI = BB.isEHPad() && isa<PHINode>(BB.begin());
assert(!EHPadHasPHI && "EH Pad still has a PHI!");
if (EHPadHasPHI)
report_fatal_error("EH Pad still has a PHI!");
}
BlockColors.clear();
FuncletBlocks.clear();
return true;
}

View File

@ -135,7 +135,7 @@ AllocaInst *llvm::DemotePHIToStack(PHINode *P, Instruction *AllocaPoint) {
// Insert a load in place of the PHI and replace all uses.
BasicBlock::iterator InsertPt = P;
for (; isa<PHINode>(InsertPt) || isa<LandingPadInst>(InsertPt); ++InsertPt)
for (; isa<PHINode>(InsertPt) || InsertPt->isEHPad(); ++InsertPt)
/* empty */; // Don't insert before PHI nodes or landingpad instrs.
Value *V = new LoadInst(Slot, P->getName()+".reload", InsertPt);