Implement a rudimentary form of generic lambdas.

Specifically, the following features are not included in this commit:
  - any sort of capturing within generic lambdas 
  - nested lambdas
  - conversion operator for captureless lambdas
  - ensuring all visitors are generic lambda aware


As an example of what compiles:

template <class F1, class F2>
struct overload : F1, F2 {
    using F1::operator();
    using F2::operator();
    overload(F1 f1, F2 f2) : F1(f1), F2(f2) { }
  };

  auto Recursive = [](auto Self, auto h, auto ... rest) {
    return 1 + Self(Self, rest...);
  };
  auto Base = [](auto Self, auto h) {
      return 1;
  };
  overload<decltype(Base), decltype(Recursive)> O(Base, Recursive);
  int num_params =  O(O, 5, 3, "abc", 3.14, 'a');

Please see attached tests for more examples.

Some implementation notes:

  - Add a new Declarator context => LambdaExprParameterContext to 
    clang::Declarator to allow the use of 'auto' in declaring generic
    lambda parameters
    
  - Augment AutoType's constructor (similar to how variadic 
    template-type-parameters ala TemplateTypeParmDecl are implemented) to 
    accept an IsParameterPack to encode a generic lambda parameter pack.
  
  - Add various helpers to CXXRecordDecl to facilitate identifying
    and querying a closure class
  
  - LambdaScopeInfo (which maintains the current lambda's Sema state)
    was augmented to house the current depth of the template being
    parsed (id est the Parser calls Sema::RecordParsingTemplateParameterDepth)
    so that Sema::ActOnLambdaAutoParameter may use it to create the 
    appropriate list of corresponding TemplateTypeParmDecl for each
    auto parameter identified within the generic lambda (also stored
    within the current LambdaScopeInfo).  Additionally, 
    a TemplateParameterList data-member was added to hold the invented
    TemplateParameterList AST node which will be much more useful
    once we teach TreeTransform how to transform generic lambdas.
    
  - SemaLambda.h was added to hold some common lambda utility
    functions (this file is likely to grow ...)
    
  - Teach Sema::ActOnStartOfFunctionDef to check whether it
    is being called to instantiate a generic lambda's call
    operator, and if so, push an appropriately prepared
    LambdaScopeInfo object on the stack.
    
  - Teach Sema::ActOnStartOfLambdaDefinition to set the
    return type of a lambda without a trailing return type
    to 'auto' in C++1y mode, and teach the return type
    deduction machinery in SemaStmt.cpp to process either
    C++11 and C++14 lambda's correctly depending on the flag.    

  - various tests were added - but much more will be needed.

A greatful thanks to all reviewers including Eli Friedman,  
James Dennett and the ever illuminating Richard Smith.  And 
yet I am certain that I have allowed unidentified bugs to creep in; 
bugs, that I will do my best to slay, once identified!

Thanks!

llvm-svn: 188977
This commit is contained in:
Faisal Vali 2013-08-22 01:49:11 +00:00
parent da68efdb68
commit fd5277c063
36 changed files with 929 additions and 148 deletions

View File

@ -1115,7 +1115,7 @@ public:
/// \brief C++11 deduced auto type.
QualType getAutoType(QualType DeducedType, bool IsDecltypeAuto,
bool IsDependent = false) const;
bool IsDependent, bool IsParameterPack) const;
/// \brief C++11 deduction pattern for 'auto' type.
QualType getAutoDeductType() const;

View File

@ -516,8 +516,8 @@ class CXXRecordDecl : public RecordDecl {
LambdaDefinitionData(CXXRecordDecl *D, TypeSourceInfo *Info, bool Dependent)
: DefinitionData(D), Dependent(Dependent), NumCaptures(0),
NumExplicitCaptures(0), ManglingNumber(0), ContextDecl(0), Captures(0),
MethodTyInfo(Info)
NumExplicitCaptures(0), ManglingNumber(0), ContextDecl(0),
Captures(0), MethodTyInfo(Info), TheLambdaExpr(0)
{
IsLambda = true;
}
@ -529,7 +529,7 @@ class CXXRecordDecl : public RecordDecl {
/// within the default argument of a function template, because the
/// lambda will have been created with the enclosing context as its
/// declaration context, rather than function. This is an unfortunate
/// artifact of having to parse the default arguments before
/// artifact of having to parse the default arguments before.
unsigned Dependent : 1;
/// \brief The number of captures in this lambda.
@ -554,6 +554,10 @@ class CXXRecordDecl : public RecordDecl {
/// \brief The type of the call method.
TypeSourceInfo *MethodTyInfo;
/// \brief The AST node of the lambda expression.
LambdaExpr *TheLambdaExpr;
};
struct DefinitionData &data() {
@ -989,6 +993,36 @@ public:
/// \brief Determine whether this class describes a lambda function object.
bool isLambda() const { return hasDefinition() && data().IsLambda; }
/// \brief Determine whether this class describes a generic
/// lambda function object (i.e. function call operator is
/// a template).
bool isGenericLambda() const;
/// \brief Retrieve the lambda call operator of the closure type
/// if this is a closure type.
CXXMethodDecl* getLambdaCallOperator() const;
/// \brief Retrieve the lambda static invoker, the address of which
/// is returned by the conversion operator, and the body of which
/// is forwarded to the lambda call operator.
CXXMethodDecl* getLambdaStaticInvoker() const;
/// \brief Retrieve the generic lambda's template parameter list.
/// Returns null if the class does not represent a lambda or a generic
/// lambda.
TemplateParameterList* getGenericLambdaTemplateParameterList() const;
/// \brief Assign the member call operator of the lambda.
void setLambdaExpr(LambdaExpr *E) {
getLambdaData().TheLambdaExpr = E;
}
/// \brief Retrieve the parent lambda expression.
LambdaExpr* getLambdaExpr() const {
return isLambda() ? getLambdaData().TheLambdaExpr : 0;
}
/// \brief For a closure type, retrieve the mapping from captured
/// variables and \c this to the non-static data members that store the
/// values or references of the captures.

View File

@ -1605,6 +1605,13 @@ public:
/// lambda expression.
CXXMethodDecl *getCallOperator() const;
/// \brief If this is a generic lambda expression, retrieve the template
/// parameter list associated with it, or else return null.
TemplateParameterList *getTemplateParameterList() const;
/// \brief Whether this is a generic lambda.
bool isGenericLambda() const { return !!getTemplateParameterList(); }
/// \brief Retrieve the body of the lambda.
CompoundStmt *getBody() const;

View File

@ -3614,10 +3614,11 @@ public:
/// is no deduced type and an auto type is canonical. In the latter case, it is
/// also a dependent type.
class AutoType : public Type, public llvm::FoldingSetNode {
AutoType(QualType DeducedType, bool IsDecltypeAuto, bool IsDependent)
AutoType(QualType DeducedType, bool IsDecltypeAuto,
bool IsDependent, bool IsParameterPack)
: Type(Auto, DeducedType.isNull() ? QualType(this, 0) : DeducedType,
/*Dependent=*/IsDependent, /*InstantiationDependent=*/IsDependent,
/*VariablyModified=*/false, /*ContainsParameterPack=*/false) {
/*VariablyModified=*/false, /*ContainsParameterPack=*/IsParameterPack) {
assert((DeducedType.isNull() || !IsDependent) &&
"auto deduced to dependent type");
AutoTypeBits.IsDecltypeAuto = IsDecltypeAuto;
@ -3641,14 +3642,17 @@ public:
}
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getDeducedType(), isDecltypeAuto(), isDependentType());
Profile(ID, getDeducedType(), isDecltypeAuto(),
isDependentType(), containsUnexpandedParameterPack());
}
static void Profile(llvm::FoldingSetNodeID &ID, QualType Deduced,
bool IsDecltypeAuto, bool IsDependent) {
bool IsDecltypeAuto, bool IsDependent,
bool IsParameterPack) {
ID.AddPointer(Deduced.getAsOpaquePtr());
ID.AddBoolean(IsDecltypeAuto);
ID.AddBoolean(IsDependent);
ID.AddBoolean(IsParameterPack);
}
static bool classof(const Type *T) {

View File

@ -5050,6 +5050,10 @@ let CategoryName = "Lambda Issue" in {
"cannot deduce type for lambda capture %0 from initializer list">;
}
// C++1y Generic Lambdas
def err_glambda_not_fully_implemented : Error<
"unimplemented generic lambda feature: %0">;
def err_return_in_captured_stmt : Error<
"cannot return from %0">;
def err_capture_block_variable : Error<

View File

@ -1502,6 +1502,7 @@ public:
ObjCCatchContext, // Objective-C catch exception-declaration
BlockLiteralContext, // Block literal declarator.
LambdaExprContext, // Lambda-expression declarator.
LambdaExprParameterContext, // Lambda-expression parameter declarator.
ConversionIdContext, // C++ conversion-type-id.
TrailingReturnContext, // C++11 trailing-type-specifier.
TemplateTypeArgContext, // Template type argument.
@ -1577,7 +1578,6 @@ public:
~Declarator() {
clear();
}
/// getDeclSpec - Return the declaration-specifier that this declarator was
/// declared with.
const DeclSpec &getDeclSpec() const { return DS; }
@ -1606,7 +1606,8 @@ public:
bool isPrototypeContext() const {
return (Context == PrototypeContext ||
Context == ObjCParameterContext ||
Context == ObjCResultContext);
Context == ObjCResultContext ||
Context == LambdaExprParameterContext);
}
/// \brief Get the source range that spans this declarator.
@ -1670,6 +1671,7 @@ public:
case AliasDeclContext:
case AliasTemplateContext:
case PrototypeContext:
case LambdaExprParameterContext:
case ObjCParameterContext:
case ObjCResultContext:
case TemplateParamContext:
@ -1698,6 +1700,7 @@ public:
case ForContext:
case ConditionContext:
case PrototypeContext:
case LambdaExprParameterContext:
case TemplateParamContext:
case CXXCatchContext:
case ObjCCatchContext:
@ -1730,6 +1733,7 @@ public:
case ForContext:
case ConditionContext:
case PrototypeContext:
case LambdaExprParameterContext:
case TemplateParamContext:
case CXXCatchContext:
case ObjCCatchContext:
@ -1782,6 +1786,7 @@ public:
case KNRTypeListContext:
case MemberContext:
case PrototypeContext:
case LambdaExprParameterContext:
case ObjCParameterContext:
case ObjCResultContext:
case TemplateParamContext:
@ -1968,6 +1973,7 @@ public:
case AliasDeclContext:
case AliasTemplateContext:
case PrototypeContext:
case LambdaExprParameterContext:
case ObjCParameterContext:
case ObjCResultContext:
case TemplateParamContext:

View File

@ -35,6 +35,8 @@ class LabelDecl;
class ReturnStmt;
class Scope;
class SwitchStmt;
class TemplateTypeParmDecl;
class TemplateParameterList;
class VarDecl;
class DeclRefExpr;
class ObjCIvarRefExpr;
@ -613,12 +615,27 @@ public:
/// \brief Offsets into the ArrayIndexVars array at which each capture starts
/// its list of array index variables.
SmallVector<unsigned, 4> ArrayIndexStarts;
/// \brief If this is a generic lambda, use this as the depth of
/// each 'auto' parameter, during initial AST construction.
unsigned AutoTemplateParameterDepth;
LambdaScopeInfo(DiagnosticsEngine &Diag, CXXRecordDecl *Lambda,
CXXMethodDecl *CallOperator)
: CapturingScopeInfo(Diag, ImpCap_None), Lambda(Lambda),
CallOperator(CallOperator), NumExplicitCaptures(0), Mutable(false),
ExprNeedsCleanups(false), ContainsUnexpandedParameterPack(false)
// If this is a generic lambda, store the list of the auto
// parameters converted into TemplateTypeParmDecls into a vector
// that can be used to construct the generic lambda's template
// parameter list, during initial AST construction.
/// \brief Store the list of the auto parameters for a generic lambda.
SmallVector<TemplateTypeParmDecl*, 4> AutoTemplateParams;
// If this is a generic lambda, store its template parameter list.
TemplateParameterList *GLTemplateParameterList;
LambdaScopeInfo(DiagnosticsEngine &Diag)
: CapturingScopeInfo(Diag, ImpCap_None), Lambda(0),
CallOperator(0), NumExplicitCaptures(0), Mutable(false),
ExprNeedsCleanups(false), ContainsUnexpandedParameterPack(false),
AutoTemplateParameterDepth(0),
GLTemplateParameterList(0)
{
Kind = SK_Lambda;
}
@ -631,8 +648,10 @@ public:
}
static bool classof(const FunctionScopeInfo *FSI) {
return FSI->Kind == SK_Lambda;
return FSI->Kind == SK_Lambda;
}
};

View File

@ -969,7 +969,13 @@ public:
void PushFunctionScope();
void PushBlockScope(Scope *BlockScope, BlockDecl *Block);
void PushLambdaScope(CXXRecordDecl *Lambda, CXXMethodDecl *CallOperator);
void PushLambdaScope();
// This is used to inform Sema what the current TemplateParameterDepth
// is during Parsing. Currently it is used to pass on the depth
// when parsing generic lambda 'auto' parameters.
void RecordParsingTemplateParameterDepth(unsigned Depth);
void PushCapturedRegionScope(Scope *RegionScope, CapturedDecl *CD,
RecordDecl *RD,
CapturedRegionKind K);
@ -996,9 +1002,12 @@ public:
/// \brief Retrieve the current block, if any.
sema::BlockScopeInfo *getCurBlock();
/// \brief Retrieve the current lambda expression, if any.
/// \brief Retrieve the current lambda scope info, if any.
sema::LambdaScopeInfo *getCurLambda();
/// \brief Retrieve the current generic lambda info, if any.
sema::LambdaScopeInfo *getCurGenericLambda();
/// \brief Retrieve the current captured region, if any.
sema::CapturedRegionScopeInfo *getCurCapturedRegion();
@ -4402,6 +4411,10 @@ public:
/// initializer for the declaration 'Dcl'.
void ActOnCXXExitDeclInitializer(Scope *S, Decl *Dcl);
/// \brief Invoked when an auto parameter is parsed
/// in a lambda's parameter declaration clause.
ParmVarDecl *ActOnLambdaAutoParameter(ParmVarDecl *P);
/// \brief Create a new lambda closure type.
CXXRecordDecl *createLambdaClosureType(SourceRange IntroducerRange,
TypeSourceInfo *Info,
@ -4414,14 +4427,15 @@ public:
SourceLocation EndLoc,
ArrayRef<ParmVarDecl *> Params);
/// \brief Introduce the scope for a lambda expression.
sema::LambdaScopeInfo *enterLambdaScope(CXXMethodDecl *CallOperator,
SourceRange IntroducerRange,
LambdaCaptureDefault CaptureDefault,
SourceLocation CaptureDefaultLoc,
bool ExplicitParams,
bool ExplicitResultType,
bool Mutable);
/// \brief Endow the lambda scope info with the relevant properties.
void buildLambdaScope(sema::LambdaScopeInfo *LSI,
CXXMethodDecl *CallOperator,
SourceRange IntroducerRange,
LambdaCaptureDefault CaptureDefault,
SourceLocation CaptureDefaultLoc,
bool ExplicitParams,
bool ExplicitResultType,
bool Mutable);
/// \brief Check and build an init-capture with the specified name and
/// initializer.
@ -5806,6 +5820,12 @@ public:
sema::TemplateDeductionInfo &Info,
bool InOverloadResolution = false);
/// \brief Substitute Replacement for \p auto in \p TypeWithAuto
QualType SubstAutoType(QualType TypeWithAuto, QualType Replacement);
/// \brief Substitute Replacement for auto in TypeWithAuto
TypeSourceInfo* SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto,
QualType Replacement);
/// \brief Result type of DeduceAutoType.
enum DeduceAutoResult {
DAR_Succeeded,
@ -5817,7 +5837,6 @@ public:
QualType &Result);
DeduceAutoResult DeduceAutoType(TypeLoc AutoTypeLoc, Expr *&Initializer,
QualType &Result);
QualType SubstAutoType(QualType TypeWithAuto, QualType Replacement);
void DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init);
bool DeduceReturnType(FunctionDecl *FD, SourceLocation Loc,
bool Diagnose = true);

View File

@ -0,0 +1,44 @@
//===--- SemaLambda.h - Lambda Helper Functions --------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief This file provides some common utility functions for processing
/// Lambdas.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_SEMA_LAMBDA_H
#define LLVM_CLANG_SEMA_LAMBDA_H
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/Sema/ScopeInfo.h"
namespace clang {
static inline const char *getLambdaStaticInvokerName() {
return "__invoke";
}
static inline bool isGenericLambdaCallOperatorSpecialization(CXXMethodDecl *MD) {
if (MD) {
CXXRecordDecl *LambdaClass = MD->getParent();
if (LambdaClass && LambdaClass->isGenericLambda()) {
return LambdaClass->getLambdaCallOperator()
== MD->getTemplateInstantiationPattern();
}
}
return false;
}
static inline bool isGenericLambdaCallOperatorSpecialization(Decl *D) {
return isGenericLambdaCallOperatorSpecialization(
dyn_cast<CXXMethodDecl>(D));
}
} // clang
#endif // LLVM_CLANG_SEMA_LAMBDA_H

View File

@ -3649,20 +3649,24 @@ QualType ASTContext::getUnaryTransformType(QualType BaseType,
/// deduced to the given type, or to the canonical undeduced 'auto' type, or the
/// canonical deduced-but-dependent 'auto' type.
QualType ASTContext::getAutoType(QualType DeducedType, bool IsDecltypeAuto,
bool IsDependent) const {
if (DeducedType.isNull() && !IsDecltypeAuto && !IsDependent)
bool IsDependent, bool IsParameterPack) const {
if (DeducedType.isNull() && !IsDecltypeAuto && !IsDependent &&
!IsParameterPack)
return getAutoDeductType();
assert(!IsParameterPack || DeducedType.isNull()
&& "Auto parameter pack: auto ... a should always be undeduced!");
// Look in the folding set for an existing type.
void *InsertPos = 0;
llvm::FoldingSetNodeID ID;
AutoType::Profile(ID, DeducedType, IsDecltypeAuto, IsDependent);
AutoType::Profile(ID, DeducedType, IsDecltypeAuto, IsDependent,
IsParameterPack);
if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(AT, 0);
AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType,
IsDecltypeAuto,
IsDependent);
IsDependent,
IsParameterPack);
Types.push_back(AT);
if (InsertPos)
AutoTypes.InsertNode(AT, InsertPos);
@ -3702,7 +3706,8 @@ QualType ASTContext::getAutoDeductType() const {
if (AutoDeductTy.isNull())
AutoDeductTy = QualType(
new (*this, TypeAlignment) AutoType(QualType(), /*decltype(auto)*/false,
/*dependent*/false),
/*dependent*/false,
/*IsParameterPack*/false),
0);
return AutoDeductTy;
}

View File

@ -1709,7 +1709,9 @@ QualType ASTNodeImporter::VisitAutoType(const AutoType *T) {
return QualType();
}
return Importer.getToContext().getAutoType(ToDeduced, T->isDecltypeAuto());
return Importer.getToContext().getAutoType(ToDeduced, T->isDecltypeAuto(),
/*IsDependent*/false,
T->containsUnexpandedParameterPack());
}
QualType ASTNodeImporter::VisitRecordType(const RecordType *T) {

View File

@ -20,6 +20,7 @@
#include "clang/AST/ExprCXX.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Sema/SemaLambda.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
using namespace clang;
@ -930,6 +931,40 @@ bool CXXRecordDecl::isCLike() const {
return isPOD() && data().HasOnlyCMembers;
}
bool CXXRecordDecl::isGenericLambda() const {
return isLambda() &&
getLambdaCallOperator()->getDescribedFunctionTemplate();
}
CXXMethodDecl* CXXRecordDecl::getLambdaCallOperator() const {
if (!isLambda()) return 0;
DeclarationName Name =
getASTContext().DeclarationNames.getCXXOperatorName(OO_Call);
DeclContext::lookup_const_result Calls = lookup(Name);
assert(!Calls.empty() && "Missing lambda call operator!");
assert(Calls.size() == 1 && "More than one lambda call operator!");
NamedDecl *CallOp = Calls.front();
if (FunctionTemplateDecl *CallOpTmpl =
dyn_cast<FunctionTemplateDecl>(CallOp))
return cast<CXXMethodDecl>(CallOpTmpl->getTemplatedDecl());
return cast<CXXMethodDecl>(CallOp);
}
CXXMethodDecl* CXXRecordDecl::getLambdaStaticInvoker() const {
if (!isLambda()) return 0;
DeclarationName Name =
&getASTContext().Idents.get(getLambdaStaticInvokerName());
DeclContext::lookup_const_result Invoker = lookup(Name);
if (Invoker.empty()) return 0;
assert(Invoker.size() == 1 && "More than one static invoker operator!");
CXXMethodDecl *Result = cast<CXXMethodDecl>(Invoker.front());
return Result;
}
void CXXRecordDecl::getCaptureFields(
llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures,
FieldDecl *&ThisCapture) const {
@ -947,6 +982,14 @@ void CXXRecordDecl::getCaptureFields(
}
}
TemplateParameterList*
CXXRecordDecl::getGenericLambdaTemplateParameterList() const {
if (!isLambda()) return 0;
CXXMethodDecl *CallOp = getLambdaCallOperator();
if (FunctionTemplateDecl *Tmpl = CallOp->getDescribedFunctionTemplate())
return Tmpl->getTemplateParameters();
return 0;
}
static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) {
QualType T;
@ -1493,7 +1536,7 @@ bool CXXMethodDecl::hasInlineBody() const {
bool CXXMethodDecl::isLambdaStaticInvoker() const {
return getParent()->isLambda() &&
getIdentifier() && getIdentifier()->getName() == "__invoke";
getParent()->getLambdaStaticInvoker() == this;
}

View File

@ -1026,13 +1026,13 @@ CXXRecordDecl *LambdaExpr::getLambdaClass() const {
CXXMethodDecl *LambdaExpr::getCallOperator() const {
CXXRecordDecl *Record = getLambdaClass();
DeclarationName Name
= Record->getASTContext().DeclarationNames.getCXXOperatorName(OO_Call);
DeclContext::lookup_result Calls = Record->lookup(Name);
assert(!Calls.empty() && "Missing lambda call operator!");
assert(Calls.size() == 1 && "More than one lambda call operator!");
CXXMethodDecl *Result = cast<CXXMethodDecl>(Calls.front());
return Result;
return Record->getLambdaCallOperator();
}
TemplateParameterList *LambdaExpr::getTemplateParameterList() const {
CXXRecordDecl *Record = getLambdaClass();
return Record->getGenericLambdaTemplateParameterList();
}
CompoundStmt *LambdaExpr::getBody() const {

View File

@ -589,6 +589,10 @@ namespace {
AutoType *VisitAttributedType(const AttributedType *T) {
return Visit(T->getModifiedType());
}
AutoType *VisitPackExpansionType(const PackExpansionType *T) {
return Visit(T->getPattern());
}
};
}

View File

@ -700,7 +700,7 @@ void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
EmitLambdaToBlockPointerBody(Args);
} else if (isa<CXXMethodDecl>(FD) &&
cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
// The lambda "__invoke" function is special, because it forwards or
// The lambda static invoker function is special, because it forwards or
// clones the body of the function call operator (but is actually static).
EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
} else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&

View File

@ -4670,6 +4670,7 @@ void Parser::ParseDirectDeclarator(Declarator &D) {
// as part of the parameter-declaration-clause.
if (Tok.is(tok::ellipsis) && D.getCXXScopeSpec().isEmpty() &&
!((D.getContext() == Declarator::PrototypeContext ||
D.getContext() == Declarator::LambdaExprParameterContext ||
D.getContext() == Declarator::BlockLiteralContext) &&
NextToken().is(tok::r_paren) &&
!D.hasGroupingParens() &&
@ -4988,7 +4989,6 @@ void Parser::ParseFunctionDeclarator(Declarator &D,
TypeResult TrailingReturnType;
Actions.ActOnStartFunctionDeclarator();
/* LocalEndLoc is the end location for the local FunctionTypeLoc.
EndLoc is the end location for the function declarator.
They differ for trailing return types. */
@ -5009,7 +5009,8 @@ void Parser::ParseFunctionDeclarator(Declarator &D,
EndLoc = RParenLoc;
} else {
if (Tok.isNot(tok::r_paren))
ParseParameterDeclarationClause(D, FirstArgAttrs, ParamInfo, EllipsisLoc);
ParseParameterDeclarationClause(D, FirstArgAttrs, ParamInfo,
EllipsisLoc);
else if (RequiresArg)
Diag(Tok, diag::err_argument_required_after_attribute);
@ -5240,7 +5241,6 @@ void Parser::ParseParameterDeclarationClause(
ParsedAttributes &FirstArgAttrs,
SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo,
SourceLocation &EllipsisLoc) {
while (1) {
if (Tok.is(tok::ellipsis)) {
// FIXME: Issue a diagnostic if we parsed an attribute-specifier-seq
@ -5270,16 +5270,21 @@ void Parser::ParseParameterDeclarationClause(
ParseDeclarationSpecifiers(DS);
// Parse the declarator. This is "PrototypeContext", because we must
// accept either 'declarator' or 'abstract-declarator' here.
Declarator ParmDecl(DS, Declarator::PrototypeContext);
ParseDeclarator(ParmDecl);
// Parse the declarator. This is "PrototypeContext" or
// "LambdaExprParameterContext", because we must accept either
// 'declarator' or 'abstract-declarator' here.
Declarator ParmDeclarator(DS,
D.getContext() == Declarator::LambdaExprContext ?
Declarator::LambdaExprParameterContext :
Declarator::PrototypeContext);
ParseDeclarator(ParmDeclarator);
// Parse GNU attributes, if present.
MaybeParseGNUAttributes(ParmDecl);
MaybeParseGNUAttributes(ParmDeclarator);
// Remember this parsed parameter in ParamInfo.
IdentifierInfo *ParmII = ParmDecl.getIdentifier();
IdentifierInfo *ParmII = ParmDeclarator.getIdentifier();
// DefArgToks is used when the parsing of default arguments needs
// to be delayed.
@ -5287,8 +5292,8 @@ void Parser::ParseParameterDeclarationClause(
// If no parameter was specified, verify that *something* was specified,
// otherwise we have a missing type and identifier.
if (DS.isEmpty() && ParmDecl.getIdentifier() == 0 &&
ParmDecl.getNumTypeObjects() == 0) {
if (DS.isEmpty() && ParmDeclarator.getIdentifier() == 0 &&
ParmDeclarator.getNumTypeObjects() == 0) {
// Completely missing, emit error.
Diag(DSStart, diag::err_missing_param);
} else {
@ -5297,8 +5302,8 @@ void Parser::ParseParameterDeclarationClause(
// Inform the actions module about the parameter declarator, so it gets
// added to the current scope.
Decl *Param = Actions.ActOnParamDeclarator(getCurScope(), ParmDecl);
Decl *Param = Actions.ActOnParamDeclarator(getCurScope(),
ParmDeclarator);
// Parse the default argument, if any. We parse the default
// arguments in all dialects; the semantic analysis in
// ActOnParamDefaultArgument will reject the default argument in
@ -5359,8 +5364,8 @@ void Parser::ParseParameterDeclarationClause(
}
ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
ParmDecl.getIdentifierLoc(), Param,
DefArgToks));
ParmDeclarator.getIdentifierLoc(),
Param, DefArgToks));
}
// If the next token is a comma, consume it and keep reading arguments.

View File

@ -20,6 +20,7 @@
#include "clang/Sema/ParsedTemplate.h"
#include "clang/Sema/Scope.h"
#include "llvm/Support/ErrorHandling.h"
#include "clang/AST/DeclTemplate.h"
using namespace clang;
@ -908,12 +909,16 @@ ExprResult Parser::ParseLambdaExpressionAfterIntroducer(
PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), LambdaBeginLoc,
"lambda expression parsing");
// FIXME: Call into Actions to add any init-capture declarations to the
// scope while parsing the lambda-declarator and compound-statement.
// Parse lambda-declarator[opt].
DeclSpec DS(AttrFactory);
Declarator D(DS, Declarator::LambdaExprContext);
TemplateParameterDepthRAII CurTemplateDepthTracker(TemplateParameterDepth);
Actions.PushLambdaScope();
if (Tok.is(tok::l_paren)) {
ParseScope PrototypeScope(this,
@ -931,9 +936,17 @@ ExprResult Parser::ParseLambdaExpressionAfterIntroducer(
SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
SourceLocation EllipsisLoc;
if (Tok.isNot(tok::r_paren))
if (Tok.isNot(tok::r_paren)) {
sema::LambdaScopeInfo *LSI = Actions.getCurLambda();
if (getLangOpts().CPlusPlus1y)
Actions.RecordParsingTemplateParameterDepth(TemplateParameterDepth);
ParseParameterDeclarationClause(D, Attr, ParamInfo, EllipsisLoc);
// For a generic lambda, each 'auto' within the parameter declaration
// clause creates a template type parameter, so increment the depth.
if (getLangOpts().CPlusPlus1y && Actions.getCurGenericLambda())
++CurTemplateDepthTracker;
}
T.consumeClose();
SourceLocation RParenLoc = T.getCloseLocation();
DeclEndLoc = RParenLoc;

View File

@ -1175,7 +1175,6 @@ void Parser::ParseKNRParamDeclarations(Declarator &D) {
// Ask the actions module to compute the type for this declarator.
Decl *Param =
Actions.ActOnParamDeclarator(getCurScope(), ParmDeclarator);
if (Param &&
// A missing identifier has already been diagnosed.
ParmDeclarator.getIdentifier()) {

View File

@ -1007,10 +1007,17 @@ void Sema::PushBlockScope(Scope *BlockScope, BlockDecl *Block) {
BlockScope, Block));
}
void Sema::PushLambdaScope(CXXRecordDecl *Lambda,
CXXMethodDecl *CallOperator) {
FunctionScopes.push_back(new LambdaScopeInfo(getDiagnostics(), Lambda,
CallOperator));
void Sema::PushLambdaScope() {
FunctionScopes.push_back(new LambdaScopeInfo(getDiagnostics()));
}
void Sema::RecordParsingTemplateParameterDepth(unsigned Depth) {
if (LambdaScopeInfo *const LSI = getCurLambda()) {
LSI->AutoTemplateParameterDepth = Depth;
return;
}
assert(false &&
"Remove assertion if intentionally called in a non-lambda context.");
}
void Sema::PopFunctionScopeInfo(const AnalysisBasedWarnings::Policy *WP,
@ -1066,6 +1073,16 @@ LambdaScopeInfo *Sema::getCurLambda() {
return dyn_cast<LambdaScopeInfo>(FunctionScopes.back());
}
// We have a generic lambda if we parsed auto parameters, or we have
// an associated template parameter list.
LambdaScopeInfo *Sema::getCurGenericLambda() {
if (LambdaScopeInfo *LSI = getCurLambda()) {
return (LSI->AutoTemplateParams.size() ||
LSI->GLTemplateParameterList) ? LSI : 0;
}
return 0;
}
void Sema::ActOnComment(SourceRange Comment) {
if (!LangOpts.RetainCommentsFromSystemHeaders &&

View File

@ -35,6 +35,7 @@
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/DelayedDiagnostic.h"
#include "clang/Sema/Initialization.h"
#include "clang/Sema/SemaLambda.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/ParsedTemplate.h"
#include "clang/Sema/Scope.h"
@ -8909,6 +8910,7 @@ Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
const DeclSpec &DS = D.getDeclSpec();
// Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
// C++03 [dcl.stc]p2 also permits 'auto'.
VarDecl::StorageClass StorageClass = SC_None;
if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
@ -9015,6 +9017,14 @@ Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
if (New->hasAttr<BlocksAttr>()) {
Diag(New->getLocation(), diag::err_block_on_nonlocal);
}
// Handle 'auto' within a generic lambda.
QualType ParamType = New->getType();
if (getLangOpts().CPlusPlus1y && ParamType->getContainedAutoType()) {
assert(getCurLambda() &&
"'auto' in parameter type only allowed in lambdas!");
New = ActOnLambdaAutoParameter(New);
}
return New;
}
@ -9268,9 +9278,38 @@ Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
FD = FunTmpl->getTemplatedDecl();
else
FD = cast<FunctionDecl>(D);
// If we are instantiating a generic lambda call operator, push
// a LambdaScopeInfo onto the function stack. But use the information
// that's already been calculated (ActOnLambdaExpr) when analyzing the
// template version, to prime the current LambdaScopeInfo.
if (getLangOpts().CPlusPlus1y
&& isGenericLambdaCallOperatorSpecialization(D)) {
CXXMethodDecl *CallOperator = cast<CXXMethodDecl>(D);
CXXRecordDecl *LambdaClass = CallOperator->getParent();
LambdaExpr *LE = LambdaClass->getLambdaExpr();
assert(LE &&
"No LambdaExpr of closure class when instantiating a generic lambda!");
assert(ActiveTemplateInstantiations.size() &&
"There should be an active template instantiation on the stack "
"when instantiating a generic lambda!");
PushLambdaScope();
LambdaScopeInfo *LSI = getCurLambda();
LSI->CallOperator = CallOperator;
LSI->Lambda = LambdaClass;
LSI->ReturnType = CallOperator->getResultType();
// Enter a new function scope
PushFunctionScope();
if (LE->getCaptureDefault() == LCD_None)
LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
else if (LE->getCaptureDefault() == LCD_ByCopy)
LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
else if (LE->getCaptureDefault() == LCD_ByRef)
LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
LSI->IntroducerRange = LE->getIntroducerRange();
}
else
// Enter a new function scope
PushFunctionScope();
// See if this is a redefinition.
if (!FD->isLateTemplateParsed())

View File

@ -32,6 +32,7 @@
#include "clang/Sema/CXXFieldCollector.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/Initialization.h"
#include "clang/Sema/SemaLambda.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/ParsedTemplate.h"
#include "clang/Sema/Scope.h"
@ -10015,29 +10016,27 @@ void Sema::DefineImplicitLambdaToFunctionPointerConversion(
SourceLocation CurrentLocation,
CXXConversionDecl *Conv)
{
CXXRecordDecl *Lambda = Conv->getParent();
CXXRecordDecl *LambdaClass = Conv->getParent();
// Make sure that the lambda call operator is marked used.
markLambdaCallOperatorUsed(*this, Lambda);
markLambdaCallOperatorUsed(*this, LambdaClass);
Conv->setUsed();
SynthesizedFunctionScope Scope(*this, Conv);
DiagnosticErrorTrap Trap(Diags);
// Return the address of the __invoke function.
DeclarationName InvokeName = &Context.Idents.get("__invoke");
CXXMethodDecl *Invoke
= cast<CXXMethodDecl>(Lambda->lookup(InvokeName).front());
CXXMethodDecl *Invoke = LambdaClass->getLambdaStaticInvoker();
Expr *FunctionRef = BuildDeclRefExpr(Invoke, Invoke->getType(),
VK_LValue, Conv->getLocation()).take();
assert(FunctionRef && "Can't refer to __invoke function?");
assert(FunctionRef && "Can't refer to lambda static invoker function?");
Stmt *Return = ActOnReturnStmt(Conv->getLocation(), FunctionRef).take();
Conv->setBody(new (Context) CompoundStmt(Context, Return,
Conv->getLocation(),
Conv->getLocation()));
// Fill in the __invoke function with a dummy implementation. IR generation
// Fill in the invoke function with a dummy implementation. IR generation
// will fill in the actual details.
Invoke->setUsed();
Invoke->setReferenced();

View File

@ -14,6 +14,7 @@
#include "clang/AST/ExprCXX.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Sema/Initialization.h"
#include "clang/Sema/SemaLambda.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/ScopeInfo.h"
@ -120,11 +121,69 @@ Sema::getCurrentMangleNumberContext(const DeclContext *DC,
llvm_unreachable("unexpected context");
}
ParmVarDecl *Sema::ActOnLambdaAutoParameter(ParmVarDecl *PVD) {
LambdaScopeInfo *LSI = getCurLambda();
assert(LSI && "No LambdaScopeInfo on the stack!");
const unsigned TemplateParameterDepth = LSI->AutoTemplateParameterDepth;
const unsigned AutoParameterPosition = LSI->AutoTemplateParams.size();
// Invent a template type parameter corresponding to the auto
// containing parameter.
TemplateTypeParmDecl *TemplateParam =
TemplateTypeParmDecl::Create(Context,
// Temporarily add to the TranslationUnit DeclContext. When the
// associated TemplateParameterList is attached to a template
// declaration (such as FunctionTemplateDecl), the DeclContext
// for each template parameter gets updated appropriately via
// a call to AdoptTemplateParameterList.
Context.getTranslationUnitDecl(),
SourceLocation(),
PVD->getLocation(),
TemplateParameterDepth,
AutoParameterPosition, // our template param index
/* Identifier*/ 0, false, PVD->isParameterPack());
LSI->AutoTemplateParams.push_back(TemplateParam);
QualType AutoTy = PVD->getType();
// Now replace the 'auto' in the function parameter with this invented
// template type parameter.
QualType TemplParamType = QualType(TemplateParam->getTypeForDecl(), 0);
TypeSourceInfo *AutoTSI = PVD->getTypeSourceInfo();
TypeSourceInfo *NewTSI = SubstAutoTypeSourceInfo(AutoTSI, TemplParamType);
PVD->setType(NewTSI->getType());
PVD->setTypeSourceInfo(NewTSI);
return PVD;
}
static inline TemplateParameterList *
getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI,
Sema &SemaRef) {
if (LSI->GLTemplateParameterList)
return LSI->GLTemplateParameterList;
else if (LSI->AutoTemplateParams.size()) {
SourceRange IntroRange = LSI->IntroducerRange;
SourceLocation LAngleLoc = IntroRange.getBegin();
SourceLocation RAngleLoc = IntroRange.getEnd();
LSI->GLTemplateParameterList =
TemplateParameterList::Create(SemaRef.Context,
/* Template kw loc */ SourceLocation(),
LAngleLoc,
(NamedDecl**)LSI->AutoTemplateParams.data(),
LSI->AutoTemplateParams.size(), RAngleLoc);
}
return LSI->GLTemplateParameterList;
}
CXXMethodDecl *Sema::startLambdaDefinition(CXXRecordDecl *Class,
SourceRange IntroducerRange,
TypeSourceInfo *MethodType,
SourceLocation EndLoc,
ArrayRef<ParmVarDecl *> Params) {
TemplateParameterList *TemplateParams =
getGenericLambdaTemplateParameterList(getCurLambda(), *this);
// C++11 [expr.prim.lambda]p5:
// The closure type for a lambda-expression has a public inline function
// call operator (13.5.4) whose parameters and return type are described by
@ -152,6 +211,17 @@ CXXMethodDecl *Sema::startLambdaDefinition(CXXRecordDecl *Class,
// Temporarily set the lexical declaration context to the current
// context, so that the Scope stack matches the lexical nesting.
Method->setLexicalDeclContext(CurContext);
// Create a function template if we have a template parameter list
FunctionTemplateDecl *const TemplateMethod = TemplateParams ?
FunctionTemplateDecl::Create(Context, Class,
Method->getLocation(), MethodName,
TemplateParams,
Method) : 0;
if (TemplateMethod) {
TemplateMethod->setLexicalDeclContext(CurContext);
TemplateMethod->setAccess(AS_public);
Method->setDescribedFunctionTemplate(TemplateMethod);
}
// Add parameters.
if (!Params.empty()) {
@ -177,15 +247,16 @@ CXXMethodDecl *Sema::startLambdaDefinition(CXXRecordDecl *Class,
return Method;
}
LambdaScopeInfo *Sema::enterLambdaScope(CXXMethodDecl *CallOperator,
void Sema::buildLambdaScope(LambdaScopeInfo *LSI,
CXXMethodDecl *CallOperator,
SourceRange IntroducerRange,
LambdaCaptureDefault CaptureDefault,
SourceLocation CaptureDefaultLoc,
bool ExplicitParams,
bool ExplicitResultType,
bool Mutable) {
PushLambdaScope(CallOperator->getParent(), CallOperator);
LambdaScopeInfo *LSI = getCurLambda();
LSI->CallOperator = CallOperator;
LSI->Lambda = CallOperator->getParent();
if (CaptureDefault == LCD_ByCopy)
LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval;
else if (CaptureDefault == LCD_ByRef)
@ -208,8 +279,6 @@ LambdaScopeInfo *Sema::enterLambdaScope(CXXMethodDecl *CallOperator,
} else {
LSI->HasImplicitReturnType = true;
}
return LSI;
}
void Sema::finishLambdaExplicitCaptures(LambdaScopeInfo *LSI) {
@ -358,7 +427,7 @@ static void adjustBlockReturnsToEnum(Sema &S, ArrayRef<ReturnStmt*> returns,
}
void Sema::deduceClosureReturnType(CapturingScopeInfo &CSI) {
assert(CSI.HasImplicitReturnType);
assert(CSI.HasImplicitReturnType || CSI.ReturnType->isUndeducedType());
// C++ Core Issue #975, proposed resolution:
// If a lambda-expression does not include a trailing-return-type,
@ -392,7 +461,7 @@ void Sema::deduceClosureReturnType(CapturingScopeInfo &CSI) {
// Second case: at least one return statement has dependent type.
// Delay type checking until instantiation.
assert(!CSI.ReturnType.isNull() && "We should have a tentative return type.");
if (CSI.ReturnType->isDependentType())
if (CSI.ReturnType->isDependentType() || CSI.ReturnType->isUndeducedType())
return;
// Try to apply the enum-fuzz rule.
@ -519,15 +588,25 @@ FieldDecl *Sema::checkInitCapture(SourceLocation Loc, bool ByRef,
}
void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro,
Declarator &ParamInfo,
Scope *CurScope) {
Declarator &ParamInfo, Scope *CurScope) {
// Determine if we're within a context where we know that the lambda will
// be dependent, because there are template parameters in scope.
bool KnownDependent = false;
if (Scope *TmplScope = CurScope->getTemplateParamParent())
if (!TmplScope->decl_empty())
LambdaScopeInfo *const LSI = getCurLambda();
assert(LSI && "LambdaScopeInfo should be on stack!");
TemplateParameterList *TemplateParams =
getGenericLambdaTemplateParameterList(LSI, *this);
if (Scope *TmplScope = CurScope->getTemplateParamParent()) {
// Since we have our own TemplateParams, so check if an outer scope
// has template params, only then are we in a dependent scope.
if (TemplateParams) {
TmplScope = TmplScope->getParent();
TmplScope = TmplScope ? TmplScope->getTemplateParamParent() : 0;
}
if (TmplScope && !TmplScope->decl_empty())
KnownDependent = true;
}
// Determine the signature of the call operator.
TypeSourceInfo *MethodTyInfo;
bool ExplicitParams = true;
@ -542,7 +621,11 @@ void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro,
FunctionProtoType::ExtProtoInfo EPI;
EPI.HasTrailingReturn = true;
EPI.TypeQuals |= DeclSpec::TQ_const;
QualType MethodTy = Context.getFunctionType(Context.DependentTy, None,
// For C++1y, use the new return type deduction machinery, by imaginging
// 'auto' if no trailing return type.
QualType DefaultTypeForNoTrailingReturn = getLangOpts().CPlusPlus1y ?
Context.getAutoDeductType() : Context.DependentTy;
QualType MethodTy = Context.getFunctionType(DefaultTypeForNoTrailingReturn, None,
EPI);
MethodTyInfo = Context.getTrivialTypeSourceInfo(MethodTy);
ExplicitParams = false;
@ -560,14 +643,15 @@ void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro,
if (!FTI.hasMutableQualifier())
FTI.TypeQuals |= DeclSpec::TQ_const;
ExplicitResultType = FTI.hasTrailingReturnType();
// In C++11 if there is no explicit return type, the return type is
// artificially set to DependentTy, whereas in C++1y it is set to AutoTy
// (through ConvertDeclSpecToType) which allows us to support both
// C++11 and C++1y return type deduction semantics.
MethodTyInfo = GetTypeForDeclarator(ParamInfo, CurScope);
assert(MethodTyInfo && "no type from lambda-declarator");
EndLoc = ParamInfo.getSourceRange().getEnd();
ExplicitResultType
= MethodTyInfo->getType()->getAs<FunctionType>()->getResultType()
!= Context.DependentTy;
if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
// Empty arg list, don't push any params.
@ -588,7 +672,6 @@ void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro,
CXXMethodDecl *Method = startLambdaDefinition(Class, Intro.Range,
MethodTyInfo, EndLoc, Params);
if (ExplicitParams)
CheckCXXDefaultArguments(Method);
@ -598,9 +681,8 @@ void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro,
// Introduce the function call operator as the current declaration context.
PushDeclContext(CurScope, Method);
// Introduce the lambda scope.
LambdaScopeInfo *LSI
= enterLambdaScope(Method,
// Build the lambda scope.
buildLambdaScope(LSI, Method,
Intro.Range,
Intro.Default, Intro.DefaultLoc,
ExplicitParams,
@ -812,6 +894,8 @@ static void addFunctionPointerConversion(Sema &S,
SourceRange IntroducerRange,
CXXRecordDecl *Class,
CXXMethodDecl *CallOperator) {
// FIXME: The conversion operator needs to be fixed for generic lambdas.
if (Class->isGenericLambda()) return;
// Add the conversion to function pointer.
const FunctionProtoType *Proto
= CallOperator->getType()->getAs<FunctionProtoType>();
@ -849,10 +933,9 @@ static void addFunctionPointerConversion(Sema &S,
Conversion->setAccess(AS_public);
Conversion->setImplicit(true);
Class->addDecl(Conversion);
// Add a non-static member function "__invoke" that will be the result of
// the conversion.
Name = &S.Context.Idents.get("__invoke");
// Add a non-static member function that will be the result of
// the conversion with a certain unique ID.
Name = &S.Context.Idents.get(getLambdaStaticInvokerName());
CXXMethodDecl *Invoke
= CXXMethodDecl::Create(S.Context, Class, Loc,
DeclarationNameInfo(Name, Loc), FunctionTy,
@ -1000,8 +1083,11 @@ ExprResult Sema::ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body,
// If a lambda-expression does not include a
// trailing-return-type, it is as if the trailing-return-type
// denotes the following type:
// Skip for C++1y return type deduction semantics which uses
// different machinery currently.
// FIXME: Refactor and Merge the return type deduction machinery.
// FIXME: Assumes current resolution to core issue 975.
if (LSI->HasImplicitReturnType) {
if (LSI->HasImplicitReturnType && !getLangOpts().CPlusPlus1y) {
deduceClosureReturnType(*LSI);
// - if there are no return statements in the
@ -1019,13 +1105,18 @@ ExprResult Sema::ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body,
LSI->ReturnType, Proto->getArgTypes(), Proto->getExtProtoInfo());
CallOperator->setType(FunctionTy);
}
// C++ [expr.prim.lambda]p7:
// The lambda-expression's compound-statement yields the
// function-body (8.4) of the function call operator [...].
ActOnFinishFunctionBody(CallOperator, Body, IsInstantiation);
CallOperator->setLexicalDeclContext(Class);
Class->addDecl(CallOperator);
Decl *TemplateOrNonTemplateCallOperatorDecl =
!CallOperator->getDescribedFunctionTemplate() ? cast<Decl>(CallOperator)
: CallOperator->getDescribedFunctionTemplate();
TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class);
Class->addDecl(TemplateOrNonTemplateCallOperatorDecl);
PopExpressionEvaluationContext();
// C++11 [expr.prim.lambda]p6:
@ -1065,7 +1156,7 @@ ExprResult Sema::ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body,
CaptureInits, ArrayIndexVars,
ArrayIndexStarts, Body->getLocEnd(),
ContainsUnexpandedParameterPack);
Class->setLambdaExpr(Lambda);
// C++11 [expr.prim.lambda]p2:
// A lambda-expression shall not appear in an unevaluated operand
// (Clause 5).
@ -1085,7 +1176,15 @@ ExprResult Sema::ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body,
break;
}
}
// TODO: Implement capturing.
if (Lambda->isGenericLambda()) {
if (Lambda->getCaptureDefault() != LCD_None) {
Diag(Lambda->getIntroducerRange().getBegin(),
diag::err_glambda_not_fully_implemented)
<< " capturing not implemented yet";
return ExprError();
}
}
return MaybeBindToTemporary(Lambda);
}

View File

@ -8670,6 +8670,10 @@ void DiagnoseBadDeduction(Sema &S, Decl *Templated,
}
}
}
// FIXME: For generic lambda parameters, check if the function is a lambda
// call operator, and if so, emit a prettier and more informative
// diagnostic that mentions 'auto' and lambda in addition to
// (or instead of?) the canonical template type parameters.
S.Diag(Templated->getLocation(),
diag::note_ovl_candidate_non_deduced_mismatch)
<< FirstTA << SecondTA;

View File

@ -2487,12 +2487,31 @@ Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
// [expr.prim.lambda]p4 in C++11; block literals follow the same rules.
CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction());
QualType FnRetType = CurCap->ReturnType;
// For blocks/lambdas with implicit return types, we check each return
// statement individually, and deduce the common return type when the block
// or lambda is completed.
if (CurCap->HasImplicitReturnType) {
// FIXME: Fold this into the 'auto' codepath below.
LambdaScopeInfo *const LambdaSI = getCurLambda();
// In C++1y, an implicit return type behaves as if 'auto' was
// the return type.
if (FnRetType.isNull() && getLangOpts().CPlusPlus1y) {
if (LambdaSI) {
FunctionDecl *CallOp = LambdaSI->CallOperator;
FnRetType = CallOp->getResultType();
assert(FnRetType->getContainedAutoType());
}
}
// For blocks/lambdas with implicit return types in C++11, we check each
// return statement individually, and deduce the common return type when
// the block or lambda is completed. In C++1y, the return type deduction
// of a lambda is specified in terms of auto.
// Notably, in C++11, we take the type of the expression after decay and
// lvalue-to-rvalue conversion, so a class type can be cv-qualified.
// In C++1y, we perform template argument deduction as if the return
// type were 'auto', so an implicit return type is never cv-qualified.
// i.e if (getLangOpts().CPlusPlus1y && FnRetType.hasQualifiers())
// FnRetType = FnRetType.getUnqualifiedType();
// Return type deduction is unchanged for blocks in C++1y.
// FIXME: Fold this into the 'auto' codepath below.
if (CurCap->HasImplicitReturnType &&
(!LambdaSI || !getLangOpts().CPlusPlus1y)) {
if (RetValExp && !isa<InitListExpr>(RetValExp)) {
ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
if (Result.isInvalid())
@ -2500,13 +2519,7 @@ Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
RetValExp = Result.take();
if (!CurContext->isDependentContext()) {
FnRetType = RetValExp->getType();
// In C++11, we take the type of the expression after decay and
// lvalue-to-rvalue conversion, so a class type can be cv-qualified.
// In C++1y, we perform template argument deduction as if the return
// type were 'auto', so an implicit return type is never cv-qualified.
if (getLangOpts().CPlusPlus1y && FnRetType.hasQualifiers())
FnRetType = FnRetType.getUnqualifiedType();
FnRetType = RetValExp->getType();
} else
FnRetType = CurCap->ReturnType = Context.DependentTy;
} else {
@ -2517,7 +2530,6 @@ Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
Diag(ReturnLoc, diag::err_lambda_return_init_list)
<< RetValExp->getSourceRange();
}
FnRetType = Context.VoidTy;
}
@ -2526,7 +2538,8 @@ Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
if (CurCap->ReturnType.isNull())
CurCap->ReturnType = FnRetType;
} else if (AutoType *AT =
FnRetType.isNull() ? 0 : FnRetType->getContainedAutoType()) {
(FnRetType.isNull() || !LambdaSI) ? 0
: FnRetType->getContainedAutoType()) {
// In C++1y, the return type may involve 'auto'.
FunctionDecl *FD = cast<LambdaScopeInfo>(CurCap)->CallOperator;
if (CurContext->isDependentContext()) {
@ -2534,7 +2547,7 @@ Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
// Return type deduction [...] occurs when the definition is
// instantiated even if the function body contains a return
// statement with a non-type-dependent operand.
CurCap->ReturnType = FnRetType = Context.DependentTy;
CurCap->ReturnType = FnRetType;
} else if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
FD->setInvalidDecl();
return StmtError();
@ -2564,7 +2577,7 @@ Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
// pickier with blocks than for normal functions because we don't have GCC
// compatibility to worry about here.
const VarDecl *NRVOCandidate = 0;
if (FnRetType->isDependentType()) {
if (FnRetType->isDependentType() || FnRetType->isUndeducedType()) {
// Delay processing for now. TODO: there are lots of dependent
// types we can conclusively prove aren't void.
} else if (FnRetType->isVoidType()) {
@ -2624,7 +2637,6 @@ Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
return Owned(Result);
}
/// Deduce the return type for a function from a returned expression, per
/// C++1y [dcl.spec.auto]p6.
bool Sema::DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD,
@ -2634,7 +2646,6 @@ bool Sema::DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD,
TypeLoc OrigResultType = FD->getTypeSourceInfo()->getTypeLoc().
IgnoreParens().castAs<FunctionProtoTypeLoc>().getResultLoc();
QualType Deduced;
if (RetExpr && isa<InitListExpr>(RetExpr)) {
// If the deduction is for a return statement and the initializer is
// a braced-init-list, the program is ill-formed.
@ -2692,9 +2703,18 @@ bool Sema::DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD,
AutoType *NewAT = Deduced->getContainedAutoType();
if (!FD->isDependentContext() &&
!Context.hasSameType(AT->getDeducedType(), NewAT->getDeducedType())) {
Diag(ReturnLoc, diag::err_auto_fn_different_deductions)
<< (AT->isDecltypeAuto() ? 1 : 0)
<< NewAT->getDeducedType() << AT->getDeducedType();
LambdaScopeInfo *const LambdaSI = getCurLambda();
if (LambdaSI && LambdaSI->HasImplicitReturnType) {
Diag(ReturnLoc,
diag::err_typecheck_missing_return_type_incompatible)
<< NewAT->getDeducedType() << AT->getDeducedType()
<< true /*IsLambda*/;
}
else {
Diag(ReturnLoc, diag::err_auto_fn_different_deductions)
<< (AT->isDecltypeAuto() ? 1 : 0)
<< NewAT->getDeducedType() << AT->getDeducedType();
}
return true;
}
} else if (!FD->isInvalidDecl()) {
@ -2710,10 +2730,8 @@ Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
// Check for unexpanded parameter packs.
if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
return StmtError();
if (isa<CapturingScopeInfo>(getCurFunction()))
return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp);
QualType FnRetType;
QualType RelatedRetType;
if (const FunctionDecl *FD = getCurFunctionDecl()) {

View File

@ -3766,7 +3766,8 @@ namespace {
QualType Result =
SemaRef.Context.getAutoType(Dependent ? QualType() : Replacement,
TL.getTypePtr()->isDecltypeAuto(),
Dependent);
Dependent, TL.getTypePtr()->
containsUnexpandedParameterPack());
AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result);
NewTL.setNameLoc(TL.getNameLoc());
return Result;
@ -3907,8 +3908,16 @@ Sema::DeduceAutoType(TypeLoc Type, Expr *&Init, QualType &Result) {
return DAR_Succeeded;
}
QualType Sema::SubstAutoType(QualType Type, QualType Deduced) {
return SubstituteAutoTransform(*this, Deduced).TransformType(Type);
QualType Sema::SubstAutoType(QualType TypeWithAuto,
QualType TypeToReplaceAuto) {
return SubstituteAutoTransform(*this, TypeToReplaceAuto).
TransformType(TypeWithAuto);
}
TypeSourceInfo* Sema::SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto,
QualType TypeToReplaceAuto) {
return SubstituteAutoTransform(*this, TypeToReplaceAuto).
TransformType(TypeWithAuto);
}
void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) {

View File

@ -781,7 +781,13 @@ static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
// specified with a trailing return type or inferred.
if (declarator.getContext() == Declarator::LambdaExprContext ||
isOmittedBlockReturnType(declarator)) {
Result = Context.DependentTy;
// In C++1y (n3690 CD), 5.1.2 [expr.prim.lambda]/4 : The lambda return
// type is auto, which is replaced by the trailing-return-type if
// provided and/or deduced from return statements as described
// in 7.1.6.4.
Result = S.getLangOpts().CPlusPlus1y &&
declarator.getContext() == Declarator::LambdaExprContext
? Context.getAutoDeductType() : Context.DependentTy;
break;
}
@ -1006,11 +1012,17 @@ static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
case DeclSpec::TST_auto:
// TypeQuals handled by caller.
Result = Context.getAutoType(QualType(), /*decltype(auto)*/false);
Result = Context.getAutoType(QualType(),
/*decltype(auto)*/false,
/*IsDependent*/ false,
/*IsParameterPack*/ declarator.hasEllipsis());
break;
case DeclSpec::TST_decltype_auto:
Result = Context.getAutoType(QualType(), /*decltype(auto)*/true);
Result = Context.getAutoType(QualType(),
/*decltype(auto)*/true,
/*IsDependent*/ false,
/*IsParameterPack*/ false);
break;
case DeclSpec::TST_unknown_anytype:
@ -1557,7 +1569,7 @@ QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
ASM = ArrayType::Normal;
}
} else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
!T->isIncompleteType()) {
!T->isIncompleteType() && !T->isUndeducedType()) {
// Is the array too large?
unsigned ActiveSizeBits
= ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
@ -2097,6 +2109,7 @@ static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
// In C++11, a function declarator using 'auto' must have a trailing return
// type (this is checked later) and we can skip this. In other languages
// using auto, we need to check regardless.
// Generic Lambdas (C++14) allow 'auto' in their parameters.
if (ContainsPlaceholderType &&
(!SemaRef.getLangOpts().CPlusPlus11 || !D.isFunctionDeclarator())) {
int Error = -1;
@ -2109,7 +2122,12 @@ static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
case Declarator::ObjCParameterContext:
case Declarator::ObjCResultContext:
case Declarator::PrototypeContext:
Error = 0; // Function prototype
Error = 0;
break;
case Declarator::LambdaExprParameterContext:
if (!(SemaRef.getLangOpts().CPlusPlus1y
&& D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto))
Error = 0;
break;
case Declarator::MemberContext:
if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)
@ -2189,8 +2207,13 @@ static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
AutoRange = D.getName().getSourceRange();
if (Error != -1) {
if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_decltype_auto) {
SemaRef.Diag(AutoRange.getBegin(),
diag::err_decltype_auto_function_declarator_not_declaration);
} else {
SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed)
<< Error << AutoRange;
}
T = SemaRef.Context.IntTy;
D.setInvalidType(true);
} else
@ -2240,6 +2263,7 @@ static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
D.setInvalidType(true);
break;
case Declarator::PrototypeContext:
case Declarator::LambdaExprParameterContext:
case Declarator::ObjCParameterContext:
case Declarator::ObjCResultContext:
case Declarator::KNRTypeListContext:
@ -2613,8 +2637,11 @@ static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
}
}
}
if (const AutoType *AT = T->getContainedAutoType()) {
const AutoType *AT = T->getContainedAutoType();
// Allow arrays of auto if we are a generic lambda parameter.
// i.e. [](auto (&array)[5]) { return array[0]; }; OK
if (AT && !(S.getLangOpts().CPlusPlus1y &&
D.getContext() == Declarator::LambdaExprParameterContext)) {
// We've already diagnosed this for decltype(auto).
if (!AT->isDecltypeAuto())
S.Diag(DeclType.Loc, diag::err_illegal_decl_array_of_auto)
@ -3110,6 +3137,7 @@ static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
// is a parameter pack (14.5.3). [...]
switch (D.getContext()) {
case Declarator::PrototypeContext:
case Declarator::LambdaExprParameterContext:
// C++0x [dcl.fct]p13:
// [...] When it is part of a parameter-declaration-clause, the
// parameter pack is a function parameter pack (14.5.3). The type T
@ -3128,7 +3156,6 @@ static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
T = Context.getPackExpansionType(T, None);
}
break;
case Declarator::TemplateParamContext:
// C++0x [temp.param]p15:
// If a template-parameter is a [...] is a parameter-declaration that

View File

@ -782,7 +782,10 @@ public:
// Note, IsDependent is always false here: we implicitly convert an 'auto'
// which has been deduced to a dependent type into an undeduced 'auto', so
// that we'll retry deduction after the transformation.
return SemaRef.Context.getAutoType(Deduced, IsDecltypeAuto);
// FIXME: Can we assume the same about IsParameterPack?
return SemaRef.Context.getAutoType(Deduced, IsDecltypeAuto,
/*IsDependent*/ false,
/*IsParameterPack*/ false);
}
/// \brief Build a new template specialization type.
@ -3494,7 +3497,9 @@ TreeTransform<Derived>::TransformQualifiedType(TypeLocBuilder &TLB,
Qs.removeObjCLifetime();
Deduced = SemaRef.Context.getQualifiedType(Deduced.getUnqualifiedType(),
Qs);
Result = SemaRef.Context.getAutoType(Deduced, AutoTy->isDecltypeAuto());
Result = SemaRef.Context.getAutoType(Deduced, AutoTy->isDecltypeAuto(),
AutoTy->isDependentType(),
AutoTy->containsUnexpandedParameterPack());
TLB.TypeWasModifiedSafely(Result);
} else {
// Otherwise, complain about the addition of a qualifier to an
@ -8193,6 +8198,14 @@ TreeTransform<Derived>::TransformCXXTemporaryObjectExpr(
template<typename Derived>
ExprResult
TreeTransform<Derived>::TransformLambdaExpr(LambdaExpr *E) {
// FIXME: Implement nested generic lambda transformations.
if (E->isGenericLambda()) {
getSema().Diag(E->getIntroducerRange().getBegin(),
diag::err_glambda_not_fully_implemented)
<< " nested lambdas not implemented yet";
return ExprError();
}
// Transform the type of the lambda parameters and start the definition of
// the lambda itself.
TypeSourceInfo *MethodTy
@ -8215,7 +8228,10 @@ TreeTransform<Derived>::TransformLambdaExpr(LambdaExpr *E) {
E->getCallOperator()->param_size(),
0, ParamTypes, &Params))
return ExprError();
getSema().PushLambdaScope();
LambdaScopeInfo *LSI = getSema().getCurLambda();
// TODO: Fix for nested lambdas
LSI->GLTemplateParameterList = 0;
// Build the call operator.
CXXMethodDecl *CallOperator
= getSema().startLambdaDefinition(Class, E->getIntroducerRange(),
@ -8250,9 +8266,9 @@ TreeTransform<Derived>::TransformLambdaScope(LambdaExpr *E,
// Introduce the context of the call operator.
Sema::ContextRAII SavedContext(getSema(), CallOperator);
LambdaScopeInfo *const LSI = getSema().getCurLambda();
// Enter the scope of the lambda.
sema::LambdaScopeInfo *LSI
= getSema().enterLambdaScope(CallOperator, E->getIntroducerRange(),
getSema().buildLambdaScope(LSI, CallOperator, E->getIntroducerRange(),
E->getCaptureDefault(),
E->getCaptureDefaultLoc(),
E->hasExplicitParameters(),

View File

@ -4740,7 +4740,9 @@ QualType ASTReader::readTypeRecord(unsigned Index) {
QualType Deduced = readType(*Loc.F, Record, Idx);
bool IsDecltypeAuto = Record[Idx++];
bool IsDependent = Deduced.isNull() ? Record[Idx++] : false;
return Context.getAutoType(Deduced, IsDecltypeAuto, IsDependent);
bool IsParameterPack = Record[Idx++];
return Context.getAutoType(Deduced, IsDecltypeAuto, IsDependent,
IsParameterPack);
}
case TYPE_RECORD: {

View File

@ -1201,6 +1201,7 @@ void ASTDeclReader::ReadCXXDefinitionData(
= (Capture*)Reader.Context.Allocate(sizeof(Capture)*Lambda.NumCaptures);
Capture *ToCapture = Lambda.Captures;
Lambda.MethodTyInfo = GetTypeSourceInfo(Record, Idx);
Lambda.TheLambdaExpr = cast<LambdaExpr>(Reader.ReadExpr(F));
for (unsigned I = 0, N = Lambda.NumCaptures; I != N; ++I) {
SourceLocation Loc = ReadSourceLocation(Record, Idx);
bool IsImplicit = Record[Idx++];

View File

@ -253,6 +253,7 @@ void ASTTypeWriter::VisitAutoType(const AutoType *T) {
Record.push_back(T->isDecltypeAuto());
if (T->getDeducedType().isNull())
Record.push_back(T->isDependentType());
Record.push_back(T->containsUnexpandedParameterPack());
Code = TYPE_AUTO;
}
@ -5136,6 +5137,7 @@ void ASTWriter::AddCXXDefinitionData(const CXXRecordDecl *D, RecordDataImpl &Rec
Record.push_back(Lambda.ManglingNumber);
AddDeclRef(Lambda.ContextDecl, Record);
AddTypeSourceInfo(Lambda.MethodTyInfo, Record);
AddStmt(Lambda.TheLambdaExpr);
for (unsigned I = 0, N = Lambda.NumCaptures; I != N; ++I) {
LambdaExpr::Capture &Capture = Lambda.Captures[I];
AddSourceLocation(Capture.getLocation(), Record);

View File

@ -0,0 +1,75 @@
// RUN: %clang_cc1 -fsyntax-only -verify %s -std=c++1y -DCXX1Y
//FIXME: These tests were written when return type deduction had not been implemented
// for generic lambdas, hence
template<class T> T id(T t);
template<class ... Ts> int vfoo(Ts&& ... ts);
auto GL1 = [](auto a, int i) -> int { return id(a); };
auto GL2 = [](auto ... As) -> int { return vfoo(As...); };
auto GL3 = [](int i, char c, auto* ... As) -> int { return vfoo(As...); };
auto GL4 = [](int i, char c, auto* ... As) -> int { return vfoo(As...); };
void foo() {
auto GL1 = [](auto a, int i) -> int { return id(a); };
auto GL2 = [](auto ... As) -> int { return vfoo(As...); };
}
int main()
{
auto l1 = [](auto a) -> int { return a + 5; };
auto l2 = [](auto *p) -> int { return p + 5; };
struct A { int i; char f(int) { return 'c'; } };
auto l3 = [](auto &&ur,
auto &lr,
auto v,
int i,
auto* p,
auto A::*memvar,
auto (A::*memfun)(int),
char c,
decltype (v)* pv
, auto (&array)[5]
) -> int { return v + i + c
+ array[0];
};
int arr[5] = {0, 1, 2, 3, 4 };
int lval = 0;
double d = 3.14;
l3(3, lval, d, lval, &lval, &A::i, &A::f, 'c', &d, arr);
auto l4 = [](decltype(auto) a) -> int { return 0; }; //expected-error{{decltype(auto)}}
{
struct Local {
static int ifi(int i) { return i; }
static char cfi(int) { return 'a'; }
static double dfi(int i) { return i + 3.14; }
static Local localfi(int) { return Local{}; }
};
auto l4 = [](auto (*fp)(int)) -> int { return fp(3); }; //expected-error{{no viable conversion from 'Local' to 'int'}}
l4(&Local::ifi);
l4(&Local::cfi);
l4(&Local::dfi);
l4(&Local::localfi); //expected-note{{in instantiation of function template specialization}}
}
{
auto unnamed_parameter = [](auto, auto) -> void { };
unnamed_parameter(3, '4');
}
{
auto l = [](auto
(*)(auto)) { }; //expected-error{{'auto' not allowed}}
//FIXME: These diagnostics might need some work.
auto l2 = [](char auto::*pm) { }; //expected-error{{cannot combine with previous}}\
expected-error{{'pm' does not point into a class}}
auto l3 = [](char (auto::*pmf)()) { }; //expected-error{{'auto' not allowed}}\
expected-error{{'pmf' does not point into a class}}\
expected-error{{function cannot return function type 'char ()'}}
}
}

View File

@ -0,0 +1,50 @@
// RUN: %clang_cc1 -fsyntax-only -std=c++1y %s -verify -emit-llvm
namespace return_type_deduction_ok {
// FIXME: Once return type deduction is implemented for generic lambdas
// this will need to be updated.
auto l = [](auto a) ->auto { return a; }(2);
auto l2 = [](auto a) ->decltype(auto) { return a; }(2);
auto l3 = [](auto a) { return a; }(2);
}
namespace lambda_capturing {
// FIXME: Once return type deduction is implemented for generic lambdas
// this will need to be updated.
void test() {
int i = 10;
auto L = [=](auto a) -> int { //expected-error{{unimplemented}}
return i + a;
};
L(3);
}
}
namespace nested_generic_lambdas {
void test() {
auto L = [](auto a) -> int {
auto M = [](auto b, decltype(a) b2) -> int { //expected-error{{unimplemented}}
return 1;
};
M(a, a);
};
L(3); //expected-note{{in instantiation of}}
}
}
namespace conversion_operator {
void test() {
auto L = [](auto a) -> int { return a; };
int (*fp)(int) = L; //expected-error{{no viable conversion}}
}
}
namespace generic_lambda_as_default_argument_ok {
void test(int i = [](auto a)->int { return a; }(3)) {
}
}

View File

@ -0,0 +1,23 @@
// RUN: %clang_cc1 -fsyntax-only -verify %s -std=c++1y -DCXX1Y
// prvalue
void prvalue() {
auto&& x = [](auto a)->void { };
auto& y = [](auto *a)->void { }; // expected-error{{cannot bind to a temporary of type}}
}
namespace std {
class type_info;
}
struct P {
virtual ~P();
};
void unevaluated_operand(P &p, int i) {
// FIXME: this should only emit one error.
int i2 = sizeof([](auto a, auto b)->void{}(3, '4')); // expected-error{{lambda expression in an unevaluated operand}} \
// expected-error{{invalid application of 'sizeof'}}
const std::type_info &ti1 = typeid([](auto &a) -> P& { static P p; return p; }(i));
const std::type_info &ti2 = typeid([](auto) -> int { return i; }(i)); // expected-error{{lambda expression in an unevaluated operand}}
}

View File

@ -7,3 +7,60 @@ int &d = [] (int &r) -> auto & { return r; } (a);
int &e = [] (int &r) -> auto { return r; } (a); // expected-error {{cannot bind to a temporary}}
int &f = [] (int r) -> decltype(auto) { return r; } (a); // expected-error {{cannot bind to a temporary}}
int &g = [] (int r) -> decltype(auto) { return (r); } (a); // expected-warning {{reference to stack}}
int test_explicit_auto_return()
{
struct X {};
auto L = [](auto F, auto a) { return F(a); };
auto M = [](auto a) -> auto { return a; }; // OK
auto MRef = [](auto b) -> auto& { return b; }; //expected-warning{{reference to stack}}
auto MPtr = [](auto c) -> auto* { return &c; }; //expected-warning{{address of stack}}
auto MDeclType = [](auto&& d) -> decltype(auto) { return static_cast<decltype(d)>(d); }; //OK
M(3);
auto &&x = MDeclType(X{});
auto &&x1 = M(X{});
auto &&x2 = MRef(X{});//expected-note{{in instantiation of}}
auto &&x3 = MPtr(X{}); //expected-note{{in instantiation of}}
return 0;
}
int test_implicit_auto_return()
{
{
auto M = [](auto a) { return a; };
struct X {};
X x = M(X{});
}
}
int test_multiple_returns() {
auto M = [](auto a) {
bool k;
if (k)
return a;
else
return 5; //expected-error{{deduced as 'int' here}}
};
M(3); // OK
M('a'); //expected-note{{in instantiation of}}
return 0;
}
int test_no_parameter_list()
{
static int si = 0;
auto M = [] { return 5; }; // OK
auto M2 = [] -> auto&& { return si; }; // expected-error{{lambda requires '()'}}
M();
}
int test_conditional_in_return() {
auto Fac = [](auto f, auto n) {
return n <= 0 ? n : f(f, n - 1) * n;
};
// FIXME: this test causes a recursive limit - need to error more gracefully.
//Fac(Fac, 3);
}

View File

@ -1,5 +1,5 @@
// RUN: %clang_cc1 -fsyntax-only -std=c++11 %s -verify
// RUN: %clang_cc1 -fsyntax-only -std=c++1y %s -verify
// RUN: %clang_cc1 -fsyntax-only -std=c++1y %s -verify -DCPP1Y
void missing_lambda_declarator() {
[](){}();
@ -18,7 +18,7 @@ void infer_void_return_type(int i) {
switch (x) {
case 0: return get<void>();
case 1: return;
case 2: return { 1, 2.0 }; // expected-error{{cannot deduce lambda return type from initializer list}}
case 2: return { 1, 2.0 }; //expected-error{{cannot deduce}}
}
}(7);
}

View File

@ -0,0 +1,135 @@
// RUN: %clang_cc1 -fsyntax-only -verify %s -std=c++1y -DCXX1Y -emit-llvm
namespace test_factorial {
auto Fact = [](auto Self, unsigned n) -> unsigned {
return !n ? 1 : Self(Self, n - 1) * n;
};
auto six = Fact(Fact, 3);
}
namespace overload_generic_lambda {
template <class F1, class F2> struct overload : F1, F2 {
using F1::operator();
using F2::operator();
overload(F1 f1, F2 f2) : F1(f1), F2(f2) { }
};
auto NumParams = [](auto Self, auto h, auto ... rest) -> unsigned {
return 1 + Self(Self, rest...);
};
auto Base = [](auto Self, auto h) -> unsigned {
return 1;
};
overload<decltype(Base), decltype(NumParams)> O(Base, NumParams);
int num_params = O(O, 5, 3, "abc", 3.14, 'a');
}
namespace overload_generic_lambda_return_type_deduction {
template <class F1, class F2> struct overload : F1, F2 {
using F1::operator();
using F2::operator();
overload(F1 f1, F2 f2) : F1(f1), F2(f2) { }
};
auto NumParams = [](auto Self, auto h, auto ... rest) {
return 1 + Self(Self, rest...);
};
auto Base = [](auto Self, auto h) {
return 1;
};
overload<decltype(Base), decltype(NumParams)> O(Base, NumParams);
int num_params = O(O, 5, 3, "abc", 3.14, 'a');
}
namespace test_standard_p5 {
// FIXME: This test should eventually compile without an explicit trailing return type
auto glambda = [](auto a, auto&& b) ->bool { return a < b; };
bool b = glambda(3, 3.14); // OK
}
namespace test_deduction_failure {
int test() {
auto g = [](auto *a) { //expected-note{{candidate template ignored}}
return a;
};
struct X { };
X *x;
g(x);
g(3); //expected-error{{no matching function}}
return 0;
}
}
namespace test_instantiation_or_sfinae_failure {
int test2() {
{
auto L = [](auto *a) {
return (*a)(a); }; //expected-error{{called object type 'double' is not a function}}
//l(&l);
double d;
L(&d); //expected-note{{in instantiation of}}
auto M = [](auto b) { return b; };
L(&M); // ok
}
{
auto L = [](auto *a) ->decltype (a->foo()) { //expected-note2{{candidate template ignored:}}
return (*a)(a); };
//l(&l);
double d;
L(&d); //expected-error{{no matching function for call}}
auto M = [](auto b) { return b; };
L(&M); //expected-error{{no matching function for call}}
}
return 0;
}
}
namespace test_misc {
auto GL = [](auto a, decltype(a) b) //expected-note{{candidate function}}
-> int { return a + b; };
void test() {
struct X { };
GL(3, X{}); //expected-error{{no matching function}}
}
void test2() {
auto l = [](auto *a) -> int {
(*a)(a); return 0; }; //expected-error{{called object type 'double' is not a function}}
l(&l);
double d;
l(&d); //expected-note{{in instantiation of}}
}
}
namespace nested_lambdas {
int test() {
auto L = [](auto a) {
return [=](auto b) { //expected-error{{unimplemented}}
return a + b;
};
};
// auto M = L(3.14);
// return M('4');
}
auto get_lambda() {
return [](auto a) {
return a;
};
};
int test2() {
auto L = get_lambda();
L(3);
}
}