forked from OSchip/llvm-project
Split the priority function computation and priority queue management out
of the ScheduleDAGList class into a new SchedulingPriorityQueue class. llvm-svn: 26613
This commit is contained in:
parent
42e2026cb0
commit
fd22d42945
|
@ -48,18 +48,17 @@ namespace {
|
|||
short NumSuccsLeft; // # of succs not scheduled.
|
||||
short NumChainPredsLeft; // # of chain preds not scheduled.
|
||||
short NumChainSuccsLeft; // # of chain succs not scheduled.
|
||||
int SethiUllman; // Sethi Ullman number.
|
||||
bool isTwoAddress : 1; // Is a two-address instruction.
|
||||
bool isDefNUseOperand : 1; // Is a def&use operand.
|
||||
unsigned short Latency; // Node latency.
|
||||
unsigned CycleBound; // Upper/lower cycle to be scheduled at.
|
||||
unsigned NodeNum; // Entry # of node in the node vector.
|
||||
|
||||
SUnit(SDNode *node)
|
||||
SUnit(SDNode *node, unsigned nodenum)
|
||||
: Node(node), NumPredsLeft(0), NumSuccsLeft(0),
|
||||
NumChainPredsLeft(0), NumChainSuccsLeft(0),
|
||||
SethiUllman(INT_MIN),
|
||||
isTwoAddress(false), isDefNUseOperand(false),
|
||||
Latency(0), CycleBound(0) {}
|
||||
Latency(0), CycleBound(0), NodeNum(nodenum) {}
|
||||
|
||||
void dump(const SelectionDAG *G, bool All=true) const;
|
||||
};
|
||||
|
@ -83,7 +82,6 @@ void SUnit::dump(const SelectionDAG *G, bool All) const {
|
|||
std::cerr << " # chain preds left : " << NumChainPredsLeft << "\n";
|
||||
std::cerr << " # chain succs left : " << NumChainSuccsLeft << "\n";
|
||||
std::cerr << " Latency : " << Latency << "\n";
|
||||
std::cerr << " SethiUllman : " << SethiUllman << "\n";
|
||||
|
||||
if (Preds.size() != 0) {
|
||||
std::cerr << " Predecessors:\n";
|
||||
|
@ -121,45 +119,138 @@ void SUnit::dump(const SelectionDAG *G, bool All) const {
|
|||
}
|
||||
|
||||
namespace {
|
||||
/// Sorting functions for the Available queue.
|
||||
struct ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
|
||||
bool operator()(const SUnit* left, const SUnit* right) const {
|
||||
int LBonus = (int)left ->isDefNUseOperand;
|
||||
int RBonus = (int)right->isDefNUseOperand;
|
||||
class SchedulingPriorityQueue;
|
||||
|
||||
// Special tie breaker: if two nodes share a operand, the one that
|
||||
// use it as a def&use operand is preferred.
|
||||
if (left->isTwoAddress && !right->isTwoAddress) {
|
||||
SDNode *DUNode = left->Node->getOperand(0).Val;
|
||||
if (DUNode->isOperand(right->Node))
|
||||
LBonus++;
|
||||
}
|
||||
if (!left->isTwoAddress && right->isTwoAddress) {
|
||||
SDNode *DUNode = right->Node->getOperand(0).Val;
|
||||
if (DUNode->isOperand(left->Node))
|
||||
RBonus++;
|
||||
}
|
||||
/// Sorting functions for the Available queue.
|
||||
struct ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
|
||||
SchedulingPriorityQueue *SPQ;
|
||||
ls_rr_sort(SchedulingPriorityQueue *spq) : SPQ(spq) {}
|
||||
ls_rr_sort(const ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
|
||||
|
||||
// Priority1 is just the number of live range genned.
|
||||
int LPriority1 = left ->NumPredsLeft - LBonus;
|
||||
int RPriority1 = right->NumPredsLeft - RBonus;
|
||||
int LPriority2 = left ->SethiUllman + LBonus;
|
||||
int RPriority2 = right->SethiUllman + RBonus;
|
||||
|
||||
if (LPriority1 > RPriority1)
|
||||
return true;
|
||||
else if (LPriority1 == RPriority1)
|
||||
if (LPriority2 < RPriority2)
|
||||
return true;
|
||||
else if (LPriority2 == RPriority2)
|
||||
if (left->CycleBound > right->CycleBound)
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
};
|
||||
bool operator()(const SUnit* left, const SUnit* right) const;
|
||||
};
|
||||
} // end anonymous namespace
|
||||
|
||||
namespace {
|
||||
class SchedulingPriorityQueue {
|
||||
// SUnits - The SUnits for the current graph.
|
||||
std::vector<SUnit> &SUnits;
|
||||
|
||||
// SethiUllmanNumbers - The SethiUllman number for each node.
|
||||
std::vector<int> SethiUllmanNumbers;
|
||||
|
||||
std::priority_queue<SUnit*, std::vector<SUnit*>, ls_rr_sort> Queue;
|
||||
public:
|
||||
SchedulingPriorityQueue(std::vector<SUnit> &sunits)
|
||||
: SUnits(sunits), Queue(ls_rr_sort(this)) {
|
||||
// Calculate node priorities.
|
||||
CalculatePriorities();
|
||||
}
|
||||
|
||||
unsigned getSethiUllmanNumber(unsigned NodeNum) const {
|
||||
assert(NodeNum < SethiUllmanNumbers.size());
|
||||
return SethiUllmanNumbers[NodeNum];
|
||||
}
|
||||
|
||||
bool empty() const { return Queue.empty(); }
|
||||
|
||||
void push(SUnit *U) {
|
||||
Queue.push(U);
|
||||
}
|
||||
SUnit *pop() {
|
||||
SUnit *V = Queue.top();
|
||||
Queue.pop();
|
||||
return V;
|
||||
}
|
||||
private:
|
||||
void CalculatePriorities();
|
||||
int CalcNodePriority(SUnit *SU);
|
||||
};
|
||||
}
|
||||
|
||||
bool ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
|
||||
unsigned LeftNum = left->NodeNum;
|
||||
unsigned RightNum = right->NodeNum;
|
||||
|
||||
int LBonus = (int)left ->isDefNUseOperand;
|
||||
int RBonus = (int)right->isDefNUseOperand;
|
||||
|
||||
// Special tie breaker: if two nodes share a operand, the one that
|
||||
// use it as a def&use operand is preferred.
|
||||
if (left->isTwoAddress && !right->isTwoAddress) {
|
||||
SDNode *DUNode = left->Node->getOperand(0).Val;
|
||||
if (DUNode->isOperand(right->Node))
|
||||
LBonus++;
|
||||
}
|
||||
if (!left->isTwoAddress && right->isTwoAddress) {
|
||||
SDNode *DUNode = right->Node->getOperand(0).Val;
|
||||
if (DUNode->isOperand(left->Node))
|
||||
RBonus++;
|
||||
}
|
||||
|
||||
// Priority1 is just the number of live range genned.
|
||||
int LPriority1 = left ->NumPredsLeft - LBonus;
|
||||
int RPriority1 = right->NumPredsLeft - RBonus;
|
||||
int LPriority2 = SPQ->getSethiUllmanNumber(LeftNum) + LBonus;
|
||||
int RPriority2 = SPQ->getSethiUllmanNumber(RightNum) + RBonus;
|
||||
|
||||
if (LPriority1 > RPriority1)
|
||||
return true;
|
||||
else if (LPriority1 == RPriority1)
|
||||
if (LPriority2 < RPriority2)
|
||||
return true;
|
||||
else if (LPriority2 == RPriority2)
|
||||
if (left->CycleBound > right->CycleBound)
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
/// CalcNodePriority - Priority is the Sethi Ullman number.
|
||||
/// Smaller number is the higher priority.
|
||||
int SchedulingPriorityQueue::CalcNodePriority(SUnit *SU) {
|
||||
int &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum];
|
||||
if (SethiUllmanNumber != INT_MIN)
|
||||
return SethiUllmanNumber;
|
||||
|
||||
if (SU->Preds.size() == 0) {
|
||||
SethiUllmanNumber = 1;
|
||||
} else {
|
||||
int Extra = 0;
|
||||
for (std::set<SUnit*>::iterator I = SU->Preds.begin(),
|
||||
E = SU->Preds.end(); I != E; ++I) {
|
||||
SUnit *PredSU = *I;
|
||||
int PredSethiUllman = CalcNodePriority(PredSU);
|
||||
if (PredSethiUllman > SethiUllmanNumber) {
|
||||
SethiUllmanNumber = PredSethiUllman;
|
||||
Extra = 0;
|
||||
} else if (PredSethiUllman == SethiUllmanNumber)
|
||||
Extra++;
|
||||
}
|
||||
|
||||
if (SU->Node->getOpcode() != ISD::TokenFactor)
|
||||
SethiUllmanNumber += Extra;
|
||||
else
|
||||
SethiUllmanNumber = (Extra == 1) ? 0 : Extra-1;
|
||||
}
|
||||
|
||||
return SethiUllmanNumber;
|
||||
}
|
||||
|
||||
/// CalculatePriorities - Calculate priorities of all scheduling units.
|
||||
void SchedulingPriorityQueue::CalculatePriorities() {
|
||||
SethiUllmanNumbers.assign(SUnits.size(), INT_MIN);
|
||||
|
||||
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
|
||||
// FIXME: assumes uniform latency for now.
|
||||
SUnits[i].Latency = 1;
|
||||
(void)CalcNodePriority(&SUnits[i]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
namespace {
|
||||
/// ScheduleDAGList - List scheduler.
|
||||
|
@ -182,9 +273,6 @@ private:
|
|||
/// HazardRec - The hazard recognizer to use.
|
||||
HazardRecognizer *HazardRec;
|
||||
|
||||
typedef std::priority_queue<SUnit*, std::vector<SUnit*>, ls_rr_sort>
|
||||
AvailableQueueTy;
|
||||
|
||||
public:
|
||||
ScheduleDAGList(SelectionDAG &dag, MachineBasicBlock *bb,
|
||||
const TargetMachine &tm, bool isbottomup,
|
||||
|
@ -203,14 +291,14 @@ public:
|
|||
|
||||
private:
|
||||
SUnit *NewSUnit(SDNode *N);
|
||||
void ReleasePred(AvailableQueueTy &Avail,SUnit *PredSU, bool isChain = false);
|
||||
void ReleaseSucc(AvailableQueueTy &Avail,SUnit *SuccSU, bool isChain = false);
|
||||
void ScheduleNodeBottomUp(AvailableQueueTy &Avail, SUnit *SU);
|
||||
void ScheduleNodeTopDown(AvailableQueueTy &Avail, SUnit *SU);
|
||||
int CalcNodePriority(SUnit *SU);
|
||||
void CalculatePriorities();
|
||||
void ListScheduleTopDown();
|
||||
void ListScheduleBottomUp();
|
||||
void ReleasePred(SchedulingPriorityQueue &Avail,
|
||||
SUnit *PredSU, bool isChain = false);
|
||||
void ReleaseSucc(SchedulingPriorityQueue &Avail,
|
||||
SUnit *SuccSU, bool isChain = false);
|
||||
void ScheduleNodeBottomUp(SchedulingPriorityQueue &Avail, SUnit *SU);
|
||||
void ScheduleNodeTopDown(SchedulingPriorityQueue &Avail, SUnit *SU);
|
||||
void ListScheduleTopDown(SchedulingPriorityQueue &Available);
|
||||
void ListScheduleBottomUp(SchedulingPriorityQueue &Available);
|
||||
void BuildSchedUnits();
|
||||
void EmitSchedule();
|
||||
};
|
||||
|
@ -221,13 +309,13 @@ HazardRecognizer::~HazardRecognizer() {}
|
|||
|
||||
/// NewSUnit - Creates a new SUnit and return a ptr to it.
|
||||
SUnit *ScheduleDAGList::NewSUnit(SDNode *N) {
|
||||
SUnits.push_back(N);
|
||||
SUnits.push_back(SUnit(N, SUnits.size()));
|
||||
return &SUnits.back();
|
||||
}
|
||||
|
||||
/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
|
||||
/// the Available queue is the count reaches zero. Also update its cycle bound.
|
||||
void ScheduleDAGList::ReleasePred(AvailableQueueTy &Available,
|
||||
void ScheduleDAGList::ReleasePred(SchedulingPriorityQueue &Available,
|
||||
SUnit *PredSU, bool isChain) {
|
||||
// FIXME: the distance between two nodes is not always == the predecessor's
|
||||
// latency. For example, the reader can very well read the register written
|
||||
|
@ -258,7 +346,7 @@ void ScheduleDAGList::ReleasePred(AvailableQueueTy &Available,
|
|||
|
||||
/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
|
||||
/// the Available queue is the count reaches zero. Also update its cycle bound.
|
||||
void ScheduleDAGList::ReleaseSucc(AvailableQueueTy &Available,
|
||||
void ScheduleDAGList::ReleaseSucc(SchedulingPriorityQueue &Available,
|
||||
SUnit *SuccSU, bool isChain) {
|
||||
// FIXME: the distance between two nodes is not always == the predecessor's
|
||||
// latency. For example, the reader can very well read the register written
|
||||
|
@ -287,7 +375,7 @@ void ScheduleDAGList::ReleaseSucc(AvailableQueueTy &Available,
|
|||
/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
|
||||
/// count of its predecessors. If a predecessor pending count is zero, add it to
|
||||
/// the Available queue.
|
||||
void ScheduleDAGList::ScheduleNodeBottomUp(AvailableQueueTy &Available,
|
||||
void ScheduleDAGList::ScheduleNodeBottomUp(SchedulingPriorityQueue &Available,
|
||||
SUnit *SU) {
|
||||
DEBUG(std::cerr << "*** Scheduling: ");
|
||||
DEBUG(SU->dump(&DAG, false));
|
||||
|
@ -310,7 +398,7 @@ void ScheduleDAGList::ScheduleNodeBottomUp(AvailableQueueTy &Available,
|
|||
/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
|
||||
/// count of its successors. If a successor pending count is zero, add it to
|
||||
/// the Available queue.
|
||||
void ScheduleDAGList::ScheduleNodeTopDown(AvailableQueueTy &Available,
|
||||
void ScheduleDAGList::ScheduleNodeTopDown(SchedulingPriorityQueue &Available,
|
||||
SUnit *SU) {
|
||||
DEBUG(std::cerr << "*** Scheduling: ");
|
||||
DEBUG(SU->dump(&DAG, false));
|
||||
|
@ -338,10 +426,7 @@ static inline bool isReady(SUnit *SU, unsigned CurrCycle) {
|
|||
|
||||
/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
|
||||
/// schedulers.
|
||||
void ScheduleDAGList::ListScheduleBottomUp() {
|
||||
// Available queue.
|
||||
AvailableQueueTy Available;
|
||||
|
||||
void ScheduleDAGList::ListScheduleBottomUp(SchedulingPriorityQueue &Available) {
|
||||
// Add root to Available queue.
|
||||
Available.push(SUnitMap[DAG.getRoot().Val]);
|
||||
|
||||
|
@ -349,13 +434,11 @@ void ScheduleDAGList::ListScheduleBottomUp() {
|
|||
// priority. If it is not ready put it back. Schedule the node.
|
||||
std::vector<SUnit*> NotReady;
|
||||
while (!Available.empty()) {
|
||||
SUnit *CurrNode = Available.top();
|
||||
Available.pop();
|
||||
SUnit *CurrNode = Available.pop();
|
||||
|
||||
while (!isReady(CurrNode, CurrCycle)) {
|
||||
NotReady.push_back(CurrNode);
|
||||
CurrNode = Available.top();
|
||||
Available.pop();
|
||||
CurrNode = Available.pop();
|
||||
}
|
||||
|
||||
// Add the nodes that aren't ready back onto the available list.
|
||||
|
@ -395,10 +478,7 @@ void ScheduleDAGList::ListScheduleBottomUp() {
|
|||
|
||||
/// ListScheduleTopDown - The main loop of list scheduling for top-down
|
||||
/// schedulers.
|
||||
void ScheduleDAGList::ListScheduleTopDown() {
|
||||
// Available queue.
|
||||
AvailableQueueTy Available;
|
||||
|
||||
void ScheduleDAGList::ListScheduleTopDown(SchedulingPriorityQueue &Available) {
|
||||
// Emit the entry node first.
|
||||
SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
|
||||
ScheduleNodeTopDown(Available, Entry);
|
||||
|
@ -420,8 +500,7 @@ void ScheduleDAGList::ListScheduleTopDown() {
|
|||
|
||||
bool HasNoopHazards = false;
|
||||
do {
|
||||
SUnit *CurNode = Available.top();
|
||||
Available.pop();
|
||||
SUnit *CurNode = Available.pop();
|
||||
|
||||
// Get the node represented by this SUnit.
|
||||
SDNode *N = CurNode->Node;
|
||||
|
@ -487,47 +566,6 @@ void ScheduleDAGList::ListScheduleTopDown() {
|
|||
}
|
||||
|
||||
|
||||
/// CalcNodePriority - Priority is the Sethi Ullman number.
|
||||
/// Smaller number is the higher priority.
|
||||
int ScheduleDAGList::CalcNodePriority(SUnit *SU) {
|
||||
if (SU->SethiUllman != INT_MIN)
|
||||
return SU->SethiUllman;
|
||||
|
||||
if (SU->Preds.size() == 0) {
|
||||
SU->SethiUllman = 1;
|
||||
} else {
|
||||
int Extra = 0;
|
||||
for (std::set<SUnit*>::iterator I = SU->Preds.begin(),
|
||||
E = SU->Preds.end(); I != E; ++I) {
|
||||
SUnit *PredSU = *I;
|
||||
int PredSethiUllman = CalcNodePriority(PredSU);
|
||||
if (PredSethiUllman > SU->SethiUllman) {
|
||||
SU->SethiUllman = PredSethiUllman;
|
||||
Extra = 0;
|
||||
} else if (PredSethiUllman == SU->SethiUllman)
|
||||
Extra++;
|
||||
}
|
||||
|
||||
if (SU->Node->getOpcode() != ISD::TokenFactor)
|
||||
SU->SethiUllman += Extra;
|
||||
else
|
||||
SU->SethiUllman = (Extra == 1) ? 0 : Extra-1;
|
||||
}
|
||||
|
||||
return SU->SethiUllman;
|
||||
}
|
||||
|
||||
/// CalculatePriorities - Calculate priorities of all scheduling units.
|
||||
void ScheduleDAGList::CalculatePriorities() {
|
||||
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
|
||||
// FIXME: assumes uniform latency for now.
|
||||
SUnits[i].Latency = 1;
|
||||
(void)CalcNodePriority(&SUnits[i]);
|
||||
DEBUG(SUnits[i].dump(&DAG));
|
||||
DEBUG(std::cerr << "\n");
|
||||
}
|
||||
}
|
||||
|
||||
void ScheduleDAGList::BuildSchedUnits() {
|
||||
// Reserve entries in the vector for each of the SUnits we are creating. This
|
||||
// ensure that reallocation of the vector won't happen, so SUnit*'s won't get
|
||||
|
@ -663,14 +701,13 @@ void ScheduleDAGList::Schedule() {
|
|||
// Build scheduling units.
|
||||
BuildSchedUnits();
|
||||
|
||||
// Calculate node priorities.
|
||||
CalculatePriorities();
|
||||
SchedulingPriorityQueue PQ(SUnits);
|
||||
|
||||
// Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate.
|
||||
if (isBottomUp)
|
||||
ListScheduleBottomUp();
|
||||
ListScheduleBottomUp(PQ);
|
||||
else
|
||||
ListScheduleTopDown();
|
||||
ListScheduleTopDown(PQ);
|
||||
|
||||
DEBUG(std::cerr << "*** Final schedule ***\n");
|
||||
DEBUG(dump());
|
||||
|
|
Loading…
Reference in New Issue