forked from OSchip/llvm-project
[Hexagon] Adding functionality for duplexing. Duplexing is a way to compress commonly used pairs of instructions in order to reduce code size. The test case duplex.ll normally would be 8 bytes, assign register to 0 and jump to link register. After duplexing this is only 4 bytes. This also tests the HexagonMCShuffler code path which is used to make sure duplexed instructions still follow slot requirements.
llvm-svn: 239095
This commit is contained in:
parent
b8f38668d5
commit
fc52c11d80
|
@ -56,37 +56,43 @@ public:
|
|||
}
|
||||
|
||||
static DecodeStatus DecodeModRegsRegisterClass(MCInst &Inst, unsigned RegNo,
|
||||
uint64_t Address, const void *Decoder);
|
||||
uint64_t Address,
|
||||
const void *Decoder);
|
||||
static DecodeStatus DecodeCtrRegsRegisterClass(MCInst &Inst, unsigned RegNo,
|
||||
uint64_t Address, const void *Decoder);
|
||||
uint64_t Address,
|
||||
const void *Decoder);
|
||||
static DecodeStatus DecodeCtrRegs64RegisterClass(MCInst &Inst, unsigned RegNo,
|
||||
uint64_t Address, void const *Decoder);
|
||||
uint64_t Address,
|
||||
void const *Decoder);
|
||||
|
||||
static unsigned GetSubinstOpcode(unsigned IClass, unsigned inst, unsigned &op,
|
||||
raw_ostream &os);
|
||||
static void AddSubinstOperands(MCInst *MI, unsigned opcode, unsigned inst);
|
||||
|
||||
static const uint16_t IntRegDecoderTable[] = {
|
||||
Hexagon::R0, Hexagon::R1, Hexagon::R2, Hexagon::R3, Hexagon::R4,
|
||||
Hexagon::R5, Hexagon::R6, Hexagon::R7, Hexagon::R8, Hexagon::R9,
|
||||
Hexagon::R10, Hexagon::R11, Hexagon::R12, Hexagon::R13, Hexagon::R14,
|
||||
Hexagon::R15, Hexagon::R16, Hexagon::R17, Hexagon::R18, Hexagon::R19,
|
||||
Hexagon::R20, Hexagon::R21, Hexagon::R22, Hexagon::R23, Hexagon::R24,
|
||||
Hexagon::R25, Hexagon::R26, Hexagon::R27, Hexagon::R28, Hexagon::R29,
|
||||
Hexagon::R30, Hexagon::R31 };
|
||||
Hexagon::R0, Hexagon::R1, Hexagon::R2, Hexagon::R3, Hexagon::R4,
|
||||
Hexagon::R5, Hexagon::R6, Hexagon::R7, Hexagon::R8, Hexagon::R9,
|
||||
Hexagon::R10, Hexagon::R11, Hexagon::R12, Hexagon::R13, Hexagon::R14,
|
||||
Hexagon::R15, Hexagon::R16, Hexagon::R17, Hexagon::R18, Hexagon::R19,
|
||||
Hexagon::R20, Hexagon::R21, Hexagon::R22, Hexagon::R23, Hexagon::R24,
|
||||
Hexagon::R25, Hexagon::R26, Hexagon::R27, Hexagon::R28, Hexagon::R29,
|
||||
Hexagon::R30, Hexagon::R31};
|
||||
|
||||
static const uint16_t PredRegDecoderTable[] = { Hexagon::P0, Hexagon::P1,
|
||||
Hexagon::P2, Hexagon::P3 };
|
||||
static const uint16_t PredRegDecoderTable[] = {Hexagon::P0, Hexagon::P1,
|
||||
Hexagon::P2, Hexagon::P3};
|
||||
|
||||
static DecodeStatus DecodeRegisterClass(MCInst &Inst, unsigned RegNo,
|
||||
const uint16_t Table[], size_t Size) {
|
||||
const uint16_t Table[], size_t Size) {
|
||||
if (RegNo < Size) {
|
||||
Inst.addOperand(MCOperand::createReg(Table[RegNo]));
|
||||
return MCDisassembler::Success;
|
||||
}
|
||||
else
|
||||
} else
|
||||
return MCDisassembler::Fail;
|
||||
}
|
||||
|
||||
static DecodeStatus DecodeIntRegsRegisterClass(MCInst &Inst, unsigned RegNo,
|
||||
uint64_t /*Address*/,
|
||||
void const *Decoder) {
|
||||
uint64_t /*Address*/,
|
||||
void const *Decoder) {
|
||||
if (RegNo > 31)
|
||||
return MCDisassembler::Fail;
|
||||
|
||||
|
@ -96,13 +102,13 @@ static DecodeStatus DecodeIntRegsRegisterClass(MCInst &Inst, unsigned RegNo,
|
|||
}
|
||||
|
||||
static DecodeStatus DecodeCtrRegsRegisterClass(MCInst &Inst, unsigned RegNo,
|
||||
uint64_t /*Address*/, const void *Decoder) {
|
||||
uint64_t /*Address*/,
|
||||
const void *Decoder) {
|
||||
static const uint16_t CtrlRegDecoderTable[] = {
|
||||
Hexagon::SA0, Hexagon::LC0, Hexagon::SA1, Hexagon::LC1,
|
||||
Hexagon::P3_0, Hexagon::NoRegister, Hexagon::C6, Hexagon::C7,
|
||||
Hexagon::USR, Hexagon::PC, Hexagon::UGP, Hexagon::GP,
|
||||
Hexagon::CS0, Hexagon::CS1, Hexagon::UPCL, Hexagon::UPCH
|
||||
};
|
||||
Hexagon::SA0, Hexagon::LC0, Hexagon::SA1, Hexagon::LC1,
|
||||
Hexagon::P3_0, Hexagon::NoRegister, Hexagon::C6, Hexagon::C7,
|
||||
Hexagon::USR, Hexagon::PC, Hexagon::UGP, Hexagon::GP,
|
||||
Hexagon::CS0, Hexagon::CS1, Hexagon::UPCL, Hexagon::UPCH};
|
||||
|
||||
if (RegNo >= sizeof(CtrlRegDecoderTable) / sizeof(CtrlRegDecoderTable[0]))
|
||||
return MCDisassembler::Fail;
|
||||
|
@ -116,17 +122,15 @@ static DecodeStatus DecodeCtrRegsRegisterClass(MCInst &Inst, unsigned RegNo,
|
|||
}
|
||||
|
||||
static DecodeStatus DecodeCtrRegs64RegisterClass(MCInst &Inst, unsigned RegNo,
|
||||
uint64_t /*Address*/, void const *Decoder) {
|
||||
uint64_t /*Address*/,
|
||||
void const *Decoder) {
|
||||
static const uint16_t CtrlReg64DecoderTable[] = {
|
||||
Hexagon::C1_0, Hexagon::NoRegister,
|
||||
Hexagon::C3_2, Hexagon::NoRegister,
|
||||
Hexagon::NoRegister, Hexagon::NoRegister,
|
||||
Hexagon::C7_6, Hexagon::NoRegister,
|
||||
Hexagon::C9_8, Hexagon::NoRegister,
|
||||
Hexagon::C11_10, Hexagon::NoRegister,
|
||||
Hexagon::CS, Hexagon::NoRegister,
|
||||
Hexagon::UPC, Hexagon::NoRegister
|
||||
};
|
||||
Hexagon::C1_0, Hexagon::NoRegister, Hexagon::C3_2,
|
||||
Hexagon::NoRegister, Hexagon::NoRegister, Hexagon::NoRegister,
|
||||
Hexagon::C7_6, Hexagon::NoRegister, Hexagon::C9_8,
|
||||
Hexagon::NoRegister, Hexagon::C11_10, Hexagon::NoRegister,
|
||||
Hexagon::CS, Hexagon::NoRegister, Hexagon::UPC,
|
||||
Hexagon::NoRegister};
|
||||
|
||||
if (RegNo >= sizeof(CtrlReg64DecoderTable) / sizeof(CtrlReg64DecoderTable[0]))
|
||||
return MCDisassembler::Fail;
|
||||
|
@ -140,7 +144,8 @@ static DecodeStatus DecodeCtrRegs64RegisterClass(MCInst &Inst, unsigned RegNo,
|
|||
}
|
||||
|
||||
static DecodeStatus DecodeModRegsRegisterClass(MCInst &Inst, unsigned RegNo,
|
||||
uint64_t /*Address*/, const void *Decoder) {
|
||||
uint64_t /*Address*/,
|
||||
const void *Decoder) {
|
||||
unsigned Register = 0;
|
||||
switch (RegNo) {
|
||||
case 0:
|
||||
|
@ -157,22 +162,21 @@ static DecodeStatus DecodeModRegsRegisterClass(MCInst &Inst, unsigned RegNo,
|
|||
}
|
||||
|
||||
static DecodeStatus DecodeDoubleRegsRegisterClass(MCInst &Inst, unsigned RegNo,
|
||||
uint64_t /*Address*/, const void *Decoder) {
|
||||
uint64_t /*Address*/,
|
||||
const void *Decoder) {
|
||||
static const uint16_t DoubleRegDecoderTable[] = {
|
||||
Hexagon::D0, Hexagon::D1, Hexagon::D2, Hexagon::D3,
|
||||
Hexagon::D4, Hexagon::D5, Hexagon::D6, Hexagon::D7,
|
||||
Hexagon::D8, Hexagon::D9, Hexagon::D10, Hexagon::D11,
|
||||
Hexagon::D12, Hexagon::D13, Hexagon::D14, Hexagon::D15
|
||||
};
|
||||
Hexagon::D0, Hexagon::D1, Hexagon::D2, Hexagon::D3,
|
||||
Hexagon::D4, Hexagon::D5, Hexagon::D6, Hexagon::D7,
|
||||
Hexagon::D8, Hexagon::D9, Hexagon::D10, Hexagon::D11,
|
||||
Hexagon::D12, Hexagon::D13, Hexagon::D14, Hexagon::D15};
|
||||
|
||||
return (DecodeRegisterClass(Inst, RegNo >> 1,
|
||||
DoubleRegDecoderTable,
|
||||
sizeof (DoubleRegDecoderTable)));
|
||||
return (DecodeRegisterClass(Inst, RegNo >> 1, DoubleRegDecoderTable,
|
||||
sizeof(DoubleRegDecoderTable)));
|
||||
}
|
||||
|
||||
static DecodeStatus DecodePredRegsRegisterClass(MCInst &Inst, unsigned RegNo,
|
||||
uint64_t /*Address*/,
|
||||
void const *Decoder) {
|
||||
uint64_t /*Address*/,
|
||||
void const *Decoder) {
|
||||
if (RegNo > 3)
|
||||
return MCDisassembler::Fail;
|
||||
|
||||
|
@ -206,11 +210,10 @@ DecodeStatus HexagonDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
|
|||
*CurrentBundle = &MI;
|
||||
MI.setOpcode(Hexagon::BUNDLE);
|
||||
MI.addOperand(MCOperand::createImm(0));
|
||||
while (Result == Success && Complete == false)
|
||||
{
|
||||
while (Result == Success && Complete == false) {
|
||||
if (Bytes.size() < HEXAGON_INSTR_SIZE)
|
||||
return MCDisassembler::Fail;
|
||||
MCInst * Inst = new (getContext()) MCInst;
|
||||
MCInst *Inst = new (getContext()) MCInst;
|
||||
Result = getSingleInstruction(*Inst, MI, Bytes, Address, os, cs, Complete);
|
||||
MI.addOperand(MCOperand::createInst(Inst));
|
||||
Size += HEXAGON_INSTR_SIZE;
|
||||
|
@ -241,11 +244,646 @@ DecodeStatus HexagonDisassembler::getSingleInstruction(
|
|||
|
||||
DecodeStatus Result = DecodeStatus::Success;
|
||||
if ((Instruction & HexagonII::INST_PARSE_MASK) ==
|
||||
HexagonII::INST_PARSE_PACKET_END)
|
||||
HexagonII::INST_PARSE_DUPLEX) {
|
||||
// Determine the instruction class of each instruction in the duplex.
|
||||
unsigned duplexIClass, IClassLow, IClassHigh;
|
||||
|
||||
duplexIClass = ((Instruction >> 28) & 0xe) | ((Instruction >> 13) & 0x1);
|
||||
switch (duplexIClass) {
|
||||
default:
|
||||
return MCDisassembler::Fail;
|
||||
case 0:
|
||||
IClassLow = HexagonII::HSIG_L1;
|
||||
IClassHigh = HexagonII::HSIG_L1;
|
||||
break;
|
||||
case 1:
|
||||
IClassLow = HexagonII::HSIG_L2;
|
||||
IClassHigh = HexagonII::HSIG_L1;
|
||||
break;
|
||||
case 2:
|
||||
IClassLow = HexagonII::HSIG_L2;
|
||||
IClassHigh = HexagonII::HSIG_L2;
|
||||
break;
|
||||
case 3:
|
||||
IClassLow = HexagonII::HSIG_A;
|
||||
IClassHigh = HexagonII::HSIG_A;
|
||||
break;
|
||||
case 4:
|
||||
IClassLow = HexagonII::HSIG_L1;
|
||||
IClassHigh = HexagonII::HSIG_A;
|
||||
break;
|
||||
case 5:
|
||||
IClassLow = HexagonII::HSIG_L2;
|
||||
IClassHigh = HexagonII::HSIG_A;
|
||||
break;
|
||||
case 6:
|
||||
IClassLow = HexagonII::HSIG_S1;
|
||||
IClassHigh = HexagonII::HSIG_A;
|
||||
break;
|
||||
case 7:
|
||||
IClassLow = HexagonII::HSIG_S2;
|
||||
IClassHigh = HexagonII::HSIG_A;
|
||||
break;
|
||||
case 8:
|
||||
IClassLow = HexagonII::HSIG_S1;
|
||||
IClassHigh = HexagonII::HSIG_L1;
|
||||
break;
|
||||
case 9:
|
||||
IClassLow = HexagonII::HSIG_S1;
|
||||
IClassHigh = HexagonII::HSIG_L2;
|
||||
break;
|
||||
case 10:
|
||||
IClassLow = HexagonII::HSIG_S1;
|
||||
IClassHigh = HexagonII::HSIG_S1;
|
||||
break;
|
||||
case 11:
|
||||
IClassLow = HexagonII::HSIG_S2;
|
||||
IClassHigh = HexagonII::HSIG_S1;
|
||||
break;
|
||||
case 12:
|
||||
IClassLow = HexagonII::HSIG_S2;
|
||||
IClassHigh = HexagonII::HSIG_L1;
|
||||
break;
|
||||
case 13:
|
||||
IClassLow = HexagonII::HSIG_S2;
|
||||
IClassHigh = HexagonII::HSIG_L2;
|
||||
break;
|
||||
case 14:
|
||||
IClassLow = HexagonII::HSIG_S2;
|
||||
IClassHigh = HexagonII::HSIG_S2;
|
||||
break;
|
||||
}
|
||||
|
||||
// Set the MCInst to be a duplex instruction. Which one doesn't matter.
|
||||
MI.setOpcode(Hexagon::DuplexIClass0);
|
||||
|
||||
// Decode each instruction in the duplex.
|
||||
// Create an MCInst for each instruction.
|
||||
unsigned instLow = Instruction & 0x1fff;
|
||||
unsigned instHigh = (Instruction >> 16) & 0x1fff;
|
||||
unsigned opLow;
|
||||
if (GetSubinstOpcode(IClassLow, instLow, opLow, os) !=
|
||||
MCDisassembler::Success)
|
||||
return MCDisassembler::Fail;
|
||||
unsigned opHigh;
|
||||
if (GetSubinstOpcode(IClassHigh, instHigh, opHigh, os) !=
|
||||
MCDisassembler::Success)
|
||||
return MCDisassembler::Fail;
|
||||
MCInst *MILow = new (getContext()) MCInst;
|
||||
MILow->setOpcode(opLow);
|
||||
MCInst *MIHigh = new (getContext()) MCInst;
|
||||
MIHigh->setOpcode(opHigh);
|
||||
AddSubinstOperands(MILow, opLow, instLow);
|
||||
AddSubinstOperands(MIHigh, opHigh, instHigh);
|
||||
// see ConvertToSubInst() in
|
||||
// lib/Target/Hexagon/MCTargetDesc/HexagonMCDuplexInfo.cpp
|
||||
|
||||
// Add the duplex instruction MCInsts as operands to the passed in MCInst.
|
||||
MCOperand OPLow = MCOperand::createInst(MILow);
|
||||
MCOperand OPHigh = MCOperand::createInst(MIHigh);
|
||||
MI.addOperand(OPLow);
|
||||
MI.addOperand(OPHigh);
|
||||
Complete = true;
|
||||
// Calling the auto-generated decoder function.
|
||||
Result =
|
||||
decodeInstruction(DecoderTable32, MI, Instruction, Address, this, STI);
|
||||
} else {
|
||||
if ((Instruction & HexagonII::INST_PARSE_MASK) ==
|
||||
HexagonII::INST_PARSE_PACKET_END)
|
||||
Complete = true;
|
||||
// Calling the auto-generated decoder function.
|
||||
Result =
|
||||
decodeInstruction(DecoderTable32, MI, Instruction, Address, this, STI);
|
||||
}
|
||||
|
||||
return Result;
|
||||
}
|
||||
|
||||
// These values are from HexagonGenMCCodeEmitter.inc and HexagonIsetDx.td
|
||||
enum subInstBinaryValues {
|
||||
V4_SA1_addi_BITS = 0x0000,
|
||||
V4_SA1_addi_MASK = 0x1800,
|
||||
V4_SA1_addrx_BITS = 0x1800,
|
||||
V4_SA1_addrx_MASK = 0x1f00,
|
||||
V4_SA1_addsp_BITS = 0x0c00,
|
||||
V4_SA1_addsp_MASK = 0x1c00,
|
||||
V4_SA1_and1_BITS = 0x1200,
|
||||
V4_SA1_and1_MASK = 0x1f00,
|
||||
V4_SA1_clrf_BITS = 0x1a70,
|
||||
V4_SA1_clrf_MASK = 0x1e70,
|
||||
V4_SA1_clrfnew_BITS = 0x1a50,
|
||||
V4_SA1_clrfnew_MASK = 0x1e70,
|
||||
V4_SA1_clrt_BITS = 0x1a60,
|
||||
V4_SA1_clrt_MASK = 0x1e70,
|
||||
V4_SA1_clrtnew_BITS = 0x1a40,
|
||||
V4_SA1_clrtnew_MASK = 0x1e70,
|
||||
V4_SA1_cmpeqi_BITS = 0x1900,
|
||||
V4_SA1_cmpeqi_MASK = 0x1f00,
|
||||
V4_SA1_combine0i_BITS = 0x1c00,
|
||||
V4_SA1_combine0i_MASK = 0x1d18,
|
||||
V4_SA1_combine1i_BITS = 0x1c08,
|
||||
V4_SA1_combine1i_MASK = 0x1d18,
|
||||
V4_SA1_combine2i_BITS = 0x1c10,
|
||||
V4_SA1_combine2i_MASK = 0x1d18,
|
||||
V4_SA1_combine3i_BITS = 0x1c18,
|
||||
V4_SA1_combine3i_MASK = 0x1d18,
|
||||
V4_SA1_combinerz_BITS = 0x1d08,
|
||||
V4_SA1_combinerz_MASK = 0x1d08,
|
||||
V4_SA1_combinezr_BITS = 0x1d00,
|
||||
V4_SA1_combinezr_MASK = 0x1d08,
|
||||
V4_SA1_dec_BITS = 0x1300,
|
||||
V4_SA1_dec_MASK = 0x1f00,
|
||||
V4_SA1_inc_BITS = 0x1100,
|
||||
V4_SA1_inc_MASK = 0x1f00,
|
||||
V4_SA1_seti_BITS = 0x0800,
|
||||
V4_SA1_seti_MASK = 0x1c00,
|
||||
V4_SA1_setin1_BITS = 0x1a00,
|
||||
V4_SA1_setin1_MASK = 0x1e40,
|
||||
V4_SA1_sxtb_BITS = 0x1500,
|
||||
V4_SA1_sxtb_MASK = 0x1f00,
|
||||
V4_SA1_sxth_BITS = 0x1400,
|
||||
V4_SA1_sxth_MASK = 0x1f00,
|
||||
V4_SA1_tfr_BITS = 0x1000,
|
||||
V4_SA1_tfr_MASK = 0x1f00,
|
||||
V4_SA1_zxtb_BITS = 0x1700,
|
||||
V4_SA1_zxtb_MASK = 0x1f00,
|
||||
V4_SA1_zxth_BITS = 0x1600,
|
||||
V4_SA1_zxth_MASK = 0x1f00,
|
||||
V4_SL1_loadri_io_BITS = 0x0000,
|
||||
V4_SL1_loadri_io_MASK = 0x1000,
|
||||
V4_SL1_loadrub_io_BITS = 0x1000,
|
||||
V4_SL1_loadrub_io_MASK = 0x1000,
|
||||
V4_SL2_deallocframe_BITS = 0x1f00,
|
||||
V4_SL2_deallocframe_MASK = 0x1fc0,
|
||||
V4_SL2_jumpr31_BITS = 0x1fc0,
|
||||
V4_SL2_jumpr31_MASK = 0x1fc4,
|
||||
V4_SL2_jumpr31_f_BITS = 0x1fc5,
|
||||
V4_SL2_jumpr31_f_MASK = 0x1fc7,
|
||||
V4_SL2_jumpr31_fnew_BITS = 0x1fc7,
|
||||
V4_SL2_jumpr31_fnew_MASK = 0x1fc7,
|
||||
V4_SL2_jumpr31_t_BITS = 0x1fc4,
|
||||
V4_SL2_jumpr31_t_MASK = 0x1fc7,
|
||||
V4_SL2_jumpr31_tnew_BITS = 0x1fc6,
|
||||
V4_SL2_jumpr31_tnew_MASK = 0x1fc7,
|
||||
V4_SL2_loadrb_io_BITS = 0x1000,
|
||||
V4_SL2_loadrb_io_MASK = 0x1800,
|
||||
V4_SL2_loadrd_sp_BITS = 0x1e00,
|
||||
V4_SL2_loadrd_sp_MASK = 0x1f00,
|
||||
V4_SL2_loadrh_io_BITS = 0x0000,
|
||||
V4_SL2_loadrh_io_MASK = 0x1800,
|
||||
V4_SL2_loadri_sp_BITS = 0x1c00,
|
||||
V4_SL2_loadri_sp_MASK = 0x1e00,
|
||||
V4_SL2_loadruh_io_BITS = 0x0800,
|
||||
V4_SL2_loadruh_io_MASK = 0x1800,
|
||||
V4_SL2_return_BITS = 0x1f40,
|
||||
V4_SL2_return_MASK = 0x1fc4,
|
||||
V4_SL2_return_f_BITS = 0x1f45,
|
||||
V4_SL2_return_f_MASK = 0x1fc7,
|
||||
V4_SL2_return_fnew_BITS = 0x1f47,
|
||||
V4_SL2_return_fnew_MASK = 0x1fc7,
|
||||
V4_SL2_return_t_BITS = 0x1f44,
|
||||
V4_SL2_return_t_MASK = 0x1fc7,
|
||||
V4_SL2_return_tnew_BITS = 0x1f46,
|
||||
V4_SL2_return_tnew_MASK = 0x1fc7,
|
||||
V4_SS1_storeb_io_BITS = 0x1000,
|
||||
V4_SS1_storeb_io_MASK = 0x1000,
|
||||
V4_SS1_storew_io_BITS = 0x0000,
|
||||
V4_SS1_storew_io_MASK = 0x1000,
|
||||
V4_SS2_allocframe_BITS = 0x1c00,
|
||||
V4_SS2_allocframe_MASK = 0x1e00,
|
||||
V4_SS2_storebi0_BITS = 0x1200,
|
||||
V4_SS2_storebi0_MASK = 0x1f00,
|
||||
V4_SS2_storebi1_BITS = 0x1300,
|
||||
V4_SS2_storebi1_MASK = 0x1f00,
|
||||
V4_SS2_stored_sp_BITS = 0x0a00,
|
||||
V4_SS2_stored_sp_MASK = 0x1e00,
|
||||
V4_SS2_storeh_io_BITS = 0x0000,
|
||||
V4_SS2_storeh_io_MASK = 0x1800,
|
||||
V4_SS2_storew_sp_BITS = 0x0800,
|
||||
V4_SS2_storew_sp_MASK = 0x1e00,
|
||||
V4_SS2_storewi0_BITS = 0x1000,
|
||||
V4_SS2_storewi0_MASK = 0x1f00,
|
||||
V4_SS2_storewi1_BITS = 0x1100,
|
||||
V4_SS2_storewi1_MASK = 0x1f00
|
||||
};
|
||||
|
||||
static unsigned GetSubinstOpcode(unsigned IClass, unsigned inst, unsigned &op,
|
||||
raw_ostream &os) {
|
||||
switch (IClass) {
|
||||
case HexagonII::HSIG_L1:
|
||||
if ((inst & V4_SL1_loadri_io_MASK) == V4_SL1_loadri_io_BITS)
|
||||
op = Hexagon::V4_SL1_loadri_io;
|
||||
else if ((inst & V4_SL1_loadrub_io_MASK) == V4_SL1_loadrub_io_BITS)
|
||||
op = Hexagon::V4_SL1_loadrub_io;
|
||||
else {
|
||||
os << "<unknown subinstruction>";
|
||||
return MCDisassembler::Fail;
|
||||
}
|
||||
break;
|
||||
case HexagonII::HSIG_L2:
|
||||
if ((inst & V4_SL2_deallocframe_MASK) == V4_SL2_deallocframe_BITS)
|
||||
op = Hexagon::V4_SL2_deallocframe;
|
||||
else if ((inst & V4_SL2_jumpr31_MASK) == V4_SL2_jumpr31_BITS)
|
||||
op = Hexagon::V4_SL2_jumpr31;
|
||||
else if ((inst & V4_SL2_jumpr31_f_MASK) == V4_SL2_jumpr31_f_BITS)
|
||||
op = Hexagon::V4_SL2_jumpr31_f;
|
||||
else if ((inst & V4_SL2_jumpr31_fnew_MASK) == V4_SL2_jumpr31_fnew_BITS)
|
||||
op = Hexagon::V4_SL2_jumpr31_fnew;
|
||||
else if ((inst & V4_SL2_jumpr31_t_MASK) == V4_SL2_jumpr31_t_BITS)
|
||||
op = Hexagon::V4_SL2_jumpr31_t;
|
||||
else if ((inst & V4_SL2_jumpr31_tnew_MASK) == V4_SL2_jumpr31_tnew_BITS)
|
||||
op = Hexagon::V4_SL2_jumpr31_tnew;
|
||||
else if ((inst & V4_SL2_loadrb_io_MASK) == V4_SL2_loadrb_io_BITS)
|
||||
op = Hexagon::V4_SL2_loadrb_io;
|
||||
else if ((inst & V4_SL2_loadrd_sp_MASK) == V4_SL2_loadrd_sp_BITS)
|
||||
op = Hexagon::V4_SL2_loadrd_sp;
|
||||
else if ((inst & V4_SL2_loadrh_io_MASK) == V4_SL2_loadrh_io_BITS)
|
||||
op = Hexagon::V4_SL2_loadrh_io;
|
||||
else if ((inst & V4_SL2_loadri_sp_MASK) == V4_SL2_loadri_sp_BITS)
|
||||
op = Hexagon::V4_SL2_loadri_sp;
|
||||
else if ((inst & V4_SL2_loadruh_io_MASK) == V4_SL2_loadruh_io_BITS)
|
||||
op = Hexagon::V4_SL2_loadruh_io;
|
||||
else if ((inst & V4_SL2_return_MASK) == V4_SL2_return_BITS)
|
||||
op = Hexagon::V4_SL2_return;
|
||||
else if ((inst & V4_SL2_return_f_MASK) == V4_SL2_return_f_BITS)
|
||||
op = Hexagon::V4_SL2_return_f;
|
||||
else if ((inst & V4_SL2_return_fnew_MASK) == V4_SL2_return_fnew_BITS)
|
||||
op = Hexagon::V4_SL2_return_fnew;
|
||||
else if ((inst & V4_SL2_return_t_MASK) == V4_SL2_return_t_BITS)
|
||||
op = Hexagon::V4_SL2_return_t;
|
||||
else if ((inst & V4_SL2_return_tnew_MASK) == V4_SL2_return_tnew_BITS)
|
||||
op = Hexagon::V4_SL2_return_tnew;
|
||||
else {
|
||||
os << "<unknown subinstruction>";
|
||||
return MCDisassembler::Fail;
|
||||
}
|
||||
break;
|
||||
case HexagonII::HSIG_A:
|
||||
if ((inst & V4_SA1_addi_MASK) == V4_SA1_addi_BITS)
|
||||
op = Hexagon::V4_SA1_addi;
|
||||
else if ((inst & V4_SA1_addrx_MASK) == V4_SA1_addrx_BITS)
|
||||
op = Hexagon::V4_SA1_addrx;
|
||||
else if ((inst & V4_SA1_addsp_MASK) == V4_SA1_addsp_BITS)
|
||||
op = Hexagon::V4_SA1_addsp;
|
||||
else if ((inst & V4_SA1_and1_MASK) == V4_SA1_and1_BITS)
|
||||
op = Hexagon::V4_SA1_and1;
|
||||
else if ((inst & V4_SA1_clrf_MASK) == V4_SA1_clrf_BITS)
|
||||
op = Hexagon::V4_SA1_clrf;
|
||||
else if ((inst & V4_SA1_clrfnew_MASK) == V4_SA1_clrfnew_BITS)
|
||||
op = Hexagon::V4_SA1_clrfnew;
|
||||
else if ((inst & V4_SA1_clrt_MASK) == V4_SA1_clrt_BITS)
|
||||
op = Hexagon::V4_SA1_clrt;
|
||||
else if ((inst & V4_SA1_clrtnew_MASK) == V4_SA1_clrtnew_BITS)
|
||||
op = Hexagon::V4_SA1_clrtnew;
|
||||
else if ((inst & V4_SA1_cmpeqi_MASK) == V4_SA1_cmpeqi_BITS)
|
||||
op = Hexagon::V4_SA1_cmpeqi;
|
||||
else if ((inst & V4_SA1_combine0i_MASK) == V4_SA1_combine0i_BITS)
|
||||
op = Hexagon::V4_SA1_combine0i;
|
||||
else if ((inst & V4_SA1_combine1i_MASK) == V4_SA1_combine1i_BITS)
|
||||
op = Hexagon::V4_SA1_combine1i;
|
||||
else if ((inst & V4_SA1_combine2i_MASK) == V4_SA1_combine2i_BITS)
|
||||
op = Hexagon::V4_SA1_combine2i;
|
||||
else if ((inst & V4_SA1_combine3i_MASK) == V4_SA1_combine3i_BITS)
|
||||
op = Hexagon::V4_SA1_combine3i;
|
||||
else if ((inst & V4_SA1_combinerz_MASK) == V4_SA1_combinerz_BITS)
|
||||
op = Hexagon::V4_SA1_combinerz;
|
||||
else if ((inst & V4_SA1_combinezr_MASK) == V4_SA1_combinezr_BITS)
|
||||
op = Hexagon::V4_SA1_combinezr;
|
||||
else if ((inst & V4_SA1_dec_MASK) == V4_SA1_dec_BITS)
|
||||
op = Hexagon::V4_SA1_dec;
|
||||
else if ((inst & V4_SA1_inc_MASK) == V4_SA1_inc_BITS)
|
||||
op = Hexagon::V4_SA1_inc;
|
||||
else if ((inst & V4_SA1_seti_MASK) == V4_SA1_seti_BITS)
|
||||
op = Hexagon::V4_SA1_seti;
|
||||
else if ((inst & V4_SA1_setin1_MASK) == V4_SA1_setin1_BITS)
|
||||
op = Hexagon::V4_SA1_setin1;
|
||||
else if ((inst & V4_SA1_sxtb_MASK) == V4_SA1_sxtb_BITS)
|
||||
op = Hexagon::V4_SA1_sxtb;
|
||||
else if ((inst & V4_SA1_sxth_MASK) == V4_SA1_sxth_BITS)
|
||||
op = Hexagon::V4_SA1_sxth;
|
||||
else if ((inst & V4_SA1_tfr_MASK) == V4_SA1_tfr_BITS)
|
||||
op = Hexagon::V4_SA1_tfr;
|
||||
else if ((inst & V4_SA1_zxtb_MASK) == V4_SA1_zxtb_BITS)
|
||||
op = Hexagon::V4_SA1_zxtb;
|
||||
else if ((inst & V4_SA1_zxth_MASK) == V4_SA1_zxth_BITS)
|
||||
op = Hexagon::V4_SA1_zxth;
|
||||
else {
|
||||
os << "<unknown subinstruction>";
|
||||
return MCDisassembler::Fail;
|
||||
}
|
||||
break;
|
||||
case HexagonII::HSIG_S1:
|
||||
if ((inst & V4_SS1_storeb_io_MASK) == V4_SS1_storeb_io_BITS)
|
||||
op = Hexagon::V4_SS1_storeb_io;
|
||||
else if ((inst & V4_SS1_storew_io_MASK) == V4_SS1_storew_io_BITS)
|
||||
op = Hexagon::V4_SS1_storew_io;
|
||||
else {
|
||||
os << "<unknown subinstruction>";
|
||||
return MCDisassembler::Fail;
|
||||
}
|
||||
break;
|
||||
case HexagonII::HSIG_S2:
|
||||
if ((inst & V4_SS2_allocframe_MASK) == V4_SS2_allocframe_BITS)
|
||||
op = Hexagon::V4_SS2_allocframe;
|
||||
else if ((inst & V4_SS2_storebi0_MASK) == V4_SS2_storebi0_BITS)
|
||||
op = Hexagon::V4_SS2_storebi0;
|
||||
else if ((inst & V4_SS2_storebi1_MASK) == V4_SS2_storebi1_BITS)
|
||||
op = Hexagon::V4_SS2_storebi1;
|
||||
else if ((inst & V4_SS2_stored_sp_MASK) == V4_SS2_stored_sp_BITS)
|
||||
op = Hexagon::V4_SS2_stored_sp;
|
||||
else if ((inst & V4_SS2_storeh_io_MASK) == V4_SS2_storeh_io_BITS)
|
||||
op = Hexagon::V4_SS2_storeh_io;
|
||||
else if ((inst & V4_SS2_storew_sp_MASK) == V4_SS2_storew_sp_BITS)
|
||||
op = Hexagon::V4_SS2_storew_sp;
|
||||
else if ((inst & V4_SS2_storewi0_MASK) == V4_SS2_storewi0_BITS)
|
||||
op = Hexagon::V4_SS2_storewi0;
|
||||
else if ((inst & V4_SS2_storewi1_MASK) == V4_SS2_storewi1_BITS)
|
||||
op = Hexagon::V4_SS2_storewi1;
|
||||
else {
|
||||
os << "<unknown subinstruction>";
|
||||
return MCDisassembler::Fail;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
os << "<unknown>";
|
||||
return MCDisassembler::Fail;
|
||||
}
|
||||
return MCDisassembler::Success;
|
||||
}
|
||||
|
||||
static unsigned getRegFromSubinstEncoding(unsigned encoded_reg) {
|
||||
if (encoded_reg < 8)
|
||||
return Hexagon::R0 + encoded_reg;
|
||||
else if (encoded_reg < 16)
|
||||
return Hexagon::R0 + encoded_reg + 8;
|
||||
return Hexagon::NoRegister;
|
||||
}
|
||||
|
||||
static unsigned getDRegFromSubinstEncoding(unsigned encoded_dreg) {
|
||||
if (encoded_dreg < 4)
|
||||
return Hexagon::D0 + encoded_dreg;
|
||||
else if (encoded_dreg < 8)
|
||||
return Hexagon::D0 + encoded_dreg + 4;
|
||||
return Hexagon::NoRegister;
|
||||
}
|
||||
|
||||
static void AddSubinstOperands(MCInst *MI, unsigned opcode, unsigned inst) {
|
||||
int64_t operand;
|
||||
MCOperand Op;
|
||||
switch (opcode) {
|
||||
case Hexagon::V4_SL2_deallocframe:
|
||||
case Hexagon::V4_SL2_jumpr31:
|
||||
case Hexagon::V4_SL2_jumpr31_f:
|
||||
case Hexagon::V4_SL2_jumpr31_fnew:
|
||||
case Hexagon::V4_SL2_jumpr31_t:
|
||||
case Hexagon::V4_SL2_jumpr31_tnew:
|
||||
case Hexagon::V4_SL2_return:
|
||||
case Hexagon::V4_SL2_return_f:
|
||||
case Hexagon::V4_SL2_return_fnew:
|
||||
case Hexagon::V4_SL2_return_t:
|
||||
case Hexagon::V4_SL2_return_tnew:
|
||||
// no operands for these instructions
|
||||
break;
|
||||
case Hexagon::V4_SS2_allocframe:
|
||||
// u 8-4{5_3}
|
||||
operand = ((inst & 0x1f0) >> 4) << 3;
|
||||
Op = MCOperand::createImm(operand);
|
||||
MI->addOperand(Op);
|
||||
break;
|
||||
case Hexagon::V4_SL1_loadri_io:
|
||||
// Rd 3-0, Rs 7-4, u 11-8{4_2}
|
||||
operand = getRegFromSubinstEncoding(inst & 0xf);
|
||||
Op = MCOperand::createReg(operand);
|
||||
MI->addOperand(Op);
|
||||
operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
|
||||
Op = MCOperand::createReg(operand);
|
||||
MI->addOperand(Op);
|
||||
operand = (inst & 0xf00) >> 6;
|
||||
Op = MCOperand::createImm(operand);
|
||||
MI->addOperand(Op);
|
||||
break;
|
||||
case Hexagon::V4_SL1_loadrub_io:
|
||||
// Rd 3-0, Rs 7-4, u 11-8
|
||||
operand = getRegFromSubinstEncoding(inst & 0xf);
|
||||
Op = MCOperand::createReg(operand);
|
||||
MI->addOperand(Op);
|
||||
operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
|
||||
Op = MCOperand::createReg(operand);
|
||||
MI->addOperand(Op);
|
||||
operand = (inst & 0xf00) >> 8;
|
||||
Op = MCOperand::createImm(operand);
|
||||
MI->addOperand(Op);
|
||||
break;
|
||||
case Hexagon::V4_SL2_loadrb_io:
|
||||
// Rd 3-0, Rs 7-4, u 10-8
|
||||
operand = getRegFromSubinstEncoding(inst & 0xf);
|
||||
Op = MCOperand::createReg(operand);
|
||||
MI->addOperand(Op);
|
||||
operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
|
||||
Op = MCOperand::createReg(operand);
|
||||
MI->addOperand(Op);
|
||||
operand = (inst & 0x700) >> 8;
|
||||
Op = MCOperand::createImm(operand);
|
||||
MI->addOperand(Op);
|
||||
break;
|
||||
case Hexagon::V4_SL2_loadrh_io:
|
||||
case Hexagon::V4_SL2_loadruh_io:
|
||||
// Rd 3-0, Rs 7-4, u 10-8{3_1}
|
||||
operand = getRegFromSubinstEncoding(inst & 0xf);
|
||||
Op = MCOperand::createReg(operand);
|
||||
MI->addOperand(Op);
|
||||
operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
|
||||
Op = MCOperand::createReg(operand);
|
||||
MI->addOperand(Op);
|
||||
operand = ((inst & 0x700) >> 8) << 1;
|
||||
Op = MCOperand::createImm(operand);
|
||||
MI->addOperand(Op);
|
||||
break;
|
||||
case Hexagon::V4_SL2_loadrd_sp:
|
||||
// Rdd 2-0, u 7-3{5_3}
|
||||
operand = getDRegFromSubinstEncoding(inst & 0x7);
|
||||
Op = MCOperand::createReg(operand);
|
||||
MI->addOperand(Op);
|
||||
operand = ((inst & 0x0f8) >> 3) << 3;
|
||||
Op = MCOperand::createImm(operand);
|
||||
MI->addOperand(Op);
|
||||
break;
|
||||
case Hexagon::V4_SL2_loadri_sp:
|
||||
// Rd 3-0, u 8-4{5_2}
|
||||
operand = getRegFromSubinstEncoding(inst & 0xf);
|
||||
Op = MCOperand::createReg(operand);
|
||||
MI->addOperand(Op);
|
||||
operand = ((inst & 0x1f0) >> 4) << 2;
|
||||
Op = MCOperand::createImm(operand);
|
||||
MI->addOperand(Op);
|
||||
break;
|
||||
case Hexagon::V4_SA1_addi:
|
||||
// Rx 3-0 (x2), s7 10-4
|
||||
operand = getRegFromSubinstEncoding(inst & 0xf);
|
||||
Op = MCOperand::createReg(operand);
|
||||
MI->addOperand(Op);
|
||||
MI->addOperand(Op);
|
||||
operand = SignExtend64<7>((inst & 0x7f0) >> 4);
|
||||
Op = MCOperand::createImm(operand);
|
||||
MI->addOperand(Op);
|
||||
break;
|
||||
case Hexagon::V4_SA1_addrx:
|
||||
// Rx 3-0 (x2), Rs 7-4
|
||||
operand = getRegFromSubinstEncoding(inst & 0xf);
|
||||
Op = MCOperand::createReg(operand);
|
||||
MI->addOperand(Op);
|
||||
MI->addOperand(Op);
|
||||
operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
|
||||
Op = MCOperand::createReg(operand);
|
||||
MI->addOperand(Op);
|
||||
case Hexagon::V4_SA1_and1:
|
||||
case Hexagon::V4_SA1_dec:
|
||||
case Hexagon::V4_SA1_inc:
|
||||
case Hexagon::V4_SA1_sxtb:
|
||||
case Hexagon::V4_SA1_sxth:
|
||||
case Hexagon::V4_SA1_tfr:
|
||||
case Hexagon::V4_SA1_zxtb:
|
||||
case Hexagon::V4_SA1_zxth:
|
||||
// Rd 3-0, Rs 7-4
|
||||
operand = getRegFromSubinstEncoding(inst & 0xf);
|
||||
Op = MCOperand::createReg(operand);
|
||||
MI->addOperand(Op);
|
||||
operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
|
||||
Op = MCOperand::createReg(operand);
|
||||
MI->addOperand(Op);
|
||||
break;
|
||||
case Hexagon::V4_SA1_addsp:
|
||||
// Rd 3-0, u 9-4{6_2}
|
||||
operand = getRegFromSubinstEncoding(inst & 0xf);
|
||||
Op = MCOperand::createReg(operand);
|
||||
MI->addOperand(Op);
|
||||
operand = ((inst & 0x3f0) >> 4) << 2;
|
||||
Op = MCOperand::createImm(operand);
|
||||
MI->addOperand(Op);
|
||||
break;
|
||||
case Hexagon::V4_SA1_seti:
|
||||
// Rd 3-0, u 9-4
|
||||
operand = getRegFromSubinstEncoding(inst & 0xf);
|
||||
Op = MCOperand::createReg(operand);
|
||||
MI->addOperand(Op);
|
||||
operand = (inst & 0x3f0) >> 4;
|
||||
Op = MCOperand::createImm(operand);
|
||||
MI->addOperand(Op);
|
||||
break;
|
||||
case Hexagon::V4_SA1_clrf:
|
||||
case Hexagon::V4_SA1_clrfnew:
|
||||
case Hexagon::V4_SA1_clrt:
|
||||
case Hexagon::V4_SA1_clrtnew:
|
||||
case Hexagon::V4_SA1_setin1:
|
||||
// Rd 3-0
|
||||
operand = getRegFromSubinstEncoding(inst & 0xf);
|
||||
Op = MCOperand::createReg(operand);
|
||||
MI->addOperand(Op);
|
||||
break;
|
||||
case Hexagon::V4_SA1_cmpeqi:
|
||||
// Rs 7-4, u 1-0
|
||||
operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
|
||||
Op = MCOperand::createReg(operand);
|
||||
MI->addOperand(Op);
|
||||
operand = inst & 0x3;
|
||||
Op = MCOperand::createImm(operand);
|
||||
MI->addOperand(Op);
|
||||
break;
|
||||
case Hexagon::V4_SA1_combine0i:
|
||||
case Hexagon::V4_SA1_combine1i:
|
||||
case Hexagon::V4_SA1_combine2i:
|
||||
case Hexagon::V4_SA1_combine3i:
|
||||
// Rdd 2-0, u 6-5
|
||||
operand = getDRegFromSubinstEncoding(inst & 0x7);
|
||||
Op = MCOperand::createReg(operand);
|
||||
MI->addOperand(Op);
|
||||
operand = (inst & 0x060) >> 5;
|
||||
Op = MCOperand::createImm(operand);
|
||||
MI->addOperand(Op);
|
||||
break;
|
||||
case Hexagon::V4_SA1_combinerz:
|
||||
case Hexagon::V4_SA1_combinezr:
|
||||
// Rdd 2-0, Rs 7-4
|
||||
operand = getDRegFromSubinstEncoding(inst & 0x7);
|
||||
Op = MCOperand::createReg(operand);
|
||||
MI->addOperand(Op);
|
||||
operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
|
||||
Op = MCOperand::createReg(operand);
|
||||
MI->addOperand(Op);
|
||||
break;
|
||||
case Hexagon::V4_SS1_storeb_io:
|
||||
// Rs 7-4, u 11-8, Rt 3-0
|
||||
operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
|
||||
Op = MCOperand::createReg(operand);
|
||||
MI->addOperand(Op);
|
||||
operand = (inst & 0xf00) >> 8;
|
||||
Op = MCOperand::createImm(operand);
|
||||
MI->addOperand(Op);
|
||||
operand = getRegFromSubinstEncoding(inst & 0xf);
|
||||
Op = MCOperand::createReg(operand);
|
||||
MI->addOperand(Op);
|
||||
break;
|
||||
case Hexagon::V4_SS1_storew_io:
|
||||
// Rs 7-4, u 11-8{4_2}, Rt 3-0
|
||||
operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
|
||||
Op = MCOperand::createReg(operand);
|
||||
MI->addOperand(Op);
|
||||
operand = ((inst & 0xf00) >> 8) << 2;
|
||||
Op = MCOperand::createImm(operand);
|
||||
MI->addOperand(Op);
|
||||
operand = getRegFromSubinstEncoding(inst & 0xf);
|
||||
Op = MCOperand::createReg(operand);
|
||||
MI->addOperand(Op);
|
||||
break;
|
||||
case Hexagon::V4_SS2_storebi0:
|
||||
case Hexagon::V4_SS2_storebi1:
|
||||
// Rs 7-4, u 3-0
|
||||
operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
|
||||
Op = MCOperand::createReg(operand);
|
||||
MI->addOperand(Op);
|
||||
operand = inst & 0xf;
|
||||
Op = MCOperand::createImm(operand);
|
||||
MI->addOperand(Op);
|
||||
break;
|
||||
case Hexagon::V4_SS2_storewi0:
|
||||
case Hexagon::V4_SS2_storewi1:
|
||||
// Rs 7-4, u 3-0{4_2}
|
||||
operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
|
||||
Op = MCOperand::createReg(operand);
|
||||
MI->addOperand(Op);
|
||||
operand = (inst & 0xf) << 2;
|
||||
Op = MCOperand::createImm(operand);
|
||||
MI->addOperand(Op);
|
||||
break;
|
||||
case Hexagon::V4_SS2_stored_sp:
|
||||
// s 8-3{6_3}, Rtt 2-0
|
||||
operand = SignExtend64<9>(((inst & 0x1f8) >> 3) << 3);
|
||||
Op = MCOperand::createImm(operand);
|
||||
MI->addOperand(Op);
|
||||
operand = getDRegFromSubinstEncoding(inst & 0x7);
|
||||
Op = MCOperand::createReg(operand);
|
||||
MI->addOperand(Op);
|
||||
case Hexagon::V4_SS2_storeh_io:
|
||||
// Rs 7-4, u 10-8{3_1}, Rt 3-0
|
||||
operand = getRegFromSubinstEncoding((inst & 0xf0) >> 4);
|
||||
Op = MCOperand::createReg(operand);
|
||||
MI->addOperand(Op);
|
||||
operand = ((inst & 0x700) >> 8) << 1;
|
||||
Op = MCOperand::createImm(operand);
|
||||
MI->addOperand(Op);
|
||||
operand = getRegFromSubinstEncoding(inst & 0xf);
|
||||
Op = MCOperand::createReg(operand);
|
||||
MI->addOperand(Op);
|
||||
break;
|
||||
case Hexagon::V4_SS2_storew_sp:
|
||||
// u 8-4{5_2}, Rd 3-0
|
||||
operand = ((inst & 0x1f0) >> 4) << 2;
|
||||
Op = MCOperand::createImm(operand);
|
||||
MI->addOperand(Op);
|
||||
operand = getRegFromSubinstEncoding(inst & 0xf);
|
||||
Op = MCOperand::createReg(operand);
|
||||
MI->addOperand(Op);
|
||||
break;
|
||||
default:
|
||||
// don't crash with an invalid subinstruction
|
||||
// llvm_unreachable("Invalid subinstruction in duplex instruction");
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -20,6 +20,7 @@
|
|||
#include "HexagonTargetMachine.h"
|
||||
#include "MCTargetDesc/HexagonInstPrinter.h"
|
||||
#include "MCTargetDesc/HexagonMCInstrInfo.h"
|
||||
#include "MCTargetDesc/HexagonMCShuffler.h"
|
||||
#include "llvm/ADT/SmallString.h"
|
||||
#include "llvm/ADT/SmallVector.h"
|
||||
#include "llvm/ADT/StringExtras.h"
|
||||
|
@ -199,9 +200,13 @@ void HexagonAsmPrinter::EmitInstruction(const MachineInstr *MI) {
|
|||
HexagonLowerToMC(MI, MCB, *this);
|
||||
HexagonMCInstrInfo::padEndloop(MCB);
|
||||
}
|
||||
// Examine the packet and convert pairs of instructions to duplex
|
||||
// instructions when possible.
|
||||
MCInst InstBundlePreDuplex = MCInst(MCB);
|
||||
SmallVector<DuplexCandidate, 8> possibleDuplexes;
|
||||
possibleDuplexes = HexagonMCInstrInfo::getDuplexPossibilties(*Subtarget->getInstrInfo(), MCB);
|
||||
HexagonMCShuffle(*Subtarget->getInstrInfo(), *Subtarget, OutStreamer->getContext(), MCB, possibleDuplexes);
|
||||
EmitToStreamer(*OutStreamer, MCB);
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
extern "C" void LLVMInitializeHexagonAsmPrinter() {
|
||||
|
|
|
@ -146,6 +146,11 @@ class EXTENDERInst<dag outs, dag ins, string asmstr, list<dag> pattern = []>
|
|||
: InstHexagon<outs, ins, asmstr, pattern, "", EXTENDER_tc_1_SLOT0123,
|
||||
TypePREFIX>, OpcodeHexagon;
|
||||
|
||||
class SUBInst<dag outs, dag ins, string asmstr, list<dag> pattern = [],
|
||||
string cstr = "">
|
||||
: InstHexagon<outs, ins, asmstr, pattern, "", PREFIX, TypeDUPLEX>,
|
||||
OpcodeHexagon;
|
||||
|
||||
class CJInst<dag outs, dag ins, string asmstr, list<dag> pattern = [],
|
||||
string cstr = "">
|
||||
: InstHexagon<outs, ins, asmstr, pattern, cstr, COMPOUND, TypeCOMPOUND>,
|
||||
|
|
|
@ -4263,3 +4263,7 @@ def J4_jumpsetr: CJInst <
|
|||
let Inst{19-16} = Rs;
|
||||
let Inst{7-1} = r9_2{8-2};
|
||||
}
|
||||
|
||||
// Duplex instructions
|
||||
//===----------------------------------------------------------------------===//
|
||||
include "HexagonIsetDx.td"
|
||||
|
|
|
@ -0,0 +1,728 @@
|
|||
//=- HexagonIsetDx.td - Target Desc. for Hexagon Target -*- tablegen -*-=//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file describes the Hexagon duplex instructions.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// SA1_combine1i: Combines.
|
||||
let isCodeGenOnly = 1, hasSideEffects = 0 in
|
||||
def V4_SA1_combine1i: SUBInst <
|
||||
(outs DoubleRegs:$Rdd),
|
||||
(ins u2Imm:$u2),
|
||||
"$Rdd = combine(#1, #$u2)"> {
|
||||
bits<3> Rdd;
|
||||
bits<2> u2;
|
||||
|
||||
let Inst{12-10} = 0b111;
|
||||
let Inst{8} = 0b0;
|
||||
let Inst{4-3} = 0b01;
|
||||
let Inst{2-0} = Rdd;
|
||||
let Inst{6-5} = u2;
|
||||
}
|
||||
|
||||
// SL2_jumpr31_f: Indirect conditional jump if false.
|
||||
// SL2_jumpr31_f -> SL2_jumpr31_fnew
|
||||
let Defs = [PC], Uses = [P0, R31], isCodeGenOnly = 1, isPredicated = 1, isPredicatedFalse = 1, isBranch = 1, isIndirectBranch = 1, hasSideEffects = 0 in
|
||||
def V4_SL2_jumpr31_f: SUBInst <
|
||||
(outs ),
|
||||
(ins ),
|
||||
"if (!p0) jumpr r31"> {
|
||||
let Inst{12-6} = 0b1111111;
|
||||
let Inst{2-0} = 0b101;
|
||||
}
|
||||
|
||||
// SL2_deallocframe: Deallocate stack frame.
|
||||
let Defs = [R31, R29, R30], Uses = [R30], isCodeGenOnly = 1, mayLoad = 1, accessSize = DoubleWordAccess in
|
||||
def V4_SL2_deallocframe: SUBInst <
|
||||
(outs ),
|
||||
(ins ),
|
||||
"deallocframe"> {
|
||||
let Inst{12-6} = 0b1111100;
|
||||
let Inst{2} = 0b0;
|
||||
}
|
||||
|
||||
// SL2_return_f: Deallocate stack frame and return.
|
||||
// SL2_return_f -> SL2_return_fnew
|
||||
let Defs = [PC, R31, R29, R30], Uses = [R30, P0], isCodeGenOnly = 1, isPredicated = 1, isPredicatedFalse = 1, mayLoad = 1, accessSize = DoubleWordAccess, isBranch = 1, isIndirectBranch = 1 in
|
||||
def V4_SL2_return_f: SUBInst <
|
||||
(outs ),
|
||||
(ins ),
|
||||
"if (!p0) dealloc_return"> {
|
||||
let Inst{12-6} = 0b1111101;
|
||||
let Inst{2-0} = 0b101;
|
||||
}
|
||||
|
||||
// SA1_combine3i: Combines.
|
||||
let isCodeGenOnly = 1, hasSideEffects = 0 in
|
||||
def V4_SA1_combine3i: SUBInst <
|
||||
(outs DoubleRegs:$Rdd),
|
||||
(ins u2Imm:$u2),
|
||||
"$Rdd = combine(#3, #$u2)"> {
|
||||
bits<3> Rdd;
|
||||
bits<2> u2;
|
||||
|
||||
let Inst{12-10} = 0b111;
|
||||
let Inst{8} = 0b0;
|
||||
let Inst{4-3} = 0b11;
|
||||
let Inst{2-0} = Rdd;
|
||||
let Inst{6-5} = u2;
|
||||
}
|
||||
|
||||
// SS2_storebi0: Store byte.
|
||||
let isCodeGenOnly = 1, mayStore = 1, accessSize = ByteAccess in
|
||||
def V4_SS2_storebi0: SUBInst <
|
||||
(outs ),
|
||||
(ins IntRegs:$Rs, u4_0Imm:$u4_0),
|
||||
"memb($Rs + #$u4_0)=#0"> {
|
||||
bits<4> Rs;
|
||||
bits<4> u4_0;
|
||||
|
||||
let Inst{12-8} = 0b10010;
|
||||
let Inst{7-4} = Rs;
|
||||
let Inst{3-0} = u4_0;
|
||||
}
|
||||
|
||||
// SA1_clrtnew: Clear if true.
|
||||
let Uses = [P0], isCodeGenOnly = 1, isPredicated = 1, isPredicatedNew = 1, hasSideEffects = 0, hasNewValue = 1, opNewValue = 0 in
|
||||
def V4_SA1_clrtnew: SUBInst <
|
||||
(outs IntRegs:$Rd),
|
||||
(ins ),
|
||||
"if (p0.new) $Rd = #0"> {
|
||||
bits<4> Rd;
|
||||
|
||||
let Inst{12-9} = 0b1101;
|
||||
let Inst{6-4} = 0b100;
|
||||
let Inst{3-0} = Rd;
|
||||
}
|
||||
|
||||
// SL2_loadruh_io: Load half.
|
||||
let isCodeGenOnly = 1, mayLoad = 1, accessSize = HalfWordAccess, hasNewValue = 1, opNewValue = 0 in
|
||||
def V4_SL2_loadruh_io: SUBInst <
|
||||
(outs IntRegs:$Rd),
|
||||
(ins IntRegs:$Rs, u3_1Imm:$u3_1),
|
||||
"$Rd = memuh($Rs + #$u3_1)"> {
|
||||
bits<4> Rd;
|
||||
bits<4> Rs;
|
||||
bits<4> u3_1;
|
||||
|
||||
let Inst{12-11} = 0b01;
|
||||
let Inst{3-0} = Rd;
|
||||
let Inst{7-4} = Rs;
|
||||
let Inst{10-8} = u3_1{3-1};
|
||||
}
|
||||
|
||||
// SL2_jumpr31_tnew: Indirect conditional jump if true.
|
||||
let Defs = [PC], Uses = [P0, R31], isCodeGenOnly = 1, isPredicated = 1, isPredicatedNew = 1, isBranch = 1, isIndirectBranch = 1, hasSideEffects = 0 in
|
||||
def V4_SL2_jumpr31_tnew: SUBInst <
|
||||
(outs ),
|
||||
(ins ),
|
||||
"if (p0.new) jumpr:nt r31"> {
|
||||
let Inst{12-6} = 0b1111111;
|
||||
let Inst{2-0} = 0b110;
|
||||
}
|
||||
|
||||
// SA1_addi: Add.
|
||||
let isCodeGenOnly = 1, hasSideEffects = 0, hasNewValue = 1, opNewValue = 0, isExtendable = 1, isExtentSigned = 1, opExtentBits = 7, opExtendable = 2 in
|
||||
def V4_SA1_addi: SUBInst <
|
||||
(outs IntRegs:$Rx),
|
||||
(ins IntRegs:$_src_, s7Ext:$s7),
|
||||
"$Rx = add($_src_, #$s7)" ,
|
||||
[] ,
|
||||
"$_src_ = $Rx"> {
|
||||
bits<4> Rx;
|
||||
bits<7> s7;
|
||||
|
||||
let Inst{12-11} = 0b00;
|
||||
let Inst{3-0} = Rx;
|
||||
let Inst{10-4} = s7;
|
||||
}
|
||||
|
||||
// SL1_loadrub_io: Load byte.
|
||||
let isCodeGenOnly = 1, mayLoad = 1, accessSize = ByteAccess, hasNewValue = 1, opNewValue = 0 in
|
||||
def V4_SL1_loadrub_io: SUBInst <
|
||||
(outs IntRegs:$Rd),
|
||||
(ins IntRegs:$Rs, u4_0Imm:$u4_0),
|
||||
"$Rd = memub($Rs + #$u4_0)"> {
|
||||
bits<4> Rd;
|
||||
bits<4> Rs;
|
||||
bits<4> u4_0;
|
||||
|
||||
let Inst{12} = 0b1;
|
||||
let Inst{3-0} = Rd;
|
||||
let Inst{7-4} = Rs;
|
||||
let Inst{11-8} = u4_0;
|
||||
}
|
||||
|
||||
// SL1_loadri_io: Load word.
|
||||
let isCodeGenOnly = 1, mayLoad = 1, accessSize = WordAccess, hasNewValue = 1, opNewValue = 0 in
|
||||
def V4_SL1_loadri_io: SUBInst <
|
||||
(outs IntRegs:$Rd),
|
||||
(ins IntRegs:$Rs, u4_2Imm:$u4_2),
|
||||
"$Rd = memw($Rs + #$u4_2)"> {
|
||||
bits<4> Rd;
|
||||
bits<4> Rs;
|
||||
bits<6> u4_2;
|
||||
|
||||
let Inst{12} = 0b0;
|
||||
let Inst{3-0} = Rd;
|
||||
let Inst{7-4} = Rs;
|
||||
let Inst{11-8} = u4_2{5-2};
|
||||
}
|
||||
|
||||
// SA1_cmpeqi: Compareimmed.
|
||||
let Defs = [P0], isCodeGenOnly = 1, hasSideEffects = 0 in
|
||||
def V4_SA1_cmpeqi: SUBInst <
|
||||
(outs ),
|
||||
(ins IntRegs:$Rs, u2Imm:$u2),
|
||||
"p0 = cmp.eq($Rs, #$u2)"> {
|
||||
bits<4> Rs;
|
||||
bits<2> u2;
|
||||
|
||||
let Inst{12-8} = 0b11001;
|
||||
let Inst{7-4} = Rs;
|
||||
let Inst{1-0} = u2;
|
||||
}
|
||||
|
||||
// SA1_combinerz: Combines.
|
||||
let isCodeGenOnly = 1, hasSideEffects = 0 in
|
||||
def V4_SA1_combinerz: SUBInst <
|
||||
(outs DoubleRegs:$Rdd),
|
||||
(ins IntRegs:$Rs),
|
||||
"$Rdd = combine($Rs, #0)"> {
|
||||
bits<3> Rdd;
|
||||
bits<4> Rs;
|
||||
|
||||
let Inst{12-10} = 0b111;
|
||||
let Inst{8} = 0b1;
|
||||
let Inst{3} = 0b1;
|
||||
let Inst{2-0} = Rdd;
|
||||
let Inst{7-4} = Rs;
|
||||
}
|
||||
|
||||
// SL2_return_t: Deallocate stack frame and return.
|
||||
// SL2_return_t -> SL2_return_tnew
|
||||
let Defs = [PC, R31, R29, R30], Uses = [R30, P0], isCodeGenOnly = 1, isPredicated = 1, mayLoad = 1, accessSize = DoubleWordAccess, isBranch = 1, isIndirectBranch = 1 in
|
||||
def V4_SL2_return_t: SUBInst <
|
||||
(outs ),
|
||||
(ins ),
|
||||
"if (p0) dealloc_return"> {
|
||||
let Inst{12-6} = 0b1111101;
|
||||
let Inst{2-0} = 0b100;
|
||||
}
|
||||
|
||||
// SS2_allocframe: Allocate stack frame.
|
||||
let Defs = [R29, R30], Uses = [R30, R31, R29], isCodeGenOnly = 1, mayStore = 1, accessSize = DoubleWordAccess in
|
||||
def V4_SS2_allocframe: SUBInst <
|
||||
(outs ),
|
||||
(ins u5_3Imm:$u5_3),
|
||||
"allocframe(#$u5_3)"> {
|
||||
bits<8> u5_3;
|
||||
|
||||
let Inst{12-9} = 0b1110;
|
||||
let Inst{8-4} = u5_3{7-3};
|
||||
}
|
||||
|
||||
// SS2_storeh_io: Store half.
|
||||
let isCodeGenOnly = 1, mayStore = 1, accessSize = HalfWordAccess in
|
||||
def V4_SS2_storeh_io: SUBInst <
|
||||
(outs ),
|
||||
(ins IntRegs:$Rs, u3_1Imm:$u3_1, IntRegs:$Rt),
|
||||
"memh($Rs + #$u3_1) = $Rt"> {
|
||||
bits<4> Rs;
|
||||
bits<4> u3_1;
|
||||
bits<4> Rt;
|
||||
|
||||
let Inst{12-11} = 0b00;
|
||||
let Inst{7-4} = Rs;
|
||||
let Inst{10-8} = u3_1{3-1};
|
||||
let Inst{3-0} = Rt;
|
||||
}
|
||||
|
||||
// SS2_storewi0: Store word.
|
||||
let isCodeGenOnly = 1, mayStore = 1, accessSize = WordAccess in
|
||||
def V4_SS2_storewi0: SUBInst <
|
||||
(outs ),
|
||||
(ins IntRegs:$Rs, u4_2Imm:$u4_2),
|
||||
"memw($Rs + #$u4_2)=#0"> {
|
||||
bits<4> Rs;
|
||||
bits<6> u4_2;
|
||||
|
||||
let Inst{12-8} = 0b10000;
|
||||
let Inst{7-4} = Rs;
|
||||
let Inst{3-0} = u4_2{5-2};
|
||||
}
|
||||
|
||||
// SS2_storewi1: Store word.
|
||||
let isCodeGenOnly = 1, mayStore = 1, accessSize = WordAccess in
|
||||
def V4_SS2_storewi1: SUBInst <
|
||||
(outs ),
|
||||
(ins IntRegs:$Rs, u4_2Imm:$u4_2),
|
||||
"memw($Rs + #$u4_2)=#1"> {
|
||||
bits<4> Rs;
|
||||
bits<6> u4_2;
|
||||
|
||||
let Inst{12-8} = 0b10001;
|
||||
let Inst{7-4} = Rs;
|
||||
let Inst{3-0} = u4_2{5-2};
|
||||
}
|
||||
|
||||
// SL2_jumpr31: Indirect conditional jump if true.
|
||||
let Defs = [PC], Uses = [R31], isCodeGenOnly = 1, isBranch = 1, isIndirectBranch = 1, hasSideEffects = 0 in
|
||||
def V4_SL2_jumpr31: SUBInst <
|
||||
(outs ),
|
||||
(ins ),
|
||||
"jumpr r31"> {
|
||||
let Inst{12-6} = 0b1111111;
|
||||
let Inst{2} = 0b0;
|
||||
}
|
||||
|
||||
// SA1_combinezr: Combines.
|
||||
let isCodeGenOnly = 1, hasSideEffects = 0 in
|
||||
def V4_SA1_combinezr: SUBInst <
|
||||
(outs DoubleRegs:$Rdd),
|
||||
(ins IntRegs:$Rs),
|
||||
"$Rdd = combine(#0, $Rs)"> {
|
||||
bits<3> Rdd;
|
||||
bits<4> Rs;
|
||||
|
||||
let Inst{12-10} = 0b111;
|
||||
let Inst{8} = 0b1;
|
||||
let Inst{3} = 0b0;
|
||||
let Inst{2-0} = Rdd;
|
||||
let Inst{7-4} = Rs;
|
||||
}
|
||||
|
||||
// SL2_loadrh_io: Load half.
|
||||
let isCodeGenOnly = 1, mayLoad = 1, accessSize = HalfWordAccess, hasNewValue = 1, opNewValue = 0 in
|
||||
def V4_SL2_loadrh_io: SUBInst <
|
||||
(outs IntRegs:$Rd),
|
||||
(ins IntRegs:$Rs, u3_1Imm:$u3_1),
|
||||
"$Rd = memh($Rs + #$u3_1)"> {
|
||||
bits<4> Rd;
|
||||
bits<4> Rs;
|
||||
bits<4> u3_1;
|
||||
|
||||
let Inst{12-11} = 0b00;
|
||||
let Inst{3-0} = Rd;
|
||||
let Inst{7-4} = Rs;
|
||||
let Inst{10-8} = u3_1{3-1};
|
||||
}
|
||||
|
||||
// SA1_addrx: Add.
|
||||
let isCodeGenOnly = 1, hasSideEffects = 0, hasNewValue = 1, opNewValue = 0 in
|
||||
def V4_SA1_addrx: SUBInst <
|
||||
(outs IntRegs:$Rx),
|
||||
(ins IntRegs:$_src_, IntRegs:$Rs),
|
||||
"$Rx = add($_src_, $Rs)" ,
|
||||
[] ,
|
||||
"$_src_ = $Rx"> {
|
||||
bits<4> Rx;
|
||||
bits<4> Rs;
|
||||
|
||||
let Inst{12-8} = 0b11000;
|
||||
let Inst{3-0} = Rx;
|
||||
let Inst{7-4} = Rs;
|
||||
}
|
||||
|
||||
// SA1_setin1: Set to -1.
|
||||
let isCodeGenOnly = 1, hasSideEffects = 0, hasNewValue = 1, opNewValue = 0 in
|
||||
def V4_SA1_setin1: SUBInst <
|
||||
(outs IntRegs:$Rd),
|
||||
(ins ),
|
||||
"$Rd = #-1"> {
|
||||
bits<4> Rd;
|
||||
|
||||
let Inst{12-9} = 0b1101;
|
||||
let Inst{6} = 0b0;
|
||||
let Inst{3-0} = Rd;
|
||||
}
|
||||
|
||||
// SA1_sxth: Sxth.
|
||||
let isCodeGenOnly = 1, hasSideEffects = 0, hasNewValue = 1, opNewValue = 0 in
|
||||
def V4_SA1_sxth: SUBInst <
|
||||
(outs IntRegs:$Rd),
|
||||
(ins IntRegs:$Rs),
|
||||
"$Rd = sxth($Rs)"> {
|
||||
bits<4> Rd;
|
||||
bits<4> Rs;
|
||||
|
||||
let Inst{12-8} = 0b10100;
|
||||
let Inst{3-0} = Rd;
|
||||
let Inst{7-4} = Rs;
|
||||
}
|
||||
|
||||
// SA1_combine0i: Combines.
|
||||
let isCodeGenOnly = 1, hasSideEffects = 0 in
|
||||
def V4_SA1_combine0i: SUBInst <
|
||||
(outs DoubleRegs:$Rdd),
|
||||
(ins u2Imm:$u2),
|
||||
"$Rdd = combine(#0, #$u2)"> {
|
||||
bits<3> Rdd;
|
||||
bits<2> u2;
|
||||
|
||||
let Inst{12-10} = 0b111;
|
||||
let Inst{8} = 0b0;
|
||||
let Inst{4-3} = 0b00;
|
||||
let Inst{2-0} = Rdd;
|
||||
let Inst{6-5} = u2;
|
||||
}
|
||||
|
||||
// SA1_combine2i: Combines.
|
||||
let isCodeGenOnly = 1, hasSideEffects = 0 in
|
||||
def V4_SA1_combine2i: SUBInst <
|
||||
(outs DoubleRegs:$Rdd),
|
||||
(ins u2Imm:$u2),
|
||||
"$Rdd = combine(#2, #$u2)"> {
|
||||
bits<3> Rdd;
|
||||
bits<2> u2;
|
||||
|
||||
let Inst{12-10} = 0b111;
|
||||
let Inst{8} = 0b0;
|
||||
let Inst{4-3} = 0b10;
|
||||
let Inst{2-0} = Rdd;
|
||||
let Inst{6-5} = u2;
|
||||
}
|
||||
|
||||
// SA1_sxtb: Sxtb.
|
||||
let isCodeGenOnly = 1, hasSideEffects = 0, hasNewValue = 1, opNewValue = 0 in
|
||||
def V4_SA1_sxtb: SUBInst <
|
||||
(outs IntRegs:$Rd),
|
||||
(ins IntRegs:$Rs),
|
||||
"$Rd = sxtb($Rs)"> {
|
||||
bits<4> Rd;
|
||||
bits<4> Rs;
|
||||
|
||||
let Inst{12-8} = 0b10101;
|
||||
let Inst{3-0} = Rd;
|
||||
let Inst{7-4} = Rs;
|
||||
}
|
||||
|
||||
// SA1_clrf: Clear if false.
|
||||
// SA1_clrf -> SA1_clrfnew
|
||||
let Uses = [P0], isCodeGenOnly = 1, isPredicated = 1, isPredicatedFalse = 1, hasSideEffects = 0, hasNewValue = 1, opNewValue = 0 in
|
||||
def V4_SA1_clrf: SUBInst <
|
||||
(outs IntRegs:$Rd),
|
||||
(ins ),
|
||||
"if (!p0) $Rd = #0"> {
|
||||
bits<4> Rd;
|
||||
|
||||
let Inst{12-9} = 0b1101;
|
||||
let Inst{6-4} = 0b111;
|
||||
let Inst{3-0} = Rd;
|
||||
}
|
||||
|
||||
// SL2_loadrb_io: Load byte.
|
||||
let isCodeGenOnly = 1, mayLoad = 1, accessSize = ByteAccess, hasNewValue = 1, opNewValue = 0 in
|
||||
def V4_SL2_loadrb_io: SUBInst <
|
||||
(outs IntRegs:$Rd),
|
||||
(ins IntRegs:$Rs, u3_0Imm:$u3_0),
|
||||
"$Rd = memb($Rs + #$u3_0)"> {
|
||||
bits<4> Rd;
|
||||
bits<4> Rs;
|
||||
bits<3> u3_0;
|
||||
|
||||
let Inst{12-11} = 0b10;
|
||||
let Inst{3-0} = Rd;
|
||||
let Inst{7-4} = Rs;
|
||||
let Inst{10-8} = u3_0;
|
||||
}
|
||||
|
||||
// SA1_tfr: Tfr.
|
||||
let isCodeGenOnly = 1, hasSideEffects = 0, hasNewValue = 1, opNewValue = 0 in
|
||||
def V4_SA1_tfr: SUBInst <
|
||||
(outs IntRegs:$Rd),
|
||||
(ins IntRegs:$Rs),
|
||||
"$Rd = $Rs"> {
|
||||
bits<4> Rd;
|
||||
bits<4> Rs;
|
||||
|
||||
let Inst{12-8} = 0b10000;
|
||||
let Inst{3-0} = Rd;
|
||||
let Inst{7-4} = Rs;
|
||||
}
|
||||
|
||||
// SL2_loadrd_sp: Load dword.
|
||||
let Uses = [R29], isCodeGenOnly = 1, mayLoad = 1, accessSize = DoubleWordAccess in
|
||||
def V4_SL2_loadrd_sp: SUBInst <
|
||||
(outs DoubleRegs:$Rdd),
|
||||
(ins u5_3Imm:$u5_3),
|
||||
"$Rdd = memd(r29 + #$u5_3)"> {
|
||||
bits<3> Rdd;
|
||||
bits<8> u5_3;
|
||||
|
||||
let Inst{12-8} = 0b11110;
|
||||
let Inst{2-0} = Rdd;
|
||||
let Inst{7-3} = u5_3{7-3};
|
||||
}
|
||||
|
||||
// SA1_and1: And #1.
|
||||
let isCodeGenOnly = 1, hasSideEffects = 0, hasNewValue = 1, opNewValue = 0 in
|
||||
def V4_SA1_and1: SUBInst <
|
||||
(outs IntRegs:$Rd),
|
||||
(ins IntRegs:$Rs),
|
||||
"$Rd = and($Rs, #1)"> {
|
||||
bits<4> Rd;
|
||||
bits<4> Rs;
|
||||
|
||||
let Inst{12-8} = 0b10010;
|
||||
let Inst{3-0} = Rd;
|
||||
let Inst{7-4} = Rs;
|
||||
}
|
||||
|
||||
// SS2_storebi1: Store byte.
|
||||
let isCodeGenOnly = 1, mayStore = 1, accessSize = ByteAccess in
|
||||
def V4_SS2_storebi1: SUBInst <
|
||||
(outs ),
|
||||
(ins IntRegs:$Rs, u4_0Imm:$u4_0),
|
||||
"memb($Rs + #$u4_0)=#1"> {
|
||||
bits<4> Rs;
|
||||
bits<4> u4_0;
|
||||
|
||||
let Inst{12-8} = 0b10011;
|
||||
let Inst{7-4} = Rs;
|
||||
let Inst{3-0} = u4_0;
|
||||
}
|
||||
|
||||
// SA1_inc: Inc.
|
||||
let isCodeGenOnly = 1, hasSideEffects = 0, hasNewValue = 1, opNewValue = 0 in
|
||||
def V4_SA1_inc: SUBInst <
|
||||
(outs IntRegs:$Rd),
|
||||
(ins IntRegs:$Rs),
|
||||
"$Rd = add($Rs, #1)"> {
|
||||
bits<4> Rd;
|
||||
bits<4> Rs;
|
||||
|
||||
let Inst{12-8} = 0b10001;
|
||||
let Inst{3-0} = Rd;
|
||||
let Inst{7-4} = Rs;
|
||||
}
|
||||
|
||||
// SS2_stored_sp: Store dword.
|
||||
let Uses = [R29], isCodeGenOnly = 1, mayStore = 1, accessSize = DoubleWordAccess in
|
||||
def V4_SS2_stored_sp: SUBInst <
|
||||
(outs ),
|
||||
(ins s6_3Imm:$s6_3, DoubleRegs:$Rtt),
|
||||
"memd(r29 + #$s6_3) = $Rtt"> {
|
||||
bits<9> s6_3;
|
||||
bits<3> Rtt;
|
||||
|
||||
let Inst{12-9} = 0b0101;
|
||||
let Inst{8-3} = s6_3{8-3};
|
||||
let Inst{2-0} = Rtt;
|
||||
}
|
||||
|
||||
// SS2_storew_sp: Store word.
|
||||
let Uses = [R29], isCodeGenOnly = 1, mayStore = 1, accessSize = WordAccess in
|
||||
def V4_SS2_storew_sp: SUBInst <
|
||||
(outs ),
|
||||
(ins u5_2Imm:$u5_2, IntRegs:$Rt),
|
||||
"memw(r29 + #$u5_2) = $Rt"> {
|
||||
bits<7> u5_2;
|
||||
bits<4> Rt;
|
||||
|
||||
let Inst{12-9} = 0b0100;
|
||||
let Inst{8-4} = u5_2{6-2};
|
||||
let Inst{3-0} = Rt;
|
||||
}
|
||||
|
||||
// SL2_jumpr31_fnew: Indirect conditional jump if false.
|
||||
let Defs = [PC], Uses = [P0, R31], isCodeGenOnly = 1, isPredicated = 1, isPredicatedFalse = 1, isPredicatedNew = 1, isBranch = 1, isIndirectBranch = 1, hasSideEffects = 0 in
|
||||
def V4_SL2_jumpr31_fnew: SUBInst <
|
||||
(outs ),
|
||||
(ins ),
|
||||
"if (!p0.new) jumpr:nt r31"> {
|
||||
let Inst{12-6} = 0b1111111;
|
||||
let Inst{2-0} = 0b111;
|
||||
}
|
||||
|
||||
// SA1_clrt: Clear if true.
|
||||
// SA1_clrt -> SA1_clrtnew
|
||||
let Uses = [P0], isCodeGenOnly = 1, isPredicated = 1, hasSideEffects = 0, hasNewValue = 1, opNewValue = 0 in
|
||||
def V4_SA1_clrt: SUBInst <
|
||||
(outs IntRegs:$Rd),
|
||||
(ins ),
|
||||
"if (p0) $Rd = #0"> {
|
||||
bits<4> Rd;
|
||||
|
||||
let Inst{12-9} = 0b1101;
|
||||
let Inst{6-4} = 0b110;
|
||||
let Inst{3-0} = Rd;
|
||||
}
|
||||
|
||||
// SL2_return: Deallocate stack frame and return.
|
||||
let Defs = [PC, R31, R29, R30], Uses = [R30], isCodeGenOnly = 1, mayLoad = 1, accessSize = DoubleWordAccess, isBranch = 1, isIndirectBranch = 1 in
|
||||
def V4_SL2_return: SUBInst <
|
||||
(outs ),
|
||||
(ins ),
|
||||
"dealloc_return"> {
|
||||
let Inst{12-6} = 0b1111101;
|
||||
let Inst{2} = 0b0;
|
||||
}
|
||||
|
||||
// SA1_dec: Dec.
|
||||
let isCodeGenOnly = 1, hasSideEffects = 0, hasNewValue = 1, opNewValue = 0 in
|
||||
def V4_SA1_dec: SUBInst <
|
||||
(outs IntRegs:$Rd),
|
||||
(ins IntRegs:$Rs),
|
||||
"$Rd = add($Rs,#-1)"> {
|
||||
bits<4> Rd;
|
||||
bits<4> Rs;
|
||||
|
||||
let Inst{12-8} = 0b10011;
|
||||
let Inst{3-0} = Rd;
|
||||
let Inst{7-4} = Rs;
|
||||
}
|
||||
|
||||
// SA1_seti: Set immed.
|
||||
let isCodeGenOnly = 1, hasSideEffects = 0, hasNewValue = 1, opNewValue = 0, isExtendable = 1, isExtentSigned = 0, opExtentBits = 6, opExtendable = 1 in
|
||||
def V4_SA1_seti: SUBInst <
|
||||
(outs IntRegs:$Rd),
|
||||
(ins u6Ext:$u6),
|
||||
"$Rd = #$u6"> {
|
||||
bits<4> Rd;
|
||||
bits<6> u6;
|
||||
|
||||
let Inst{12-10} = 0b010;
|
||||
let Inst{3-0} = Rd;
|
||||
let Inst{9-4} = u6;
|
||||
}
|
||||
|
||||
// SL2_jumpr31_t: Indirect conditional jump if true.
|
||||
// SL2_jumpr31_t -> SL2_jumpr31_tnew
|
||||
let Defs = [PC], Uses = [P0, R31], isCodeGenOnly = 1, isPredicated = 1, isBranch = 1, isIndirectBranch = 1, hasSideEffects = 0 in
|
||||
def V4_SL2_jumpr31_t: SUBInst <
|
||||
(outs ),
|
||||
(ins ),
|
||||
"if (p0) jumpr r31"> {
|
||||
let Inst{12-6} = 0b1111111;
|
||||
let Inst{2-0} = 0b100;
|
||||
}
|
||||
|
||||
// SA1_clrfnew: Clear if false.
|
||||
let Uses = [P0], isCodeGenOnly = 1, isPredicated = 1, isPredicatedFalse = 1, isPredicatedNew = 1, hasSideEffects = 0, hasNewValue = 1, opNewValue = 0 in
|
||||
def V4_SA1_clrfnew: SUBInst <
|
||||
(outs IntRegs:$Rd),
|
||||
(ins ),
|
||||
"if (!p0.new) $Rd = #0"> {
|
||||
bits<4> Rd;
|
||||
|
||||
let Inst{12-9} = 0b1101;
|
||||
let Inst{6-4} = 0b101;
|
||||
let Inst{3-0} = Rd;
|
||||
}
|
||||
|
||||
// SS1_storew_io: Store word.
|
||||
let isCodeGenOnly = 1, mayStore = 1, accessSize = WordAccess in
|
||||
def V4_SS1_storew_io: SUBInst <
|
||||
(outs ),
|
||||
(ins IntRegs:$Rs, u4_2Imm:$u4_2, IntRegs:$Rt),
|
||||
"memw($Rs + #$u4_2) = $Rt"> {
|
||||
bits<4> Rs;
|
||||
bits<6> u4_2;
|
||||
bits<4> Rt;
|
||||
|
||||
let Inst{12} = 0b0;
|
||||
let Inst{7-4} = Rs;
|
||||
let Inst{11-8} = u4_2{5-2};
|
||||
let Inst{3-0} = Rt;
|
||||
}
|
||||
|
||||
// SA1_zxtb: Zxtb.
|
||||
let isCodeGenOnly = 1, hasSideEffects = 0, hasNewValue = 1, opNewValue = 0 in
|
||||
def V4_SA1_zxtb: SUBInst <
|
||||
(outs IntRegs:$Rd),
|
||||
(ins IntRegs:$Rs),
|
||||
"$Rd = and($Rs, #255)"> {
|
||||
bits<4> Rd;
|
||||
bits<4> Rs;
|
||||
|
||||
let Inst{12-8} = 0b10111;
|
||||
let Inst{3-0} = Rd;
|
||||
let Inst{7-4} = Rs;
|
||||
}
|
||||
|
||||
// SA1_addsp: Add.
|
||||
let Uses = [R29], isCodeGenOnly = 1, hasSideEffects = 0, hasNewValue = 1, opNewValue = 0 in
|
||||
def V4_SA1_addsp: SUBInst <
|
||||
(outs IntRegs:$Rd),
|
||||
(ins u6_2Imm:$u6_2),
|
||||
"$Rd = add(r29, #$u6_2)"> {
|
||||
bits<4> Rd;
|
||||
bits<8> u6_2;
|
||||
|
||||
let Inst{12-10} = 0b011;
|
||||
let Inst{3-0} = Rd;
|
||||
let Inst{9-4} = u6_2{7-2};
|
||||
}
|
||||
|
||||
// SL2_loadri_sp: Load word.
|
||||
let Uses = [R29], isCodeGenOnly = 1, mayLoad = 1, accessSize = WordAccess, hasNewValue = 1, opNewValue = 0 in
|
||||
def V4_SL2_loadri_sp: SUBInst <
|
||||
(outs IntRegs:$Rd),
|
||||
(ins u5_2Imm:$u5_2),
|
||||
"$Rd = memw(r29 + #$u5_2)"> {
|
||||
bits<4> Rd;
|
||||
bits<7> u5_2;
|
||||
|
||||
let Inst{12-9} = 0b1110;
|
||||
let Inst{3-0} = Rd;
|
||||
let Inst{8-4} = u5_2{6-2};
|
||||
}
|
||||
|
||||
// SS1_storeb_io: Store byte.
|
||||
let isCodeGenOnly = 1, mayStore = 1, accessSize = ByteAccess in
|
||||
def V4_SS1_storeb_io: SUBInst <
|
||||
(outs ),
|
||||
(ins IntRegs:$Rs, u4_0Imm:$u4_0, IntRegs:$Rt),
|
||||
"memb($Rs + #$u4_0) = $Rt"> {
|
||||
bits<4> Rs;
|
||||
bits<4> u4_0;
|
||||
bits<4> Rt;
|
||||
|
||||
let Inst{12} = 0b1;
|
||||
let Inst{7-4} = Rs;
|
||||
let Inst{11-8} = u4_0;
|
||||
let Inst{3-0} = Rt;
|
||||
}
|
||||
|
||||
// SL2_return_tnew: Deallocate stack frame and return.
|
||||
let Defs = [PC, R31, R29, R30], Uses = [R30, P0], isCodeGenOnly = 1, isPredicated = 1, isPredicatedNew = 1, mayLoad = 1, accessSize = DoubleWordAccess, isBranch = 1, isIndirectBranch = 1 in
|
||||
def V4_SL2_return_tnew: SUBInst <
|
||||
(outs ),
|
||||
(ins ),
|
||||
"if (p0.new) dealloc_return:nt"> {
|
||||
let Inst{12-6} = 0b1111101;
|
||||
let Inst{2-0} = 0b110;
|
||||
}
|
||||
|
||||
// SL2_return_fnew: Deallocate stack frame and return.
|
||||
let Defs = [PC, R31, R29, R30], Uses = [R30, P0], isCodeGenOnly = 1, isPredicated = 1, isPredicatedFalse = 1, isPredicatedNew = 1, mayLoad = 1, accessSize = DoubleWordAccess, isBranch = 1, isIndirectBranch = 1 in
|
||||
def V4_SL2_return_fnew: SUBInst <
|
||||
(outs ),
|
||||
(ins ),
|
||||
"if (!p0.new) dealloc_return:nt"> {
|
||||
let Inst{12-6} = 0b1111101;
|
||||
let Inst{2-0} = 0b111;
|
||||
}
|
||||
|
||||
// SA1_zxth: Zxth.
|
||||
let isCodeGenOnly = 1, hasSideEffects = 0, hasNewValue = 1, opNewValue = 0 in
|
||||
def V4_SA1_zxth: SUBInst <
|
||||
(outs IntRegs:$Rd),
|
||||
(ins IntRegs:$Rs),
|
||||
"$Rd = zxth($Rs)"> {
|
||||
bits<4> Rd;
|
||||
bits<4> Rs;
|
||||
|
||||
let Inst{12-8} = 0b10110;
|
||||
let Inst{3-0} = Rd;
|
||||
let Inst{7-4} = Rs;
|
||||
}
|
||||
|
|
@ -27,6 +27,7 @@ let PrintMethod = "printImmOperand" in {
|
|||
def s8Imm : Operand<i32>;
|
||||
def s8Imm64 : Operand<i64>;
|
||||
def s6Imm : Operand<i32>;
|
||||
def s6_3Imm : Operand<i32>;
|
||||
def s4Imm : Operand<i32>;
|
||||
def s4_0Imm : Operand<i32>;
|
||||
def s4_1Imm : Operand<i32>;
|
||||
|
@ -51,8 +52,14 @@ let PrintMethod = "printImmOperand" in {
|
|||
def u6_2Imm : Operand<i32>;
|
||||
def u6_3Imm : Operand<i32>;
|
||||
def u5Imm : Operand<i32>;
|
||||
def u5_2Imm : Operand<i32>;
|
||||
def u5_3Imm : Operand<i32>;
|
||||
def u4Imm : Operand<i32>;
|
||||
def u4_0Imm : Operand<i32>;
|
||||
def u4_2Imm : Operand<i32>;
|
||||
def u3Imm : Operand<i32>;
|
||||
def u3_0Imm : Operand<i32>;
|
||||
def u3_1Imm : Operand<i32>;
|
||||
def u2Imm : Operand<i32>;
|
||||
def u1Imm : Operand<i32>;
|
||||
def n8Imm : Operand<i32>;
|
||||
|
@ -444,6 +451,7 @@ let PrintMethod = "printExtOperand" in {
|
|||
def s10Ext : Operand<i32>;
|
||||
def s9Ext : Operand<i32>;
|
||||
def s8Ext : Operand<i32>;
|
||||
def s7Ext : Operand<i32>;
|
||||
def s6Ext : Operand<i32>;
|
||||
def s11_0Ext : Operand<i32>;
|
||||
def s11_1Ext : Operand<i32>;
|
||||
|
|
|
@ -4,6 +4,7 @@ add_llvm_library(LLVMHexagonDesc
|
|||
HexagonInstPrinter.cpp
|
||||
HexagonMCAsmInfo.cpp
|
||||
HexagonMCCodeEmitter.cpp
|
||||
HexagonMCDuplexInfo.cpp
|
||||
HexagonMCInstrInfo.cpp
|
||||
HexagonMCShuffler.cpp
|
||||
HexagonMCTargetDesc.cpp
|
||||
|
|
|
@ -16,6 +16,7 @@
|
|||
#include "llvm/MC/MCAssembler.h"
|
||||
#include "llvm/MC/MCELFObjectWriter.h"
|
||||
#include "llvm/MC/MCFixupKindInfo.h"
|
||||
#include "llvm/MC/MCInstrInfo.h"
|
||||
#include "llvm/Support/TargetRegistry.h"
|
||||
|
||||
using namespace llvm;
|
||||
|
|
|
@ -43,6 +43,7 @@ namespace HexagonII {
|
|||
TypeXTYPE = 8,
|
||||
TypeMEMOP = 9,
|
||||
TypeNV = 10,
|
||||
TypeDUPLEX = 11,
|
||||
TypePREFIX = 30, // Such as extenders.
|
||||
TypeENDLOOP = 31 // Such as end of a HW loop.
|
||||
};
|
||||
|
@ -190,6 +191,17 @@ namespace HexagonII {
|
|||
MO_GPREL
|
||||
};
|
||||
|
||||
// Hexagon Sub-instruction classes.
|
||||
enum SubInstructionGroup {
|
||||
HSIG_None = 0,
|
||||
HSIG_L1,
|
||||
HSIG_L2,
|
||||
HSIG_S1,
|
||||
HSIG_S2,
|
||||
HSIG_A,
|
||||
HSIG_Compound
|
||||
};
|
||||
|
||||
enum InstParseBits {
|
||||
INST_PARSE_MASK = 0x0000c000,
|
||||
INST_PARSE_PACKET_END = 0x0000c000,
|
||||
|
|
|
@ -129,7 +129,13 @@ void HexagonInstPrinter::printInst(MCInst const *MI, raw_ostream &OS,
|
|||
HasExtender = false;
|
||||
for (auto const &I : HexagonMCInstrInfo::bundleInstructions(*MI)) {
|
||||
MCInst const &MCI = *I.getInst();
|
||||
printInstruction(&MCI, OS);
|
||||
if (HexagonMCInstrInfo::isDuplex(MII, MCI)) {
|
||||
printInstruction(MCI.getOperand(1).getInst(), OS);
|
||||
OS << '\v';
|
||||
HasExtender = false;
|
||||
printInstruction(MCI.getOperand(0).getInst(), OS);
|
||||
} else
|
||||
printInstruction(&MCI, OS);
|
||||
setExtender(MCI);
|
||||
OS << "\n";
|
||||
}
|
||||
|
|
|
@ -40,18 +40,25 @@ HexagonMCCodeEmitter::HexagonMCCodeEmitter(MCInstrInfo const &aMII,
|
|||
uint32_t HexagonMCCodeEmitter::parseBits(size_t Instruction, size_t Last,
|
||||
MCInst const &MCB,
|
||||
MCInst const &MCI) const {
|
||||
bool Duplex = HexagonMCInstrInfo::isDuplex(MCII, MCI);
|
||||
if (Instruction == 0) {
|
||||
if (HexagonMCInstrInfo::isInnerLoop(MCB)) {
|
||||
assert(!Duplex);
|
||||
assert(Instruction != Last);
|
||||
return HexagonII::INST_PARSE_LOOP_END;
|
||||
}
|
||||
}
|
||||
if (Instruction == 1) {
|
||||
if (HexagonMCInstrInfo::isOuterLoop(MCB)) {
|
||||
assert(!Duplex);
|
||||
assert(Instruction != Last);
|
||||
return HexagonII::INST_PARSE_LOOP_END;
|
||||
}
|
||||
}
|
||||
if (Duplex) {
|
||||
assert(Instruction == Last);
|
||||
return HexagonII::INST_PARSE_DUPLEX;
|
||||
}
|
||||
if(Instruction == Last)
|
||||
return HexagonII::INST_PARSE_PACKET_END;
|
||||
return HexagonII::INST_PARSE_NOT_END;
|
||||
|
@ -149,6 +156,81 @@ void HexagonMCCodeEmitter::EncodeSingleInstruction(
|
|||
llvm_unreachable("Unimplemented Instruction");
|
||||
}
|
||||
Binary |= Parse;
|
||||
|
||||
// if we need to emit a duplexed instruction
|
||||
if (HMB.getOpcode() >= Hexagon::DuplexIClass0 &&
|
||||
HMB.getOpcode() <= Hexagon::DuplexIClassF) {
|
||||
assert(Parse == HexagonII::INST_PARSE_DUPLEX &&
|
||||
"Emitting duplex without duplex parse bits");
|
||||
unsigned dupIClass;
|
||||
switch (HMB.getOpcode()) {
|
||||
case Hexagon::DuplexIClass0:
|
||||
dupIClass = 0;
|
||||
break;
|
||||
case Hexagon::DuplexIClass1:
|
||||
dupIClass = 1;
|
||||
break;
|
||||
case Hexagon::DuplexIClass2:
|
||||
dupIClass = 2;
|
||||
break;
|
||||
case Hexagon::DuplexIClass3:
|
||||
dupIClass = 3;
|
||||
break;
|
||||
case Hexagon::DuplexIClass4:
|
||||
dupIClass = 4;
|
||||
break;
|
||||
case Hexagon::DuplexIClass5:
|
||||
dupIClass = 5;
|
||||
break;
|
||||
case Hexagon::DuplexIClass6:
|
||||
dupIClass = 6;
|
||||
break;
|
||||
case Hexagon::DuplexIClass7:
|
||||
dupIClass = 7;
|
||||
break;
|
||||
case Hexagon::DuplexIClass8:
|
||||
dupIClass = 8;
|
||||
break;
|
||||
case Hexagon::DuplexIClass9:
|
||||
dupIClass = 9;
|
||||
break;
|
||||
case Hexagon::DuplexIClassA:
|
||||
dupIClass = 10;
|
||||
break;
|
||||
case Hexagon::DuplexIClassB:
|
||||
dupIClass = 11;
|
||||
break;
|
||||
case Hexagon::DuplexIClassC:
|
||||
dupIClass = 12;
|
||||
break;
|
||||
case Hexagon::DuplexIClassD:
|
||||
dupIClass = 13;
|
||||
break;
|
||||
case Hexagon::DuplexIClassE:
|
||||
dupIClass = 14;
|
||||
break;
|
||||
case Hexagon::DuplexIClassF:
|
||||
dupIClass = 15;
|
||||
break;
|
||||
default:
|
||||
llvm_unreachable("Unimplemented DuplexIClass");
|
||||
break;
|
||||
}
|
||||
// 29 is the bit position.
|
||||
// 0b1110 =0xE bits are masked off and down shifted by 1 bit.
|
||||
// Last bit is moved to bit position 13
|
||||
Binary = ((dupIClass & 0xE) << (29 - 1)) | ((dupIClass & 0x1) << 13);
|
||||
|
||||
const MCInst *subInst0 = HMB.getOperand(0).getInst();
|
||||
const MCInst *subInst1 = HMB.getOperand(1).getInst();
|
||||
|
||||
// get subinstruction slot 0
|
||||
unsigned subInstSlot0Bits = getBinaryCodeForInstr(*subInst0, Fixups, STI);
|
||||
// get subinstruction slot 1
|
||||
unsigned subInstSlot1Bits = getBinaryCodeForInstr(*subInst1, Fixups, STI);
|
||||
|
||||
Binary |= subInstSlot0Bits | (subInstSlot1Bits << 16);
|
||||
}
|
||||
support::endian::Writer<support::little>(OS).write<uint32_t>(Binary);
|
||||
++MCNumEmitted;
|
||||
}
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -16,6 +16,8 @@
|
|||
#include "Hexagon.h"
|
||||
#include "HexagonBaseInfo.h"
|
||||
|
||||
#include "llvm/MC/MCContext.h"
|
||||
#include "llvm/MC/MCInstrInfo.h"
|
||||
#include "llvm/MC/MCSubtargetInfo.h"
|
||||
|
||||
namespace llvm {
|
||||
|
@ -33,6 +35,32 @@ size_t HexagonMCInstrInfo::bundleSize(MCInst const &MCI) {
|
|||
return (1);
|
||||
}
|
||||
|
||||
MCInst *HexagonMCInstrInfo::deriveDuplex(MCContext &Context, unsigned iClass,
|
||||
MCInst const &inst0,
|
||||
MCInst const &inst1) {
|
||||
assert((iClass <= 0xf) && "iClass must have range of 0 to 0xf");
|
||||
MCInst *duplexInst = new (Context) MCInst;
|
||||
duplexInst->setOpcode(Hexagon::DuplexIClass0 + iClass);
|
||||
|
||||
MCInst *SubInst0 = new (Context) MCInst(deriveSubInst(inst0));
|
||||
MCInst *SubInst1 = new (Context) MCInst(deriveSubInst(inst1));
|
||||
duplexInst->addOperand(MCOperand::createInst(SubInst0));
|
||||
duplexInst->addOperand(MCOperand::createInst(SubInst1));
|
||||
return duplexInst;
|
||||
}
|
||||
|
||||
MCInst const *HexagonMCInstrInfo::extenderForIndex(MCInst const &MCB,
|
||||
size_t Index) {
|
||||
assert(Index <= bundleSize(MCB));
|
||||
if (Index == 0)
|
||||
return nullptr;
|
||||
MCInst const *Inst =
|
||||
MCB.getOperand(Index + bundleInstructionsOffset - 1).getInst();
|
||||
if (isImmext(*Inst))
|
||||
return Inst;
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
HexagonII::MemAccessSize
|
||||
HexagonMCInstrInfo::getAccessSize(MCInstrInfo const &MCII, MCInst const &MCI) {
|
||||
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
|
||||
|
@ -188,6 +216,10 @@ bool HexagonMCInstrInfo::hasImmExt(MCInst const &MCI) {
|
|||
return false;
|
||||
}
|
||||
|
||||
bool HexagonMCInstrInfo::hasExtenderForIndex(MCInst const &MCB, size_t Index) {
|
||||
return extenderForIndex(MCB, Index) != nullptr;
|
||||
}
|
||||
|
||||
// Return whether the instruction is a legal new-value producer.
|
||||
bool HexagonMCInstrInfo::hasNewValue(MCInstrInfo const &MCII,
|
||||
MCInst const &MCI) {
|
||||
|
@ -214,6 +246,15 @@ bool HexagonMCInstrInfo::isCanon(MCInstrInfo const &MCII, MCInst const &MCI) {
|
|||
HexagonMCInstrInfo::getType(MCII, MCI) != HexagonII::TypeENDLOOP);
|
||||
}
|
||||
|
||||
bool HexagonMCInstrInfo::isDblRegForSubInst(unsigned Reg) {
|
||||
return ((Reg >= Hexagon::D0 && Reg <= Hexagon::D3) ||
|
||||
(Reg >= Hexagon::D8 && Reg <= Hexagon::D11));
|
||||
}
|
||||
|
||||
bool HexagonMCInstrInfo::isDuplex(MCInstrInfo const &MCII, MCInst const &MCI) {
|
||||
return HexagonII::TypeDUPLEX == HexagonMCInstrInfo::getType(MCII, MCI);
|
||||
}
|
||||
|
||||
// Return whether the instruction needs to be constant extended.
|
||||
// 1) Always return true if the instruction has 'isExtended' flag set.
|
||||
//
|
||||
|
@ -281,6 +322,15 @@ bool HexagonMCInstrInfo::isInnerLoop(MCInst const &MCI) {
|
|||
return (Flags & innerLoopMask) != 0;
|
||||
}
|
||||
|
||||
bool HexagonMCInstrInfo::isIntReg(unsigned Reg) {
|
||||
return (Reg >= Hexagon::R0 && Reg <= Hexagon::R31);
|
||||
}
|
||||
|
||||
bool HexagonMCInstrInfo::isIntRegForSubInst(unsigned Reg) {
|
||||
return ((Reg >= Hexagon::R0 && Reg <= Hexagon::R7) ||
|
||||
(Reg >= Hexagon::R16 && Reg <= Hexagon::R23));
|
||||
}
|
||||
|
||||
// Return whether the insn is a new-value consumer.
|
||||
bool HexagonMCInstrInfo::isNewValue(MCInstrInfo const &MCII,
|
||||
MCInst const &MCI) {
|
||||
|
@ -316,6 +366,10 @@ bool HexagonMCInstrInfo::isPredicatedTrue(MCInstrInfo const &MCII,
|
|||
!((F >> HexagonII::PredicatedFalsePos) & HexagonII::PredicatedFalseMask));
|
||||
}
|
||||
|
||||
bool HexagonMCInstrInfo::isPredReg(unsigned Reg) {
|
||||
return (Reg >= Hexagon::P0 && Reg <= Hexagon::P3_0);
|
||||
}
|
||||
|
||||
bool HexagonMCInstrInfo::isPrefix(MCInstrInfo const &MCII, MCInst const &MCI) {
|
||||
return (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypePREFIX);
|
||||
}
|
||||
|
@ -367,6 +421,20 @@ bool HexagonMCInstrInfo::prefersSlot3(MCInstrInfo const &MCII,
|
|||
return false;
|
||||
}
|
||||
|
||||
void HexagonMCInstrInfo::replaceDuplex(MCContext &Context, MCInst &MCB,
|
||||
DuplexCandidate Candidate) {
|
||||
assert(Candidate.packetIndexI < MCB.size());
|
||||
assert(Candidate.packetIndexJ < MCB.size());
|
||||
assert(isBundle(MCB));
|
||||
MCInst *Duplex =
|
||||
deriveDuplex(Context, Candidate.iClass,
|
||||
*MCB.getOperand(Candidate.packetIndexJ).getInst(),
|
||||
*MCB.getOperand(Candidate.packetIndexI).getInst());
|
||||
assert(Duplex != nullptr);
|
||||
MCB.getOperand(Candidate.packetIndexI).setInst(Duplex);
|
||||
MCB.erase(MCB.begin() + Candidate.packetIndexJ);
|
||||
}
|
||||
|
||||
void HexagonMCInstrInfo::setInnerLoop(MCInst &MCI) {
|
||||
assert(isBundle(MCI));
|
||||
MCOperand &Operand = MCI.getOperand(0);
|
||||
|
|
|
@ -15,15 +15,14 @@
|
|||
#define LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONMCINSTRINFO_H
|
||||
|
||||
#include "llvm/MC/MCInst.h"
|
||||
#include "llvm/MC/MCInstrInfo.h"
|
||||
|
||||
#include <bitset>
|
||||
|
||||
namespace llvm {
|
||||
class MCContext;
|
||||
class MCInstrDesc;
|
||||
class MCInstrInfo;
|
||||
class MCInst;
|
||||
class MCOperand;
|
||||
class MCSubtargetInfo;
|
||||
namespace HexagonII {
|
||||
enum class MemAccessSize;
|
||||
}
|
||||
|
@ -48,6 +47,16 @@ size_t bundleSize(MCInst const &MCI);
|
|||
// Returns a iterator range of instructions in this bundle
|
||||
iterator_range<MCInst::const_iterator> bundleInstructions(MCInst const &MCI);
|
||||
|
||||
// Return the extender for instruction at Index or nullptr if none
|
||||
MCInst const *extenderForIndex(MCInst const &MCB, size_t Index);
|
||||
|
||||
// Create a duplex instruction given the two subinsts
|
||||
MCInst *deriveDuplex(MCContext &Context, unsigned iClass, MCInst const &inst0,
|
||||
MCInst const &inst1);
|
||||
|
||||
// Convert this instruction in to a duplex subinst
|
||||
MCInst deriveSubInst(MCInst const &Inst);
|
||||
|
||||
// Return memory access size
|
||||
HexagonII::MemAccessSize getAccessSize(MCInstrInfo const &MCII,
|
||||
MCInst const &MCI);
|
||||
|
@ -60,6 +69,13 @@ unsigned short getCExtOpNum(MCInstrInfo const &MCII, MCInst const &MCI);
|
|||
|
||||
MCInstrDesc const &getDesc(MCInstrInfo const &MCII, MCInst const &MCI);
|
||||
|
||||
// Return which duplex group this instruction belongs to
|
||||
unsigned getDuplexCandidateGroup(MCInst const &MI);
|
||||
|
||||
// Return a list of all possible instruction duplex combinations
|
||||
SmallVector<DuplexCandidate, 8> getDuplexPossibilties(MCInstrInfo const &MCII,
|
||||
MCInst const &MCB);
|
||||
|
||||
// Return the index of the extendable operand
|
||||
unsigned short getExtendableOp(MCInstrInfo const &MCII, MCInst const &MCI);
|
||||
|
||||
|
@ -99,6 +115,9 @@ unsigned getType(MCInstrInfo const &MCII, MCInst const &MCI);
|
|||
unsigned getUnits(MCInstrInfo const &MCII, MCSubtargetInfo const &STI,
|
||||
MCInst const &MCI);
|
||||
|
||||
// Does the packet have an extender for the instruction at Index
|
||||
bool hasExtenderForIndex(MCInst const &MCB, size_t Index);
|
||||
|
||||
bool hasImmExt(MCInst const &MCI);
|
||||
|
||||
// Return whether the instruction is a legal new-value producer.
|
||||
|
@ -113,9 +132,24 @@ bool isBundle(MCInst const &MCI);
|
|||
// Return whether the insn is an actual insn.
|
||||
bool isCanon(MCInstrInfo const &MCII, MCInst const &MCI);
|
||||
|
||||
// Return the duplex iclass given the two duplex classes
|
||||
unsigned iClassOfDuplexPair(unsigned Ga, unsigned Gb);
|
||||
|
||||
// Return whether the instruction needs to be constant extended.
|
||||
bool isConstExtended(MCInstrInfo const &MCII, MCInst const &MCI);
|
||||
|
||||
// Is this double register suitable for use in a duplex subinst
|
||||
bool isDblRegForSubInst(unsigned Reg);
|
||||
|
||||
// Is this a duplex instruction
|
||||
bool isDuplex(MCInstrInfo const &MCII, MCInst const &MCI);
|
||||
|
||||
// Can these instructions be duplexed
|
||||
bool isDuplexPair(MCInst const &MIa, MCInst const &MIb);
|
||||
|
||||
// Can these duplex classes be combine in to a duplex instruction
|
||||
bool isDuplexPairMatch(unsigned Ga, unsigned Gb);
|
||||
|
||||
// Return true if the insn may be extended based on the operand value.
|
||||
bool isExtendable(MCInstrInfo const &MCII, MCInst const &MCI);
|
||||
|
||||
|
@ -131,6 +165,12 @@ bool isImmext(MCInst const &MCI);
|
|||
// Returns whether this bundle is an endloop0
|
||||
bool isInnerLoop(MCInst const &MCI);
|
||||
|
||||
// Is this an integer register
|
||||
bool isIntReg(unsigned Reg);
|
||||
|
||||
// Is this register suitable for use in a duplex subinst
|
||||
bool isIntRegForSubInst(unsigned Reg);
|
||||
|
||||
// Return whether the insn is a new-value consumer.
|
||||
bool isNewValue(MCInstrInfo const &MCII, MCInst const &MCI);
|
||||
|
||||
|
@ -138,6 +178,11 @@ bool isNewValue(MCInstrInfo const &MCII, MCInst const &MCI);
|
|||
bool isOperandExtended(MCInstrInfo const &MCII, MCInst const &MCI,
|
||||
unsigned short OperandNum);
|
||||
|
||||
// Can these two instructions be duplexed
|
||||
bool isOrderedDuplexPair(MCInstrInfo const &MCII, MCInst const &MIa,
|
||||
bool ExtendedA, MCInst const &MIb, bool ExtendedB,
|
||||
bool bisReversable);
|
||||
|
||||
// Returns whether this bundle is an endloop1
|
||||
bool isOuterLoop(MCInst const &MCI);
|
||||
|
||||
|
@ -147,6 +192,9 @@ bool isPredicated(MCInstrInfo const &MCII, MCInst const &MCI);
|
|||
// Return whether the predicate sense is true
|
||||
bool isPredicatedTrue(MCInstrInfo const &MCII, MCInst const &MCI);
|
||||
|
||||
// Is this a predicate register
|
||||
bool isPredReg(unsigned Reg);
|
||||
|
||||
// Return whether the insn is a prefix.
|
||||
bool isPrefix(MCInstrInfo const &MCII, MCInst const &MCI);
|
||||
|
||||
|
@ -164,11 +212,17 @@ void padEndloop(MCInst &MCI);
|
|||
|
||||
bool prefersSlot3(MCInstrInfo const &MCII, MCInst const &MCI);
|
||||
|
||||
// Replace the instructions inside MCB, represented by Candidate
|
||||
void replaceDuplex(MCContext &Context, MCInst &MCB, DuplexCandidate Candidate);
|
||||
|
||||
// Marks a bundle as endloop0
|
||||
void setInnerLoop(MCInst &MCI);
|
||||
|
||||
// Marks a bundle as endloop1
|
||||
void setOuterLoop(MCInst &MCI);
|
||||
|
||||
// Would duplexing this instruction create a requirement to extend
|
||||
bool subInstWouldBeExtended(MCInst const &potentialDuplex);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -147,6 +147,61 @@ bool llvm::HexagonMCShuffle(MCInstrInfo const &MCII, MCSubtargetInfo const &STI,
|
|||
return true;
|
||||
}
|
||||
|
||||
unsigned
|
||||
llvm::HexagonMCShuffle(MCInstrInfo const &MCII, MCSubtargetInfo const &STI,
|
||||
MCContext &Context, MCInst &MCB,
|
||||
SmallVector<DuplexCandidate, 8> possibleDuplexes) {
|
||||
|
||||
if (DisableShuffle)
|
||||
return HexagonShuffler::SHUFFLE_SUCCESS;
|
||||
|
||||
if (!HexagonMCInstrInfo::bundleSize(MCB)) {
|
||||
// There once was a bundle:
|
||||
// BUNDLE %D2<imp-def>, %R4<imp-def>, %R5<imp-def>, %D7<imp-def>, ...
|
||||
// * %D2<def> = IMPLICIT_DEF; flags:
|
||||
// * %D7<def> = IMPLICIT_DEF; flags:
|
||||
// After the IMPLICIT_DEFs were removed by the asm printer, the bundle
|
||||
// became empty.
|
||||
DEBUG(dbgs() << "Skipping empty bundle");
|
||||
return HexagonShuffler::SHUFFLE_SUCCESS;
|
||||
} else if (!HexagonMCInstrInfo::isBundle(MCB)) {
|
||||
DEBUG(dbgs() << "Skipping stand-alone insn");
|
||||
return HexagonShuffler::SHUFFLE_SUCCESS;
|
||||
}
|
||||
|
||||
bool doneShuffling = false;
|
||||
unsigned shuffleError;
|
||||
while (possibleDuplexes.size() > 0 && (!doneShuffling)) {
|
||||
// case of Duplex Found
|
||||
DuplexCandidate duplexToTry = possibleDuplexes.pop_back_val();
|
||||
MCInst Attempt(MCB);
|
||||
HexagonMCInstrInfo::replaceDuplex(Context, Attempt, duplexToTry);
|
||||
HexagonMCShuffler MCS(MCII, STI, Attempt); // copy packet to the shuffler
|
||||
if (MCS.size() == 1) { // case of one duplex
|
||||
// copy the created duplex in the shuffler to the bundle
|
||||
MCS.copyTo(MCB);
|
||||
doneShuffling = true;
|
||||
return HexagonShuffler::SHUFFLE_SUCCESS;
|
||||
}
|
||||
// try shuffle with this duplex
|
||||
doneShuffling = MCS.reshuffleTo(MCB);
|
||||
shuffleError = MCS.getError();
|
||||
|
||||
if (doneShuffling)
|
||||
break;
|
||||
}
|
||||
|
||||
if (doneShuffling == false) {
|
||||
HexagonMCShuffler MCS(MCII, STI, MCB);
|
||||
doneShuffling = MCS.reshuffleTo(MCB); // shuffle
|
||||
shuffleError = MCS.getError();
|
||||
}
|
||||
if (!doneShuffling)
|
||||
return shuffleError;
|
||||
|
||||
return HexagonShuffler::SHUFFLE_SUCCESS;
|
||||
}
|
||||
|
||||
bool llvm::HexagonMCShuffle(MCInstrInfo const &MCII, MCSubtargetInfo const &STI,
|
||||
MCInst &MCB, MCInst const *AddMI, int fixupCount) {
|
||||
if (!HexagonMCInstrInfo::isBundle(MCB) || !AddMI)
|
||||
|
|
|
@ -0,0 +1,7 @@
|
|||
; RUN: llc -march=hexagon -filetype=obj -o - %s | llvm-objdump -d - | FileCheck %s
|
||||
|
||||
; CHECK: c0 3f 00 48 48003fc0
|
||||
|
||||
define i32 @foo() {
|
||||
ret i32 0
|
||||
}
|
Loading…
Reference in New Issue