[VectorCombine] refactor matching code to reduce duplication; NFC

cmp/binop were already diverging even though they are largely
the same logic.
This commit is contained in:
Sanjay Patel 2020-02-21 11:49:11 -05:00
parent 23444edf30
commit fc4455891c
1 changed files with 55 additions and 46 deletions

View File

@ -33,31 +33,28 @@ using namespace llvm::PatternMatch;
STATISTIC(NumVecCmp, "Number of vector compares formed");
STATISTIC(NumVecBO, "Number of vector binops formed");
static bool foldExtractCmp(Instruction &I, const TargetTransformInfo &TTI) {
// Match a cmp with extracted vector operands.
CmpInst::Predicate Pred;
Instruction *Ext0, *Ext1;
if (!match(&I, m_Cmp(Pred, m_Instruction(Ext0), m_Instruction(Ext1))))
return false;
Value *V0, *V1;
ConstantInt *C;
if (!match(Ext0, m_ExtractElement(m_Value(V0), m_ConstantInt(C))) ||
!match(Ext1, m_ExtractElement(m_Value(V1), m_Specific(C))) ||
V0->getType() != V1->getType())
return false;
/// Try to reduce extract element costs by converting scalar compares to vector
/// compares followed by extract.
/// cmp (ext0 V0, C0), (ext1 V1, C1)
static bool foldExtExtCmp(Instruction *Ext0, Value *V0, uint64_t C0,
Instruction *Ext1, Value *V1, uint64_t C1,
Instruction &I, const TargetTransformInfo &TTI) {
assert(isa<CmpInst>(&I) && "Expected a compare");
Type *ScalarTy = Ext0->getType();
Type *VecTy = V0->getType();
bool IsFP = ScalarTy->isFloatingPointTy();
unsigned CmpOpcode = IsFP ? Instruction::FCmp : Instruction::ICmp;
// TODO: Handle C0 != C1 by shuffling 1 of the operands.
if (C0 != C1)
return false;
// Check if the existing scalar code or the vector alternative is cheaper.
// Extra uses of the extracts mean that we include those costs in the
// vector total because those instructions will not be eliminated.
// ((2 * extract) + scalar cmp) < (vector cmp + extract) ?
int ExtractCost = TTI.getVectorInstrCost(Instruction::ExtractElement,
VecTy, C->getZExtValue());
int ExtractCost =
TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, C0);
int ScalarCmpCost = TTI.getCmpSelInstrCost(CmpOpcode, ScalarTy, I.getType());
int VecCmpCost = TTI.getCmpSelInstrCost(CmpOpcode, VecTy,
CmpInst::makeCmpResultType(VecTy));
@ -72,38 +69,26 @@ static bool foldExtractCmp(Instruction &I, const TargetTransformInfo &TTI) {
// cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C
++NumVecCmp;
IRBuilder<> Builder(&I);
CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate();
Value *VecCmp = IsFP ? Builder.CreateFCmp(Pred, V0, V1)
: Builder.CreateICmp(Pred, V0, V1);
Value *Ext = Builder.CreateExtractElement(VecCmp, C);
I.replaceAllUsesWith(Ext);
Value *Extract = Builder.CreateExtractElement(VecCmp, Ext0->getOperand(1));
I.replaceAllUsesWith(Extract);
return true;
}
/// Try to reduce extract element costs by converting scalar binops to vector
/// binops followed by extract.
static bool foldExtractBinop(Instruction &I, const TargetTransformInfo &TTI) {
// It is not safe to transform things like div, urem, etc. because we may
// create undefined behavior when executing those on unknown vector elements.
if (!isSafeToSpeculativelyExecute(&I))
return false;
// Match a scalar binop with extracted vector operands:
// bo (extelt X, C0), (extelt Y, C1)
Instruction *Ext0, *Ext1;
if (!match(&I, m_BinOp(m_Instruction(Ext0), m_Instruction(Ext1))))
return false;
Value *X, *Y;
uint64_t C0, C1;
if (!match(Ext0, m_ExtractElement(m_Value(X), m_ConstantInt(C0))) ||
!match(Ext1, m_ExtractElement(m_Value(Y), m_ConstantInt(C1))) ||
X->getType() != Y->getType())
return false;
/// bo (ext0 V0, C0), (ext1 V1, C1)
static bool foldExtExtBinop(Instruction *Ext0, Value *V0, uint64_t C0,
Instruction *Ext1, Value *V1, uint64_t C1,
Instruction &I, const TargetTransformInfo &TTI) {
assert(isa<BinaryOperator>(&I) && "Expected a binary operator");
Type *ScalarTy = Ext0->getType();
Type *VecTy = V0->getType();
Instruction::BinaryOps BOpcode = cast<BinaryOperator>(I).getOpcode();
// Check if using a vector binop would be cheaper.
Instruction::BinaryOps BOpcode = cast<BinaryOperator>(I).getOpcode();
Type *ScalarTy = I.getType();
Type *VecTy = X->getType();
int ScalarBOCost = TTI.getArithmeticInstrCost(BOpcode, ScalarTy);
int VecBOCost = TTI.getArithmeticInstrCost(BOpcode, VecTy);
int Extract0Cost = TTI.getVectorInstrCost(Instruction::ExtractElement,
@ -119,7 +104,7 @@ static bool foldExtractBinop(Instruction &I, const TargetTransformInfo &TTI) {
TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, C1) &&
"Different costs for same extract?");
int ExtractCost = Extract0Cost;
if (X != Y) {
if (V0 != V1) {
int ScalarCost = ExtractCost + ExtractCost + ScalarBOCost;
int VecCost = VecBOCost + ExtractCost +
!Ext0->hasOneUse() * ExtractCost +
@ -129,7 +114,7 @@ static bool foldExtractBinop(Instruction &I, const TargetTransformInfo &TTI) {
} else {
// Handle an extra-special case. If the 2 binop operands are identical,
// adjust the formulas to account for that:
// bo (extelt X, C), (extelt X, C) --> extelt (bo X, X), C
// bo (extelt V, C), (extelt V, C) --> extelt (bo V, V), C
// The extra use charge allows for either the CSE'd pattern or an
// unoptimized form with identical values.
bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2)
@ -143,7 +128,7 @@ static bool foldExtractBinop(Instruction &I, const TargetTransformInfo &TTI) {
// bo (extelt X, C), (extelt Y, C) --> extelt (bo X, Y), C
++NumVecBO;
IRBuilder<> Builder(&I);
Value *NewBO = Builder.CreateBinOp(BOpcode, X, Y);
Value *NewBO = Builder.CreateBinOp(BOpcode, V0, V1);
if (auto *VecBOInst = dyn_cast<Instruction>(NewBO)) {
// All IR flags are safe to back-propagate because any potential poison
// created in unused vector elements is discarded by the extract.
@ -158,6 +143,32 @@ static bool foldExtractBinop(Instruction &I, const TargetTransformInfo &TTI) {
return false;
}
/// Match an instruction with extracted vector operands.
static bool foldExtractExtract(Instruction &I, const TargetTransformInfo &TTI) {
Instruction *Ext0, *Ext1;
CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
if (!match(&I, m_Cmp(Pred, m_Instruction(Ext0), m_Instruction(Ext1))) &&
!match(&I, m_BinOp(m_Instruction(Ext0), m_Instruction(Ext1))))
return false;
Value *V0, *V1;
uint64_t C0, C1;
if (!match(Ext0, m_ExtractElement(m_Value(V0), m_ConstantInt(C0))) ||
!match(Ext1, m_ExtractElement(m_Value(V1), m_ConstantInt(C1))) ||
V0->getType() != V1->getType())
return false;
if (Pred != CmpInst::BAD_ICMP_PREDICATE)
return foldExtExtCmp(Ext0, V0, C0, Ext1, V1, C1, I, TTI);
// It is not safe to transform things like div, urem, etc. because we may
// create undefined behavior when executing those on unknown vector elements.
if (isSafeToSpeculativelyExecute(&I))
return foldExtExtBinop(Ext0, V0, C0, Ext1, V1, C1, I, TTI);
return false;
}
/// This is the entry point for all transforms. Pass manager differences are
/// handled in the callers of this function.
static bool runImpl(Function &F, const TargetTransformInfo &TTI,
@ -172,10 +183,8 @@ static bool runImpl(Function &F, const TargetTransformInfo &TTI,
// use->defs, so we're more likely to succeed by starting from the bottom.
// TODO: It could be more efficient to remove dead instructions
// iteratively in this loop rather than waiting until the end.
for (Instruction &I : make_range(BB.rbegin(), BB.rend())) {
MadeChange |= foldExtractCmp(I, TTI);
MadeChange |= foldExtractBinop(I, TTI);
}
for (Instruction &I : make_range(BB.rbegin(), BB.rend()))
MadeChange |= foldExtractExtract(I, TTI);
}
// We're done with transforms, so remove dead instructions.