forked from OSchip/llvm-project
[RISCV] Hard float ABI support
The RISC-V hard float calling convention requires the frontend to: * Detect cases where, once "flattened", a struct can be passed using int+fp or fp+fp registers under the hard float ABI and coerce to the appropriate type(s) * Track usage of GPRs and FPRs in order to gate the above, and to determine when signext/zeroext attributes must be added to integer scalars This patch attempts to do this in compliance with the documented ABI, and uses ABIArgInfo::CoerceAndExpand in order to do this. @rjmccall, as author of that code I've tagged you as reviewer for initial feedback on my usage. Note that a previous version of the ABI indicated that when passing an int+fp struct using a GPR+FPR, the int would need to be sign or zero-extended appropriately. GCC never did this and the ABI was changed, which makes life easier as ABIArgInfo::CoerceAndExpand can't currently handle sign/zero-extension attributes. Differential Revision: https://reviews.llvm.org/D60456 llvm-svn: 366450
This commit is contained in:
parent
d2c576110e
commit
fc3aa2ab48
|
@ -65,8 +65,17 @@ void RISCVTargetInfo::getTargetDefines(const LangOptions &Opts,
|
|||
Builder.defineMacro("__riscv");
|
||||
bool Is64Bit = getTriple().getArch() == llvm::Triple::riscv64;
|
||||
Builder.defineMacro("__riscv_xlen", Is64Bit ? "64" : "32");
|
||||
// TODO: modify when more code models and ABIs are supported.
|
||||
// TODO: modify when more code models are supported.
|
||||
Builder.defineMacro("__riscv_cmodel_medlow");
|
||||
|
||||
StringRef ABIName = getABI();
|
||||
if (ABIName == "ilp32f" || ABIName == "lp64f")
|
||||
Builder.defineMacro("__riscv_float_abi_single");
|
||||
else if (ABIName == "ilp32d" || ABIName == "lp64d")
|
||||
Builder.defineMacro("__riscv_float_abi_double");
|
||||
else if (ABIName == "ilp32e")
|
||||
Builder.defineMacro("__riscv_abi_rve");
|
||||
else
|
||||
Builder.defineMacro("__riscv_float_abi_soft");
|
||||
|
||||
if (HasM) {
|
||||
|
|
|
@ -87,8 +87,7 @@ public:
|
|||
}
|
||||
|
||||
bool setABI(const std::string &Name) override {
|
||||
// TODO: support ilp32f and ilp32d ABIs.
|
||||
if (Name == "ilp32") {
|
||||
if (Name == "ilp32" || Name == "ilp32f" || Name == "ilp32d") {
|
||||
ABI = Name;
|
||||
return true;
|
||||
}
|
||||
|
@ -105,8 +104,7 @@ public:
|
|||
}
|
||||
|
||||
bool setABI(const std::string &Name) override {
|
||||
// TODO: support lp64f and lp64d ABIs.
|
||||
if (Name == "lp64") {
|
||||
if (Name == "lp64" || Name == "lp64f" || Name == "lp64d") {
|
||||
ABI = Name;
|
||||
return true;
|
||||
}
|
||||
|
|
|
@ -9188,25 +9188,44 @@ static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
|
|||
namespace {
|
||||
class RISCVABIInfo : public DefaultABIInfo {
|
||||
private:
|
||||
unsigned XLen; // Size of the integer ('x') registers in bits.
|
||||
// Size of the integer ('x') registers in bits.
|
||||
unsigned XLen;
|
||||
// Size of the floating point ('f') registers in bits. Note that the target
|
||||
// ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target
|
||||
// with soft float ABI has FLen==0).
|
||||
unsigned FLen;
|
||||
static const int NumArgGPRs = 8;
|
||||
static const int NumArgFPRs = 8;
|
||||
bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
|
||||
llvm::Type *&Field1Ty,
|
||||
CharUnits &Field1Off,
|
||||
llvm::Type *&Field2Ty,
|
||||
CharUnits &Field2Off) const;
|
||||
|
||||
public:
|
||||
RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen)
|
||||
: DefaultABIInfo(CGT), XLen(XLen) {}
|
||||
RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen)
|
||||
: DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {}
|
||||
|
||||
// DefaultABIInfo's classifyReturnType and classifyArgumentType are
|
||||
// non-virtual, but computeInfo is virtual, so we overload it.
|
||||
void computeInfo(CGFunctionInfo &FI) const override;
|
||||
|
||||
ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed,
|
||||
int &ArgGPRsLeft) const;
|
||||
ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft,
|
||||
int &ArgFPRsLeft) const;
|
||||
ABIArgInfo classifyReturnType(QualType RetTy) const;
|
||||
|
||||
Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
||||
QualType Ty) const override;
|
||||
|
||||
ABIArgInfo extendType(QualType Ty) const;
|
||||
|
||||
bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, CharUnits &Field1Off,
|
||||
llvm::Type *&Field2Ty, CharUnits &Field2Off,
|
||||
int &NeededArgGPRs, int &NeededArgFPRs) const;
|
||||
ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty,
|
||||
CharUnits Field1Off,
|
||||
llvm::Type *Field2Ty,
|
||||
CharUnits Field2Off) const;
|
||||
};
|
||||
} // end anonymous namespace
|
||||
|
||||
|
@ -9228,18 +9247,214 @@ void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
|||
// different for variadic arguments, we must also track whether we are
|
||||
// examining a vararg or not.
|
||||
int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
|
||||
int ArgFPRsLeft = FLen ? NumArgFPRs : 0;
|
||||
int NumFixedArgs = FI.getNumRequiredArgs();
|
||||
|
||||
int ArgNum = 0;
|
||||
for (auto &ArgInfo : FI.arguments()) {
|
||||
bool IsFixed = ArgNum < NumFixedArgs;
|
||||
ArgInfo.info = classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft);
|
||||
ArgInfo.info =
|
||||
classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft);
|
||||
ArgNum++;
|
||||
}
|
||||
}
|
||||
|
||||
// Returns true if the struct is a potential candidate for the floating point
|
||||
// calling convention. If this function returns true, the caller is
|
||||
// responsible for checking that if there is only a single field then that
|
||||
// field is a float.
|
||||
bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
|
||||
llvm::Type *&Field1Ty,
|
||||
CharUnits &Field1Off,
|
||||
llvm::Type *&Field2Ty,
|
||||
CharUnits &Field2Off) const {
|
||||
bool IsInt = Ty->isIntegralOrEnumerationType();
|
||||
bool IsFloat = Ty->isRealFloatingType();
|
||||
|
||||
if (IsInt || IsFloat) {
|
||||
uint64_t Size = getContext().getTypeSize(Ty);
|
||||
if (IsInt && Size > XLen)
|
||||
return false;
|
||||
// Can't be eligible if larger than the FP registers. Half precision isn't
|
||||
// currently supported on RISC-V and the ABI hasn't been confirmed, so
|
||||
// default to the integer ABI in that case.
|
||||
if (IsFloat && (Size > FLen || Size < 32))
|
||||
return false;
|
||||
// Can't be eligible if an integer type was already found (int+int pairs
|
||||
// are not eligible).
|
||||
if (IsInt && Field1Ty && Field1Ty->isIntegerTy())
|
||||
return false;
|
||||
if (!Field1Ty) {
|
||||
Field1Ty = CGT.ConvertType(Ty);
|
||||
Field1Off = CurOff;
|
||||
return true;
|
||||
}
|
||||
if (!Field2Ty) {
|
||||
Field2Ty = CGT.ConvertType(Ty);
|
||||
Field2Off = CurOff;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
if (auto CTy = Ty->getAs<ComplexType>()) {
|
||||
if (Field1Ty)
|
||||
return false;
|
||||
QualType EltTy = CTy->getElementType();
|
||||
if (getContext().getTypeSize(EltTy) > FLen)
|
||||
return false;
|
||||
Field1Ty = CGT.ConvertType(EltTy);
|
||||
Field1Off = CurOff;
|
||||
assert(CurOff.isZero() && "Unexpected offset for first field");
|
||||
Field2Ty = Field1Ty;
|
||||
Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy);
|
||||
return true;
|
||||
}
|
||||
|
||||
if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) {
|
||||
uint64_t ArraySize = ATy->getSize().getZExtValue();
|
||||
QualType EltTy = ATy->getElementType();
|
||||
CharUnits EltSize = getContext().getTypeSizeInChars(EltTy);
|
||||
for (uint64_t i = 0; i < ArraySize; ++i) {
|
||||
bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty, Field1Off,
|
||||
Field2Ty, Field2Off);
|
||||
if (!Ret)
|
||||
return false;
|
||||
CurOff += EltSize;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
if (const auto *RTy = Ty->getAs<RecordType>()) {
|
||||
// Structures with either a non-trivial destructor or a non-trivial
|
||||
// copy constructor are not eligible for the FP calling convention.
|
||||
if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, CGT.getCXXABI()))
|
||||
return false;
|
||||
if (isEmptyRecord(getContext(), Ty, true))
|
||||
return true;
|
||||
const RecordDecl *RD = RTy->getDecl();
|
||||
// Unions aren't eligible unless they're empty (which is caught above).
|
||||
if (RD->isUnion())
|
||||
return false;
|
||||
int ZeroWidthBitFieldCount = 0;
|
||||
for (const FieldDecl *FD : RD->fields()) {
|
||||
const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
|
||||
uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex());
|
||||
QualType QTy = FD->getType();
|
||||
if (FD->isBitField()) {
|
||||
unsigned BitWidth = FD->getBitWidthValue(getContext());
|
||||
// Allow a bitfield with a type greater than XLen as long as the
|
||||
// bitwidth is XLen or less.
|
||||
if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen)
|
||||
QTy = getContext().getIntTypeForBitwidth(XLen, false);
|
||||
if (BitWidth == 0) {
|
||||
ZeroWidthBitFieldCount++;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
bool Ret = detectFPCCEligibleStructHelper(
|
||||
QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits),
|
||||
Field1Ty, Field1Off, Field2Ty, Field2Off);
|
||||
if (!Ret)
|
||||
return false;
|
||||
|
||||
// As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp
|
||||
// or int+fp structs, but are ignored for a struct with an fp field and
|
||||
// any number of zero-width bitfields.
|
||||
if (Field2Ty && ZeroWidthBitFieldCount > 0)
|
||||
return false;
|
||||
}
|
||||
return Field1Ty != nullptr;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
// Determine if a struct is eligible for passing according to the floating
|
||||
// point calling convention (i.e., when flattened it contains a single fp
|
||||
// value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and
|
||||
// NeededArgGPRs are incremented appropriately.
|
||||
bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
|
||||
CharUnits &Field1Off,
|
||||
llvm::Type *&Field2Ty,
|
||||
CharUnits &Field2Off,
|
||||
int &NeededArgGPRs,
|
||||
int &NeededArgFPRs) const {
|
||||
Field1Ty = nullptr;
|
||||
Field2Ty = nullptr;
|
||||
NeededArgGPRs = 0;
|
||||
NeededArgFPRs = 0;
|
||||
bool IsCandidate = detectFPCCEligibleStructHelper(
|
||||
Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off);
|
||||
// Not really a candidate if we have a single int but no float.
|
||||
if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy())
|
||||
return IsCandidate = false;
|
||||
if (!IsCandidate)
|
||||
return false;
|
||||
if (Field1Ty && Field1Ty->isFloatingPointTy())
|
||||
NeededArgFPRs++;
|
||||
else if (Field1Ty)
|
||||
NeededArgGPRs++;
|
||||
if (Field2Ty && Field2Ty->isFloatingPointTy())
|
||||
NeededArgFPRs++;
|
||||
else if (Field2Ty)
|
||||
NeededArgGPRs++;
|
||||
return IsCandidate;
|
||||
}
|
||||
|
||||
// Call getCoerceAndExpand for the two-element flattened struct described by
|
||||
// Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an appropriate
|
||||
// coerceToType and unpaddedCoerceToType.
|
||||
ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct(
|
||||
llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, CharUnits Field2Off) const {
|
||||
SmallVector<llvm::Type *, 3> CoerceElts;
|
||||
SmallVector<llvm::Type *, 2> UnpaddedCoerceElts;
|
||||
if (!Field1Off.isZero())
|
||||
CoerceElts.push_back(llvm::ArrayType::get(
|
||||
llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity()));
|
||||
|
||||
CoerceElts.push_back(Field1Ty);
|
||||
UnpaddedCoerceElts.push_back(Field1Ty);
|
||||
|
||||
if (!Field2Ty) {
|
||||
return ABIArgInfo::getCoerceAndExpand(
|
||||
llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()),
|
||||
UnpaddedCoerceElts[0]);
|
||||
}
|
||||
|
||||
CharUnits Field2Align =
|
||||
CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty));
|
||||
CharUnits Field1Size =
|
||||
CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty));
|
||||
CharUnits Field2OffNoPadNoPack = Field1Size.alignTo(Field2Align);
|
||||
|
||||
CharUnits Padding = CharUnits::Zero();
|
||||
if (Field2Off > Field2OffNoPadNoPack)
|
||||
Padding = Field2Off - Field2OffNoPadNoPack;
|
||||
else if (Field2Off != Field2Align && Field2Off > Field1Size)
|
||||
Padding = Field2Off - Field1Size;
|
||||
|
||||
bool IsPacked = !Field2Off.isMultipleOf(Field2Align);
|
||||
|
||||
if (!Padding.isZero())
|
||||
CoerceElts.push_back(llvm::ArrayType::get(
|
||||
llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity()));
|
||||
|
||||
CoerceElts.push_back(Field2Ty);
|
||||
UnpaddedCoerceElts.push_back(Field2Ty);
|
||||
|
||||
auto CoerceToType =
|
||||
llvm::StructType::get(getVMContext(), CoerceElts, IsPacked);
|
||||
auto UnpaddedCoerceToType =
|
||||
llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked);
|
||||
|
||||
return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType);
|
||||
}
|
||||
|
||||
ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
|
||||
int &ArgGPRsLeft) const {
|
||||
int &ArgGPRsLeft,
|
||||
int &ArgFPRsLeft) const {
|
||||
assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
|
||||
Ty = useFirstFieldIfTransparentUnion(Ty);
|
||||
|
||||
|
@ -9257,6 +9472,40 @@ ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
|
|||
return ABIArgInfo::getIgnore();
|
||||
|
||||
uint64_t Size = getContext().getTypeSize(Ty);
|
||||
|
||||
// Pass floating point values via FPRs if possible.
|
||||
if (IsFixed && Ty->isFloatingType() && FLen >= Size && ArgFPRsLeft) {
|
||||
ArgFPRsLeft--;
|
||||
return ABIArgInfo::getDirect();
|
||||
}
|
||||
|
||||
// Complex types for the hard float ABI must be passed direct rather than
|
||||
// using CoerceAndExpand.
|
||||
if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) {
|
||||
QualType EltTy = Ty->getAs<ComplexType>()->getElementType();
|
||||
if (getContext().getTypeSize(EltTy) <= FLen) {
|
||||
ArgFPRsLeft -= 2;
|
||||
return ABIArgInfo::getDirect();
|
||||
}
|
||||
}
|
||||
|
||||
if (IsFixed && FLen && Ty->isStructureOrClassType()) {
|
||||
llvm::Type *Field1Ty = nullptr;
|
||||
llvm::Type *Field2Ty = nullptr;
|
||||
CharUnits Field1Off = CharUnits::Zero();
|
||||
CharUnits Field2Off = CharUnits::Zero();
|
||||
int NeededArgGPRs;
|
||||
int NeededArgFPRs;
|
||||
bool IsCandidate = detectFPCCEligibleStruct(
|
||||
Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, NeededArgGPRs, NeededArgFPRs);
|
||||
if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft &&
|
||||
NeededArgFPRs <= ArgFPRsLeft) {
|
||||
ArgGPRsLeft -= NeededArgGPRs;
|
||||
ArgFPRsLeft -= NeededArgFPRs;
|
||||
return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty, Field2Off);
|
||||
}
|
||||
}
|
||||
|
||||
uint64_t NeededAlign = getContext().getTypeAlign(Ty);
|
||||
bool MustUseStack = false;
|
||||
// Determine the number of GPRs needed to pass the current argument
|
||||
|
@ -9315,10 +9564,12 @@ ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const {
|
|||
return ABIArgInfo::getIgnore();
|
||||
|
||||
int ArgGPRsLeft = 2;
|
||||
int ArgFPRsLeft = FLen ? 2 : 0;
|
||||
|
||||
// The rules for return and argument types are the same, so defer to
|
||||
// classifyArgumentType.
|
||||
return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft);
|
||||
return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft,
|
||||
ArgFPRsLeft);
|
||||
}
|
||||
|
||||
Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
||||
|
@ -9353,8 +9604,9 @@ ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const {
|
|||
namespace {
|
||||
class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
|
||||
public:
|
||||
RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen)
|
||||
: TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen)) {}
|
||||
RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen,
|
||||
unsigned FLen)
|
||||
: TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen, FLen)) {}
|
||||
|
||||
void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
|
||||
CodeGen::CodeGenModule &CGM) const override {
|
||||
|
@ -9493,9 +9745,16 @@ const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
|
|||
return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
|
||||
|
||||
case llvm::Triple::riscv32:
|
||||
return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 32));
|
||||
case llvm::Triple::riscv64:
|
||||
return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 64));
|
||||
case llvm::Triple::riscv64: {
|
||||
StringRef ABIStr = getTarget().getABI();
|
||||
unsigned XLen = getTarget().getPointerWidth(0);
|
||||
unsigned ABIFLen = 0;
|
||||
if (ABIStr.endswith("f"))
|
||||
ABIFLen = 32;
|
||||
else if (ABIStr.endswith("d"))
|
||||
ABIFLen = 64;
|
||||
return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen));
|
||||
}
|
||||
|
||||
case llvm::Triple::systemz: {
|
||||
bool HasVector = getTarget().getABI() == "vector";
|
||||
|
|
|
@ -1,4 +1,6 @@
|
|||
// RUN: %clang_cc1 -triple riscv32 -emit-llvm %s -o - | FileCheck %s
|
||||
// RUN: %clang_cc1 -triple riscv32 -target-feature +f -target-abi ilp32f -emit-llvm %s -o - \
|
||||
// RUN: | FileCheck %s
|
||||
|
||||
// This file contains test cases that will have the same output for the ilp32
|
||||
// and ilp32f ABIs.
|
||||
|
@ -35,8 +37,8 @@ int f_scalar_stack_1(int32_t a, int64_t b, int32_t c, double d, long double e,
|
|||
// the presence of large return values that consume a register due to the need
|
||||
// to pass a pointer.
|
||||
|
||||
// CHECK-LABEL: define void @f_scalar_stack_2(%struct.large* noalias sret %agg.result, i32 %a, i64 %b, i64 %c, fp128 %d, i8 zeroext %e, i8 %f, i8 %g)
|
||||
struct large f_scalar_stack_2(int32_t a, int64_t b, int64_t c, long double d,
|
||||
// CHECK-LABEL: define void @f_scalar_stack_2(%struct.large* noalias sret %agg.result, i32 %a, i64 %b, double %c, fp128 %d, i8 zeroext %e, i8 %f, i8 %g)
|
||||
struct large f_scalar_stack_2(int32_t a, int64_t b, double c, long double d,
|
||||
uint8_t e, int8_t f, uint8_t g) {
|
||||
return (struct large){a, e, f, g};
|
||||
}
|
||||
|
|
|
@ -1,6 +1,10 @@
|
|||
// RUN: %clang_cc1 -triple riscv32 -emit-llvm %s -o - | FileCheck %s
|
||||
// RUN: %clang_cc1 -triple riscv32 -emit-llvm -fforce-enable-int128 %s -o - \
|
||||
// RUN: | FileCheck %s -check-prefixes=CHECK,CHECK-FORCEINT128
|
||||
// RUN: %clang_cc1 -triple riscv32 -target-feature +f -target-abi ilp32f -emit-llvm %s -o - \
|
||||
// RUN: | FileCheck %s
|
||||
// RUN: %clang_cc1 -triple riscv32 -target-feature +d -target-abi ilp32d -emit-llvm %s -o - \
|
||||
// RUN: | FileCheck %s
|
||||
|
||||
// This file contains test cases that will have the same output for the ilp32,
|
||||
// ilp32f, and ilp32d ABIs.
|
||||
|
|
|
@ -0,0 +1,282 @@
|
|||
// RUN: %clang_cc1 -triple riscv32 -target-feature +d -target-abi ilp32d -emit-llvm %s -o - \
|
||||
// RUN: | FileCheck %s
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
// Verify that the tracking of used GPRs and FPRs works correctly by checking
|
||||
// that small integers are sign/zero extended when passed in registers.
|
||||
|
||||
// Doubles are passed in FPRs, so argument 'i' will be passed zero-extended
|
||||
// because it will be passed in a GPR.
|
||||
|
||||
// CHECK: define void @f_fpr_tracking(double %a, double %b, double %c, double %d, double %e, double %f, double %g, double %h, i8 zeroext %i)
|
||||
void f_fpr_tracking(double a, double b, double c, double d, double e, double f,
|
||||
double g, double h, uint8_t i) {}
|
||||
|
||||
// Check that fp, fp+fp, and int+fp structs are lowered correctly. These will
|
||||
// be passed in FPR, FPR+FPR, or GPR+FPR regs if sufficient registers are
|
||||
// available the widths are <= XLEN and FLEN, and should be expanded to
|
||||
// separate arguments in IR. They are passed by the same rules for returns,
|
||||
// but will be lowered to simple two-element structs if necessary (as LLVM IR
|
||||
// functions cannot return multiple values).
|
||||
|
||||
// A struct containing just one floating-point real is passed as though it
|
||||
// were a standalone floating-point real.
|
||||
|
||||
struct double_s { double f; };
|
||||
|
||||
// CHECK: define void @f_double_s_arg(double)
|
||||
void f_double_s_arg(struct double_s a) {}
|
||||
|
||||
// CHECK: define double @f_ret_double_s()
|
||||
struct double_s f_ret_double_s() {
|
||||
return (struct double_s){1.0};
|
||||
}
|
||||
|
||||
// A struct containing a double and any number of zero-width bitfields is
|
||||
// passed as though it were a standalone floating-point real.
|
||||
|
||||
struct zbf_double_s { int : 0; double f; };
|
||||
struct zbf_double_zbf_s { int : 0; double f; int : 0; };
|
||||
|
||||
// CHECK: define void @f_zbf_double_s_arg(double)
|
||||
void f_zbf_double_s_arg(struct zbf_double_s a) {}
|
||||
|
||||
// CHECK: define double @f_ret_zbf_double_s()
|
||||
struct zbf_double_s f_ret_zbf_double_s() {
|
||||
return (struct zbf_double_s){1.0};
|
||||
}
|
||||
|
||||
// CHECK: define void @f_zbf_double_zbf_s_arg(double)
|
||||
void f_zbf_double_zbf_s_arg(struct zbf_double_zbf_s a) {}
|
||||
|
||||
// CHECK: define double @f_ret_zbf_double_zbf_s()
|
||||
struct zbf_double_zbf_s f_ret_zbf_double_zbf_s() {
|
||||
return (struct zbf_double_zbf_s){1.0};
|
||||
}
|
||||
|
||||
// Check that structs containing two floating point values (FLEN <= width) are
|
||||
// expanded provided sufficient FPRs are available.
|
||||
|
||||
struct double_double_s { double f; double g; };
|
||||
struct double_float_s { double f; float g; };
|
||||
|
||||
// CHECK: define void @f_double_double_s_arg(double, double)
|
||||
void f_double_double_s_arg(struct double_double_s a) {}
|
||||
|
||||
// CHECK: define { double, double } @f_ret_double_double_s()
|
||||
struct double_double_s f_ret_double_double_s() {
|
||||
return (struct double_double_s){1.0, 2.0};
|
||||
}
|
||||
|
||||
// CHECK: define void @f_double_float_s_arg(double, float)
|
||||
void f_double_float_s_arg(struct double_float_s a) {}
|
||||
|
||||
// CHECK: define { double, float } @f_ret_double_float_s()
|
||||
struct double_float_s f_ret_double_float_s() {
|
||||
return (struct double_float_s){1.0, 2.0};
|
||||
}
|
||||
|
||||
// CHECK: define void @f_double_double_s_arg_insufficient_fprs(float %a, double %b, double %c, double %d, double %e, double %f, double %g, %struct.double_double_s* %h)
|
||||
void f_double_double_s_arg_insufficient_fprs(float a, double b, double c, double d,
|
||||
double e, double f, double g, struct double_double_s h) {}
|
||||
|
||||
// Check that structs containing int+double values are expanded, provided
|
||||
// sufficient FPRs and GPRs are available. The integer components are neither
|
||||
// sign or zero-extended.
|
||||
|
||||
struct double_int8_s { double f; int8_t i; };
|
||||
struct double_uint8_s { double f; uint8_t i; };
|
||||
struct double_int32_s { double f; int32_t i; };
|
||||
struct double_int64_s { double f; int64_t i; };
|
||||
struct double_int64bf_s { double f; int64_t i : 32; };
|
||||
struct double_int8_zbf_s { double f; int8_t i; int : 0; };
|
||||
|
||||
// CHECK: define void @f_double_int8_s_arg(double, i8)
|
||||
void f_double_int8_s_arg(struct double_int8_s a) {}
|
||||
|
||||
// CHECK: define { double, i8 } @f_ret_double_int8_s()
|
||||
struct double_int8_s f_ret_double_int8_s() {
|
||||
return (struct double_int8_s){1.0, 2};
|
||||
}
|
||||
|
||||
// CHECK: define void @f_double_uint8_s_arg(double, i8)
|
||||
void f_double_uint8_s_arg(struct double_uint8_s a) {}
|
||||
|
||||
// CHECK: define { double, i8 } @f_ret_double_uint8_s()
|
||||
struct double_uint8_s f_ret_double_uint8_s() {
|
||||
return (struct double_uint8_s){1.0, 2};
|
||||
}
|
||||
|
||||
// CHECK: define void @f_double_int32_s_arg(double, i32)
|
||||
void f_double_int32_s_arg(struct double_int32_s a) {}
|
||||
|
||||
// CHECK: define { double, i32 } @f_ret_double_int32_s()
|
||||
struct double_int32_s f_ret_double_int32_s() {
|
||||
return (struct double_int32_s){1.0, 2};
|
||||
}
|
||||
|
||||
// CHECK: define void @f_double_int64_s_arg(%struct.double_int64_s* %a)
|
||||
void f_double_int64_s_arg(struct double_int64_s a) {}
|
||||
|
||||
// CHECK: define void @f_ret_double_int64_s(%struct.double_int64_s* noalias sret %agg.result)
|
||||
struct double_int64_s f_ret_double_int64_s() {
|
||||
return (struct double_int64_s){1.0, 2};
|
||||
}
|
||||
|
||||
// CHECK: define void @f_double_int64bf_s_arg(double, i32)
|
||||
void f_double_int64bf_s_arg(struct double_int64bf_s a) {}
|
||||
|
||||
// CHECK: define { double, i32 } @f_ret_double_int64bf_s()
|
||||
struct double_int64bf_s f_ret_double_int64bf_s() {
|
||||
return (struct double_int64bf_s){1.0, 2};
|
||||
}
|
||||
|
||||
// The zero-width bitfield means the struct can't be passed according to the
|
||||
// floating point calling convention.
|
||||
|
||||
// CHECK: define void @f_double_int8_zbf_s(double, i8)
|
||||
void f_double_int8_zbf_s(struct double_int8_zbf_s a) {}
|
||||
|
||||
// CHECK: define { double, i8 } @f_ret_double_int8_zbf_s()
|
||||
struct double_int8_zbf_s f_ret_double_int8_zbf_s() {
|
||||
return (struct double_int8_zbf_s){1.0, 2};
|
||||
}
|
||||
|
||||
// CHECK: define void @f_double_int8_s_arg_insufficient_gprs(i32 %a, i32 %b, i32 %c, i32 %d, i32 %e, i32 %f, i32 %g, i32 %h, %struct.double_int8_s* %i)
|
||||
void f_double_int8_s_arg_insufficient_gprs(int a, int b, int c, int d, int e,
|
||||
int f, int g, int h, struct double_int8_s i) {}
|
||||
|
||||
// CHECK: define void @f_struct_double_int8_insufficient_fprs(float %a, double %b, double %c, double %d, double %e, double %f, double %g, double %h, %struct.double_int8_s* %i)
|
||||
void f_struct_double_int8_insufficient_fprs(float a, double b, double c, double d,
|
||||
double e, double f, double g, double h, struct double_int8_s i) {}
|
||||
|
||||
// Complex floating-point values or structs containing a single complex
|
||||
// floating-point value should be passed as if it were an fp+fp struct.
|
||||
|
||||
// CHECK: define void @f_doublecomplex(double %a.coerce0, double %a.coerce1)
|
||||
void f_doublecomplex(double __complex__ a) {}
|
||||
|
||||
// CHECK: define { double, double } @f_ret_doublecomplex()
|
||||
double __complex__ f_ret_doublecomplex() {
|
||||
return 1.0;
|
||||
}
|
||||
|
||||
struct doublecomplex_s { double __complex__ c; };
|
||||
|
||||
// CHECK: define void @f_doublecomplex_s_arg(double, double)
|
||||
void f_doublecomplex_s_arg(struct doublecomplex_s a) {}
|
||||
|
||||
// CHECK: define { double, double } @f_ret_doublecomplex_s()
|
||||
struct doublecomplex_s f_ret_doublecomplex_s() {
|
||||
return (struct doublecomplex_s){1.0};
|
||||
}
|
||||
|
||||
// Test single or two-element structs that need flattening. e.g. those
|
||||
// containing nested structs, doubles in small arrays, zero-length structs etc.
|
||||
|
||||
struct doublearr1_s { double a[1]; };
|
||||
|
||||
// CHECK: define void @f_doublearr1_s_arg(double)
|
||||
void f_doublearr1_s_arg(struct doublearr1_s a) {}
|
||||
|
||||
// CHECK: define double @f_ret_doublearr1_s()
|
||||
struct doublearr1_s f_ret_doublearr1_s() {
|
||||
return (struct doublearr1_s){{1.0}};
|
||||
}
|
||||
|
||||
struct doublearr2_s { double a[2]; };
|
||||
|
||||
// CHECK: define void @f_doublearr2_s_arg(double, double)
|
||||
void f_doublearr2_s_arg(struct doublearr2_s a) {}
|
||||
|
||||
// CHECK: define { double, double } @f_ret_doublearr2_s()
|
||||
struct doublearr2_s f_ret_doublearr2_s() {
|
||||
return (struct doublearr2_s){{1.0, 2.0}};
|
||||
}
|
||||
|
||||
struct doublearr2_tricky1_s { struct { double f[1]; } g[2]; };
|
||||
|
||||
// CHECK: define void @f_doublearr2_tricky1_s_arg(double, double)
|
||||
void f_doublearr2_tricky1_s_arg(struct doublearr2_tricky1_s a) {}
|
||||
|
||||
// CHECK: define { double, double } @f_ret_doublearr2_tricky1_s()
|
||||
struct doublearr2_tricky1_s f_ret_doublearr2_tricky1_s() {
|
||||
return (struct doublearr2_tricky1_s){{{{1.0}}, {{2.0}}}};
|
||||
}
|
||||
|
||||
struct doublearr2_tricky2_s { struct {}; struct { double f[1]; } g[2]; };
|
||||
|
||||
// CHECK: define void @f_doublearr2_tricky2_s_arg(double, double)
|
||||
void f_doublearr2_tricky2_s_arg(struct doublearr2_tricky2_s a) {}
|
||||
|
||||
// CHECK: define { double, double } @f_ret_doublearr2_tricky2_s()
|
||||
struct doublearr2_tricky2_s f_ret_doublearr2_tricky2_s() {
|
||||
return (struct doublearr2_tricky2_s){{}, {{{1.0}}, {{2.0}}}};
|
||||
}
|
||||
|
||||
struct doublearr2_tricky3_s { union {}; struct { double f[1]; } g[2]; };
|
||||
|
||||
// CHECK: define void @f_doublearr2_tricky3_s_arg(double, double)
|
||||
void f_doublearr2_tricky3_s_arg(struct doublearr2_tricky3_s a) {}
|
||||
|
||||
// CHECK: define { double, double } @f_ret_doublearr2_tricky3_s()
|
||||
struct doublearr2_tricky3_s f_ret_doublearr2_tricky3_s() {
|
||||
return (struct doublearr2_tricky3_s){{}, {{{1.0}}, {{2.0}}}};
|
||||
}
|
||||
|
||||
struct doublearr2_tricky4_s { union {}; struct { struct {}; double f[1]; } g[2]; };
|
||||
|
||||
// CHECK: define void @f_doublearr2_tricky4_s_arg(double, double)
|
||||
void f_doublearr2_tricky4_s_arg(struct doublearr2_tricky4_s a) {}
|
||||
|
||||
// CHECK: define { double, double } @f_ret_doublearr2_tricky4_s()
|
||||
struct doublearr2_tricky4_s f_ret_doublearr2_tricky4_s() {
|
||||
return (struct doublearr2_tricky4_s){{}, {{{}, {1.0}}, {{}, {2.0}}}};
|
||||
}
|
||||
|
||||
// Test structs that should be passed according to the normal integer calling
|
||||
// convention.
|
||||
|
||||
struct int_double_int_s { int a; double b; int c; };
|
||||
|
||||
// CHECK: define void @f_int_double_int_s_arg(%struct.int_double_int_s* %a)
|
||||
void f_int_double_int_s_arg(struct int_double_int_s a) {}
|
||||
|
||||
// CHECK: define void @f_ret_int_double_int_s(%struct.int_double_int_s* noalias sret %agg.result)
|
||||
struct int_double_int_s f_ret_int_double_int_s() {
|
||||
return (struct int_double_int_s){1, 2.0, 3};
|
||||
}
|
||||
|
||||
struct int64_double_s { int64_t a; double b; };
|
||||
|
||||
// CHECK: define void @f_int64_double_s_arg(%struct.int64_double_s* %a)
|
||||
void f_int64_double_s_arg(struct int64_double_s a) {}
|
||||
|
||||
// CHECK: define void @f_ret_int64_double_s(%struct.int64_double_s* noalias sret %agg.result)
|
||||
struct int64_double_s f_ret_int64_double_s() {
|
||||
return (struct int64_double_s){1, 2.0};
|
||||
}
|
||||
|
||||
struct char_char_double_s { char a; char b; double c; };
|
||||
|
||||
// CHECK-LABEL: define void @f_char_char_double_s_arg(%struct.char_char_double_s* %a)
|
||||
void f_char_char_double_s_arg(struct char_char_double_s a) {}
|
||||
|
||||
// CHECK: define void @f_ret_char_char_double_s(%struct.char_char_double_s* noalias sret %agg.result)
|
||||
struct char_char_double_s f_ret_char_char_double_s() {
|
||||
return (struct char_char_double_s){1, 2, 3.0};
|
||||
}
|
||||
|
||||
// Unions are always passed according to the integer calling convention, even
|
||||
// if they can only contain a double.
|
||||
|
||||
union double_u { double a; };
|
||||
|
||||
// CHECK: define void @f_double_u_arg(i64 %a.coerce)
|
||||
void f_double_u_arg(union double_u a) {}
|
||||
|
||||
// CHECK: define i64 @f_ret_double_u()
|
||||
union double_u f_ret_double_u() {
|
||||
return (union double_u){1.0};
|
||||
}
|
|
@ -0,0 +1,45 @@
|
|||
// RUN: %clang_cc1 -triple riscv32 -target-feature +f -target-abi ilp32f -emit-llvm %s -o - \
|
||||
// RUN: | FileCheck %s
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
// Doubles are still passed in GPRs, so the 'e' argument will be anyext as
|
||||
// GPRs are exhausted.
|
||||
|
||||
// CHECK: define void @f_fpr_tracking(double %a, double %b, double %c, double %d, i8 %e)
|
||||
void f_fpr_tracking(double a, double b, double c, double d, int8_t e) {}
|
||||
|
||||
// Lowering for doubles is unnmodified, as 64 > FLEN.
|
||||
|
||||
struct double_s { double d; };
|
||||
|
||||
// CHECK: define void @f_double_s_arg(i64 %a.coerce)
|
||||
void f_double_s_arg(struct double_s a) {}
|
||||
|
||||
// CHECK: define i64 @f_ret_double_s()
|
||||
struct double_s f_ret_double_s() {
|
||||
return (struct double_s){1.0};
|
||||
}
|
||||
|
||||
struct double_double_s { double d; double e; };
|
||||
|
||||
// CHECK: define void @f_double_double_s_arg(%struct.double_double_s* %a)
|
||||
void f_double_double_s_arg(struct double_double_s a) {}
|
||||
|
||||
// CHECK: define void @f_ret_double_double_s(%struct.double_double_s* noalias sret %agg.result)
|
||||
struct double_double_s f_ret_double_double_s() {
|
||||
return (struct double_double_s){1.0, 2.0};
|
||||
}
|
||||
|
||||
struct double_int8_s { double d; int64_t i; };
|
||||
|
||||
struct int_double_s { int a; double b; };
|
||||
|
||||
// CHECK: define void @f_int_double_s_arg(%struct.int_double_s* %a)
|
||||
void f_int_double_s_arg(struct int_double_s a) {}
|
||||
|
||||
// CHECK: define void @f_ret_int_double_s(%struct.int_double_s* noalias sret %agg.result)
|
||||
struct int_double_s f_ret_int_double_s() {
|
||||
return (struct int_double_s){1, 2.0};
|
||||
}
|
||||
|
|
@ -0,0 +1,275 @@
|
|||
// RUN: %clang_cc1 -triple riscv32 -target-feature +f -target-abi ilp32f -emit-llvm %s -o - \
|
||||
// RUN: | FileCheck %s
|
||||
// RUN: %clang_cc1 -triple riscv32 -target-feature +d -target-abi ilp32d -emit-llvm %s -o - \
|
||||
// RUN: | FileCheck %s
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
// Verify that the tracking of used GPRs and FPRs works correctly by checking
|
||||
// that small integers are sign/zero extended when passed in registers.
|
||||
|
||||
// Floats are passed in FPRs, so argument 'i' will be passed zero-extended
|
||||
// because it will be passed in a GPR.
|
||||
|
||||
// CHECK: define void @f_fpr_tracking(float %a, float %b, float %c, float %d, float %e, float %f, float %g, float %h, i8 zeroext %i)
|
||||
void f_fpr_tracking(float a, float b, float c, float d, float e, float f,
|
||||
float g, float h, uint8_t i) {}
|
||||
|
||||
// Check that fp, fp+fp, and int+fp structs are lowered correctly. These will
|
||||
// be passed in FPR, FPR+FPR, or GPR+FPR regs if sufficient registers are
|
||||
// available the widths are <= XLEN and FLEN, and should be expanded to
|
||||
// separate arguments in IR. They are passed by the same rules for returns,
|
||||
// but will be lowered to simple two-element structs if necessary (as LLVM IR
|
||||
// functions cannot return multiple values).
|
||||
|
||||
// A struct containing just one floating-point real is passed as though it
|
||||
// were a standalone floating-point real.
|
||||
|
||||
struct float_s { float f; };
|
||||
|
||||
// CHECK: define void @f_float_s_arg(float)
|
||||
void f_float_s_arg(struct float_s a) {}
|
||||
|
||||
// CHECK: define float @f_ret_float_s()
|
||||
struct float_s f_ret_float_s() {
|
||||
return (struct float_s){1.0};
|
||||
}
|
||||
|
||||
// A struct containing a float and any number of zero-width bitfields is
|
||||
// passed as though it were a standalone floating-point real.
|
||||
|
||||
struct zbf_float_s { int : 0; float f; };
|
||||
struct zbf_float_zbf_s { int : 0; float f; int : 0; };
|
||||
|
||||
// CHECK: define void @f_zbf_float_s_arg(float)
|
||||
void f_zbf_float_s_arg(struct zbf_float_s a) {}
|
||||
|
||||
// CHECK: define float @f_ret_zbf_float_s()
|
||||
struct zbf_float_s f_ret_zbf_float_s() {
|
||||
return (struct zbf_float_s){1.0};
|
||||
}
|
||||
|
||||
// CHECK: define void @f_zbf_float_zbf_s_arg(float)
|
||||
void f_zbf_float_zbf_s_arg(struct zbf_float_zbf_s a) {}
|
||||
|
||||
// CHECK: define float @f_ret_zbf_float_zbf_s()
|
||||
struct zbf_float_zbf_s f_ret_zbf_float_zbf_s() {
|
||||
return (struct zbf_float_zbf_s){1.0};
|
||||
}
|
||||
|
||||
// Check that structs containing two float values (FLEN <= width) are expanded
|
||||
// provided sufficient FPRs are available.
|
||||
|
||||
struct float_float_s { float f; float g; };
|
||||
|
||||
// CHECK: define void @f_float_float_s_arg(float, float)
|
||||
void f_float_float_s_arg(struct float_float_s a) {}
|
||||
|
||||
// CHECK: define { float, float } @f_ret_float_float_s()
|
||||
struct float_float_s f_ret_float_float_s() {
|
||||
return (struct float_float_s){1.0, 2.0};
|
||||
}
|
||||
|
||||
// CHECK: define void @f_float_float_s_arg_insufficient_fprs(float %a, float %b, float %c, float %d, float %e, float %f, float %g, [2 x i32] %h.coerce)
|
||||
void f_float_float_s_arg_insufficient_fprs(float a, float b, float c, float d,
|
||||
float e, float f, float g, struct float_float_s h) {}
|
||||
|
||||
// Check that structs containing int+float values are expanded, provided
|
||||
// sufficient FPRs and GPRs are available. The integer components are neither
|
||||
// sign or zero-extended.
|
||||
|
||||
struct float_int8_s { float f; int8_t i; };
|
||||
struct float_uint8_s { float f; uint8_t i; };
|
||||
struct float_int32_s { float f; int32_t i; };
|
||||
struct float_int64_s { float f; int64_t i; };
|
||||
struct float_int64bf_s { float f; int64_t i : 32; };
|
||||
struct float_int8_zbf_s { float f; int8_t i; int : 0; };
|
||||
|
||||
// CHECK: define void @f_float_int8_s_arg(float, i8)
|
||||
void f_float_int8_s_arg(struct float_int8_s a) {}
|
||||
|
||||
// CHECK: define { float, i8 } @f_ret_float_int8_s()
|
||||
struct float_int8_s f_ret_float_int8_s() {
|
||||
return (struct float_int8_s){1.0, 2};
|
||||
}
|
||||
|
||||
// CHECK: define void @f_float_uint8_s_arg(float, i8)
|
||||
void f_float_uint8_s_arg(struct float_uint8_s a) {}
|
||||
|
||||
// CHECK: define { float, i8 } @f_ret_float_uint8_s()
|
||||
struct float_uint8_s f_ret_float_uint8_s() {
|
||||
return (struct float_uint8_s){1.0, 2};
|
||||
}
|
||||
|
||||
// CHECK: define void @f_float_int32_s_arg(float, i32)
|
||||
void f_float_int32_s_arg(struct float_int32_s a) {}
|
||||
|
||||
// CHECK: define { float, i32 } @f_ret_float_int32_s()
|
||||
struct float_int32_s f_ret_float_int32_s() {
|
||||
return (struct float_int32_s){1.0, 2};
|
||||
}
|
||||
|
||||
// CHECK: define void @f_float_int64_s_arg(%struct.float_int64_s* %a)
|
||||
void f_float_int64_s_arg(struct float_int64_s a) {}
|
||||
|
||||
// CHECK: define void @f_ret_float_int64_s(%struct.float_int64_s* noalias sret %agg.result)
|
||||
struct float_int64_s f_ret_float_int64_s() {
|
||||
return (struct float_int64_s){1.0, 2};
|
||||
}
|
||||
|
||||
// CHECK: define void @f_float_int64bf_s_arg(float, i32)
|
||||
void f_float_int64bf_s_arg(struct float_int64bf_s a) {}
|
||||
|
||||
// CHECK: define { float, i32 } @f_ret_float_int64bf_s()
|
||||
struct float_int64bf_s f_ret_float_int64bf_s() {
|
||||
return (struct float_int64bf_s){1.0, 2};
|
||||
}
|
||||
|
||||
// The zero-width bitfield means the struct can't be passed according to the
|
||||
// floating point calling convention.
|
||||
|
||||
// CHECK: define void @f_float_int8_zbf_s(float, i8)
|
||||
void f_float_int8_zbf_s(struct float_int8_zbf_s a) {}
|
||||
|
||||
// CHECK: define { float, i8 } @f_ret_float_int8_zbf_s()
|
||||
struct float_int8_zbf_s f_ret_float_int8_zbf_s() {
|
||||
return (struct float_int8_zbf_s){1.0, 2};
|
||||
}
|
||||
|
||||
// CHECK: define void @f_float_int8_s_arg_insufficient_gprs(i32 %a, i32 %b, i32 %c, i32 %d, i32 %e, i32 %f, i32 %g, i32 %h, [2 x i32] %i.coerce)
|
||||
void f_float_int8_s_arg_insufficient_gprs(int a, int b, int c, int d, int e,
|
||||
int f, int g, int h, struct float_int8_s i) {}
|
||||
|
||||
// CHECK: define void @f_struct_float_int8_insufficient_fprs(float %a, float %b, float %c, float %d, float %e, float %f, float %g, float %h, [2 x i32] %i.coerce)
|
||||
void f_struct_float_int8_insufficient_fprs(float a, float b, float c, float d,
|
||||
float e, float f, float g, float h, struct float_int8_s i) {}
|
||||
|
||||
// Complex floating-point values or structs containing a single complex
|
||||
// floating-point value should be passed as if it were an fp+fp struct.
|
||||
|
||||
// CHECK: define void @f_floatcomplex(float %a.coerce0, float %a.coerce1)
|
||||
void f_floatcomplex(float __complex__ a) {}
|
||||
|
||||
// CHECK: define { float, float } @f_ret_floatcomplex()
|
||||
float __complex__ f_ret_floatcomplex() {
|
||||
return 1.0;
|
||||
}
|
||||
|
||||
struct floatcomplex_s { float __complex__ c; };
|
||||
|
||||
// CHECK: define void @f_floatcomplex_s_arg(float, float)
|
||||
void f_floatcomplex_s_arg(struct floatcomplex_s a) {}
|
||||
|
||||
// CHECK: define { float, float } @f_ret_floatcomplex_s()
|
||||
struct floatcomplex_s f_ret_floatcomplex_s() {
|
||||
return (struct floatcomplex_s){1.0};
|
||||
}
|
||||
|
||||
// Test single or two-element structs that need flattening. e.g. those
|
||||
// containing nested structs, floats in small arrays, zero-length structs etc.
|
||||
|
||||
struct floatarr1_s { float a[1]; };
|
||||
|
||||
// CHECK: define void @f_floatarr1_s_arg(float)
|
||||
void f_floatarr1_s_arg(struct floatarr1_s a) {}
|
||||
|
||||
// CHECK: define float @f_ret_floatarr1_s()
|
||||
struct floatarr1_s f_ret_floatarr1_s() {
|
||||
return (struct floatarr1_s){{1.0}};
|
||||
}
|
||||
|
||||
struct floatarr2_s { float a[2]; };
|
||||
|
||||
// CHECK: define void @f_floatarr2_s_arg(float, float)
|
||||
void f_floatarr2_s_arg(struct floatarr2_s a) {}
|
||||
|
||||
// CHECK: define { float, float } @f_ret_floatarr2_s()
|
||||
struct floatarr2_s f_ret_floatarr2_s() {
|
||||
return (struct floatarr2_s){{1.0, 2.0}};
|
||||
}
|
||||
|
||||
struct floatarr2_tricky1_s { struct { float f[1]; } g[2]; };
|
||||
|
||||
// CHECK: define void @f_floatarr2_tricky1_s_arg(float, float)
|
||||
void f_floatarr2_tricky1_s_arg(struct floatarr2_tricky1_s a) {}
|
||||
|
||||
// CHECK: define { float, float } @f_ret_floatarr2_tricky1_s()
|
||||
struct floatarr2_tricky1_s f_ret_floatarr2_tricky1_s() {
|
||||
return (struct floatarr2_tricky1_s){{{{1.0}}, {{2.0}}}};
|
||||
}
|
||||
|
||||
struct floatarr2_tricky2_s { struct {}; struct { float f[1]; } g[2]; };
|
||||
|
||||
// CHECK: define void @f_floatarr2_tricky2_s_arg(float, float)
|
||||
void f_floatarr2_tricky2_s_arg(struct floatarr2_tricky2_s a) {}
|
||||
|
||||
// CHECK: define { float, float } @f_ret_floatarr2_tricky2_s()
|
||||
struct floatarr2_tricky2_s f_ret_floatarr2_tricky2_s() {
|
||||
return (struct floatarr2_tricky2_s){{}, {{{1.0}}, {{2.0}}}};
|
||||
}
|
||||
|
||||
struct floatarr2_tricky3_s { union {}; struct { float f[1]; } g[2]; };
|
||||
|
||||
// CHECK: define void @f_floatarr2_tricky3_s_arg(float, float)
|
||||
void f_floatarr2_tricky3_s_arg(struct floatarr2_tricky3_s a) {}
|
||||
|
||||
// CHECK: define { float, float } @f_ret_floatarr2_tricky3_s()
|
||||
struct floatarr2_tricky3_s f_ret_floatarr2_tricky3_s() {
|
||||
return (struct floatarr2_tricky3_s){{}, {{{1.0}}, {{2.0}}}};
|
||||
}
|
||||
|
||||
struct floatarr2_tricky4_s { union {}; struct { struct {}; float f[1]; } g[2]; };
|
||||
|
||||
// CHECK: define void @f_floatarr2_tricky4_s_arg(float, float)
|
||||
void f_floatarr2_tricky4_s_arg(struct floatarr2_tricky4_s a) {}
|
||||
|
||||
// CHECK: define { float, float } @f_ret_floatarr2_tricky4_s()
|
||||
struct floatarr2_tricky4_s f_ret_floatarr2_tricky4_s() {
|
||||
return (struct floatarr2_tricky4_s){{}, {{{}, {1.0}}, {{}, {2.0}}}};
|
||||
}
|
||||
|
||||
// Test structs that should be passed according to the normal integer calling
|
||||
// convention.
|
||||
|
||||
struct int_float_int_s { int a; float b; int c; };
|
||||
|
||||
// CHECK: define void @f_int_float_int_s_arg(%struct.int_float_int_s* %a)
|
||||
void f_int_float_int_s_arg(struct int_float_int_s a) {}
|
||||
|
||||
// CHECK: define void @f_ret_int_float_int_s(%struct.int_float_int_s* noalias sret %agg.result)
|
||||
struct int_float_int_s f_ret_int_float_int_s() {
|
||||
return (struct int_float_int_s){1, 2.0, 3};
|
||||
}
|
||||
|
||||
struct int64_float_s { int64_t a; float b; };
|
||||
|
||||
// CHECK: define void @f_int64_float_s_arg(%struct.int64_float_s* %a)
|
||||
void f_int64_float_s_arg(struct int64_float_s a) {}
|
||||
|
||||
// CHECK: define void @f_ret_int64_float_s(%struct.int64_float_s* noalias sret %agg.result)
|
||||
struct int64_float_s f_ret_int64_float_s() {
|
||||
return (struct int64_float_s){1, 2.0};
|
||||
}
|
||||
|
||||
struct char_char_float_s { char a; char b; float c; };
|
||||
|
||||
// CHECK-LABEL: define void @f_char_char_float_s_arg([2 x i32] %a.coerce)
|
||||
void f_char_char_float_s_arg(struct char_char_float_s a) {}
|
||||
|
||||
// CHECK: define [2 x i32] @f_ret_char_char_float_s()
|
||||
struct char_char_float_s f_ret_char_char_float_s() {
|
||||
return (struct char_char_float_s){1, 2, 3.0};
|
||||
}
|
||||
|
||||
// Unions are always passed according to the integer calling convention, even
|
||||
// if they can only contain a float.
|
||||
|
||||
union float_u { float a; };
|
||||
|
||||
// CHECK: define void @f_float_u_arg(i32 %a.coerce)
|
||||
void f_float_u_arg(union float_u a) {}
|
||||
|
||||
// CHECK: define i32 @f_ret_float_u()
|
||||
union float_u f_ret_float_u() {
|
||||
return (union float_u){1.0};
|
||||
}
|
|
@ -1,4 +1,6 @@
|
|||
// RUN: %clang_cc1 -triple riscv64 -emit-llvm %s -o - | FileCheck %s
|
||||
// RUN: %clang_cc1 -triple riscv64 -target-feature +f -target-abi lp64f -emit-llvm %s -o - \
|
||||
// RUN: | FileCheck %s
|
||||
|
||||
// This file contains test cases that will have the same output for the lp64
|
||||
// and lp64f ABIs.
|
||||
|
|
|
@ -1,4 +1,8 @@
|
|||
// RUN: %clang_cc1 -triple riscv64 -emit-llvm %s -o - | FileCheck %s
|
||||
// RUN: %clang_cc1 -triple riscv64 -target-feature +f -target-abi lp64f -emit-llvm %s -o - \
|
||||
// RUN: | FileCheck %s
|
||||
// RUN: %clang_cc1 -triple riscv64 -target-feature +d -target-abi lp64d -emit-llvm %s -o - \
|
||||
// RUN: | FileCheck %s
|
||||
|
||||
// This file contains test cases that will have the same output for the lp64,
|
||||
// lp64f, and lp64d ABIs.
|
||||
|
|
|
@ -0,0 +1,272 @@
|
|||
// RUN: %clang_cc1 -triple riscv64 -target-feature +d -target-abi lp64d -emit-llvm %s -o - \
|
||||
// RUN: | FileCheck %s
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
// Verify that the tracking of used GPRs and FPRs works correctly by checking
|
||||
// that small integers are sign/zero extended when passed in registers.
|
||||
|
||||
// Doubles are passed in FPRs, so argument 'i' will be passed zero-extended
|
||||
// because it will be passed in a GPR.
|
||||
|
||||
// CHECK: define void @f_fpr_tracking(double %a, double %b, double %c, double %d, double %e, double %f, double %g, double %h, i8 zeroext %i)
|
||||
void f_fpr_tracking(double a, double b, double c, double d, double e, double f,
|
||||
double g, double h, uint8_t i) {}
|
||||
|
||||
// Check that fp, fp+fp, and int+fp structs are lowered correctly. These will
|
||||
// be passed in FPR, FPR+FPR, or GPR+FPR regs if sufficient registers are
|
||||
// available the widths are <= XLEN and FLEN, and should be expanded to
|
||||
// separate arguments in IR. They are passed by the same rules for returns,
|
||||
// but will be lowered to simple two-element structs if necessary (as LLVM IR
|
||||
// functions cannot return multiple values).
|
||||
|
||||
// A struct containing just one floating-point real is passed as though it
|
||||
// were a standalone floating-point real.
|
||||
|
||||
struct double_s { double f; };
|
||||
|
||||
// CHECK: define void @f_double_s_arg(double)
|
||||
void f_double_s_arg(struct double_s a) {}
|
||||
|
||||
// CHECK: define double @f_ret_double_s()
|
||||
struct double_s f_ret_double_s() {
|
||||
return (struct double_s){1.0};
|
||||
}
|
||||
|
||||
// A struct containing a double and any number of zero-width bitfields is
|
||||
// passed as though it were a standalone floating-point real.
|
||||
|
||||
struct zbf_double_s { int : 0; double f; };
|
||||
struct zbf_double_zbf_s { int : 0; double f; int : 0; };
|
||||
|
||||
// CHECK: define void @f_zbf_double_s_arg(double)
|
||||
void f_zbf_double_s_arg(struct zbf_double_s a) {}
|
||||
|
||||
// CHECK: define double @f_ret_zbf_double_s()
|
||||
struct zbf_double_s f_ret_zbf_double_s() {
|
||||
return (struct zbf_double_s){1.0};
|
||||
}
|
||||
|
||||
// CHECK: define void @f_zbf_double_zbf_s_arg(double)
|
||||
void f_zbf_double_zbf_s_arg(struct zbf_double_zbf_s a) {}
|
||||
|
||||
// CHECK: define double @f_ret_zbf_double_zbf_s()
|
||||
struct zbf_double_zbf_s f_ret_zbf_double_zbf_s() {
|
||||
return (struct zbf_double_zbf_s){1.0};
|
||||
}
|
||||
|
||||
// Check that structs containing two floating point values (FLEN <= width) are
|
||||
// expanded provided sufficient FPRs are available.
|
||||
|
||||
struct double_double_s { double f; double g; };
|
||||
struct double_float_s { double f; float g; };
|
||||
|
||||
// CHECK: define void @f_double_double_s_arg(double, double)
|
||||
void f_double_double_s_arg(struct double_double_s a) {}
|
||||
|
||||
// CHECK: define { double, double } @f_ret_double_double_s()
|
||||
struct double_double_s f_ret_double_double_s() {
|
||||
return (struct double_double_s){1.0, 2.0};
|
||||
}
|
||||
|
||||
// CHECK: define void @f_double_float_s_arg(double, float)
|
||||
void f_double_float_s_arg(struct double_float_s a) {}
|
||||
|
||||
// CHECK: define { double, float } @f_ret_double_float_s()
|
||||
struct double_float_s f_ret_double_float_s() {
|
||||
return (struct double_float_s){1.0, 2.0};
|
||||
}
|
||||
|
||||
// CHECK: define void @f_double_double_s_arg_insufficient_fprs(float %a, double %b, double %c, double %d, double %e, double %f, double %g, [2 x i64] %h.coerce)
|
||||
void f_double_double_s_arg_insufficient_fprs(float a, double b, double c, double d,
|
||||
double e, double f, double g, struct double_double_s h) {}
|
||||
|
||||
// Check that structs containing int+double values are expanded, provided
|
||||
// sufficient FPRs and GPRs are available. The integer components are neither
|
||||
// sign or zero-extended.
|
||||
|
||||
struct double_int8_s { double f; int8_t i; };
|
||||
struct double_uint8_s { double f; uint8_t i; };
|
||||
struct double_int32_s { double f; int32_t i; };
|
||||
struct double_int64_s { double f; int64_t i; };
|
||||
struct double_int128bf_s { double f; __int128_t i : 64; };
|
||||
struct double_int8_zbf_s { double f; int8_t i; int : 0; };
|
||||
|
||||
// CHECK: define void @f_double_int8_s_arg(double, i8)
|
||||
void f_double_int8_s_arg(struct double_int8_s a) {}
|
||||
|
||||
// CHECK: define { double, i8 } @f_ret_double_int8_s()
|
||||
struct double_int8_s f_ret_double_int8_s() {
|
||||
return (struct double_int8_s){1.0, 2};
|
||||
}
|
||||
|
||||
// CHECK: define void @f_double_uint8_s_arg(double, i8)
|
||||
void f_double_uint8_s_arg(struct double_uint8_s a) {}
|
||||
|
||||
// CHECK: define { double, i8 } @f_ret_double_uint8_s()
|
||||
struct double_uint8_s f_ret_double_uint8_s() {
|
||||
return (struct double_uint8_s){1.0, 2};
|
||||
}
|
||||
|
||||
// CHECK: define void @f_double_int32_s_arg(double, i32)
|
||||
void f_double_int32_s_arg(struct double_int32_s a) {}
|
||||
|
||||
// CHECK: define { double, i32 } @f_ret_double_int32_s()
|
||||
struct double_int32_s f_ret_double_int32_s() {
|
||||
return (struct double_int32_s){1.0, 2};
|
||||
}
|
||||
|
||||
// CHECK: define void @f_double_int64_s_arg(double, i64)
|
||||
void f_double_int64_s_arg(struct double_int64_s a) {}
|
||||
|
||||
// CHECK: define { double, i64 } @f_ret_double_int64_s()
|
||||
struct double_int64_s f_ret_double_int64_s() {
|
||||
return (struct double_int64_s){1.0, 2};
|
||||
}
|
||||
|
||||
// CHECK: define void @f_double_int128bf_s_arg(double, i64)
|
||||
void f_double_int128bf_s_arg(struct double_int128bf_s a) {}
|
||||
|
||||
// CHECK: define { double, i64 } @f_ret_double_int128bf_s()
|
||||
struct double_int128bf_s f_ret_double_int128bf_s() {
|
||||
return (struct double_int128bf_s){1.0, 2};
|
||||
}
|
||||
|
||||
// The zero-width bitfield means the struct can't be passed according to the
|
||||
// floating point calling convention.
|
||||
|
||||
// CHECK: define void @f_double_int8_zbf_s(double, i8)
|
||||
void f_double_int8_zbf_s(struct double_int8_zbf_s a) {}
|
||||
|
||||
// CHECK: define { double, i8 } @f_ret_double_int8_zbf_s()
|
||||
struct double_int8_zbf_s f_ret_double_int8_zbf_s() {
|
||||
return (struct double_int8_zbf_s){1.0, 2};
|
||||
}
|
||||
|
||||
// CHECK: define void @f_double_int8_s_arg_insufficient_gprs(i32 signext %a, i32 signext %b, i32 signext %c, i32 signext %d, i32 signext %e, i32 signext %f, i32 signext %g, i32 signext %h, [2 x i64] %i.coerce)
|
||||
void f_double_int8_s_arg_insufficient_gprs(int a, int b, int c, int d, int e,
|
||||
int f, int g, int h, struct double_int8_s i) {}
|
||||
|
||||
// CHECK: define void @f_struct_double_int8_insufficient_fprs(float %a, double %b, double %c, double %d, double %e, double %f, double %g, double %h, [2 x i64] %i.coerce)
|
||||
void f_struct_double_int8_insufficient_fprs(float a, double b, double c, double d,
|
||||
double e, double f, double g, double h, struct double_int8_s i) {}
|
||||
|
||||
// Complex floating-point values or structs containing a single complex
|
||||
// floating-point value should be passed as if it were an fp+fp struct.
|
||||
|
||||
// CHECK: define void @f_doublecomplex(double %a.coerce0, double %a.coerce1)
|
||||
void f_doublecomplex(double __complex__ a) {}
|
||||
|
||||
// CHECK: define { double, double } @f_ret_doublecomplex()
|
||||
double __complex__ f_ret_doublecomplex() {
|
||||
return 1.0;
|
||||
}
|
||||
|
||||
struct doublecomplex_s { double __complex__ c; };
|
||||
|
||||
// CHECK: define void @f_doublecomplex_s_arg(double, double)
|
||||
void f_doublecomplex_s_arg(struct doublecomplex_s a) {}
|
||||
|
||||
// CHECK: define { double, double } @f_ret_doublecomplex_s()
|
||||
struct doublecomplex_s f_ret_doublecomplex_s() {
|
||||
return (struct doublecomplex_s){1.0};
|
||||
}
|
||||
|
||||
// Test single or two-element structs that need flattening. e.g. those
|
||||
// containing nested structs, doubles in small arrays, zero-length structs etc.
|
||||
|
||||
struct doublearr1_s { double a[1]; };
|
||||
|
||||
// CHECK: define void @f_doublearr1_s_arg(double)
|
||||
void f_doublearr1_s_arg(struct doublearr1_s a) {}
|
||||
|
||||
// CHECK: define double @f_ret_doublearr1_s()
|
||||
struct doublearr1_s f_ret_doublearr1_s() {
|
||||
return (struct doublearr1_s){{1.0}};
|
||||
}
|
||||
|
||||
struct doublearr2_s { double a[2]; };
|
||||
|
||||
// CHECK: define void @f_doublearr2_s_arg(double, double)
|
||||
void f_doublearr2_s_arg(struct doublearr2_s a) {}
|
||||
|
||||
// CHECK: define { double, double } @f_ret_doublearr2_s()
|
||||
struct doublearr2_s f_ret_doublearr2_s() {
|
||||
return (struct doublearr2_s){{1.0, 2.0}};
|
||||
}
|
||||
|
||||
struct doublearr2_tricky1_s { struct { double f[1]; } g[2]; };
|
||||
|
||||
// CHECK: define void @f_doublearr2_tricky1_s_arg(double, double)
|
||||
void f_doublearr2_tricky1_s_arg(struct doublearr2_tricky1_s a) {}
|
||||
|
||||
// CHECK: define { double, double } @f_ret_doublearr2_tricky1_s()
|
||||
struct doublearr2_tricky1_s f_ret_doublearr2_tricky1_s() {
|
||||
return (struct doublearr2_tricky1_s){{{{1.0}}, {{2.0}}}};
|
||||
}
|
||||
|
||||
struct doublearr2_tricky2_s { struct {}; struct { double f[1]; } g[2]; };
|
||||
|
||||
// CHECK: define void @f_doublearr2_tricky2_s_arg(double, double)
|
||||
void f_doublearr2_tricky2_s_arg(struct doublearr2_tricky2_s a) {}
|
||||
|
||||
// CHECK: define { double, double } @f_ret_doublearr2_tricky2_s()
|
||||
struct doublearr2_tricky2_s f_ret_doublearr2_tricky2_s() {
|
||||
return (struct doublearr2_tricky2_s){{}, {{{1.0}}, {{2.0}}}};
|
||||
}
|
||||
|
||||
struct doublearr2_tricky3_s { union {}; struct { double f[1]; } g[2]; };
|
||||
|
||||
// CHECK: define void @f_doublearr2_tricky3_s_arg(double, double)
|
||||
void f_doublearr2_tricky3_s_arg(struct doublearr2_tricky3_s a) {}
|
||||
|
||||
// CHECK: define { double, double } @f_ret_doublearr2_tricky3_s()
|
||||
struct doublearr2_tricky3_s f_ret_doublearr2_tricky3_s() {
|
||||
return (struct doublearr2_tricky3_s){{}, {{{1.0}}, {{2.0}}}};
|
||||
}
|
||||
|
||||
struct doublearr2_tricky4_s { union {}; struct { struct {}; double f[1]; } g[2]; };
|
||||
|
||||
// CHECK: define void @f_doublearr2_tricky4_s_arg(double, double)
|
||||
void f_doublearr2_tricky4_s_arg(struct doublearr2_tricky4_s a) {}
|
||||
|
||||
// CHECK: define { double, double } @f_ret_doublearr2_tricky4_s()
|
||||
struct doublearr2_tricky4_s f_ret_doublearr2_tricky4_s() {
|
||||
return (struct doublearr2_tricky4_s){{}, {{{}, {1.0}}, {{}, {2.0}}}};
|
||||
}
|
||||
|
||||
// Test structs that should be passed according to the normal integer calling
|
||||
// convention.
|
||||
|
||||
struct int_double_int_s { int a; double b; int c; };
|
||||
|
||||
// CHECK: define void @f_int_double_int_s_arg(%struct.int_double_int_s* %a)
|
||||
void f_int_double_int_s_arg(struct int_double_int_s a) {}
|
||||
|
||||
// CHECK: define void @f_ret_int_double_int_s(%struct.int_double_int_s* noalias sret %agg.result)
|
||||
struct int_double_int_s f_ret_int_double_int_s() {
|
||||
return (struct int_double_int_s){1, 2.0, 3};
|
||||
}
|
||||
|
||||
struct char_char_double_s { char a; char b; double c; };
|
||||
|
||||
// CHECK-LABEL: define void @f_char_char_double_s_arg([2 x i64] %a.coerce)
|
||||
void f_char_char_double_s_arg(struct char_char_double_s a) {}
|
||||
|
||||
// CHECK: define [2 x i64] @f_ret_char_char_double_s()
|
||||
struct char_char_double_s f_ret_char_char_double_s() {
|
||||
return (struct char_char_double_s){1, 2, 3.0};
|
||||
}
|
||||
|
||||
// Unions are always passed according to the integer calling convention, even
|
||||
// if they can only contain a double.
|
||||
|
||||
union double_u { double a; };
|
||||
|
||||
// CHECK: define void @f_double_u_arg(i64 %a.coerce)
|
||||
void f_double_u_arg(union double_u a) {}
|
||||
|
||||
// CHECK: define i64 @f_ret_double_u()
|
||||
union double_u f_ret_double_u() {
|
||||
return (union double_u){1.0};
|
||||
}
|
|
@ -0,0 +1,265 @@
|
|||
// RUN: %clang_cc1 -triple riscv64 -target-feature +f -target-abi lp64f -emit-llvm %s -o - \
|
||||
// RUN: | FileCheck %s
|
||||
// RUN: %clang_cc1 -triple riscv64 -target-feature +d -target-abi lp64d -emit-llvm %s -o - \
|
||||
// RUN: | FileCheck %s
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
// Verify that the tracking of used GPRs and FPRs works correctly by checking
|
||||
// that small integers are sign/zero extended when passed in registers.
|
||||
|
||||
// Floats are passed in FPRs, so argument 'i' will be passed zero-extended
|
||||
// because it will be passed in a GPR.
|
||||
|
||||
// CHECK: define void @f_fpr_tracking(float %a, float %b, float %c, float %d, float %e, float %f, float %g, float %h, i8 zeroext %i)
|
||||
void f_fpr_tracking(float a, float b, float c, float d, float e, float f,
|
||||
float g, float h, uint8_t i) {}
|
||||
|
||||
// Check that fp, fp+fp, and int+fp structs are lowered correctly. These will
|
||||
// be passed in FPR, FPR+FPR, or GPR+FPR regs if sufficient registers are
|
||||
// available the widths are <= XLEN and FLEN, and should be expanded to
|
||||
// separate arguments in IR. They are passed by the same rules for returns,
|
||||
// but will be lowered to simple two-element structs if necessary (as LLVM IR
|
||||
// functions cannot return multiple values).
|
||||
|
||||
// A struct containing just one floating-point real is passed as though it
|
||||
// were a standalone floating-point real.
|
||||
|
||||
struct float_s { float f; };
|
||||
|
||||
// CHECK: define void @f_float_s_arg(float)
|
||||
void f_float_s_arg(struct float_s a) {}
|
||||
|
||||
// CHECK: define float @f_ret_float_s()
|
||||
struct float_s f_ret_float_s() {
|
||||
return (struct float_s){1.0};
|
||||
}
|
||||
|
||||
// A struct containing a float and any number of zero-width bitfields is
|
||||
// passed as though it were a standalone floating-point real.
|
||||
|
||||
struct zbf_float_s { int : 0; float f; };
|
||||
struct zbf_float_zbf_s { int : 0; float f; int : 0; };
|
||||
|
||||
// CHECK: define void @f_zbf_float_s_arg(float)
|
||||
void f_zbf_float_s_arg(struct zbf_float_s a) {}
|
||||
|
||||
// CHECK: define float @f_ret_zbf_float_s()
|
||||
struct zbf_float_s f_ret_zbf_float_s() {
|
||||
return (struct zbf_float_s){1.0};
|
||||
}
|
||||
|
||||
// CHECK: define void @f_zbf_float_zbf_s_arg(float)
|
||||
void f_zbf_float_zbf_s_arg(struct zbf_float_zbf_s a) {}
|
||||
|
||||
// CHECK: define float @f_ret_zbf_float_zbf_s()
|
||||
struct zbf_float_zbf_s f_ret_zbf_float_zbf_s() {
|
||||
return (struct zbf_float_zbf_s){1.0};
|
||||
}
|
||||
|
||||
// Check that structs containing two float values (FLEN <= width) are expanded
|
||||
// provided sufficient FPRs are available.
|
||||
|
||||
struct float_float_s { float f; float g; };
|
||||
|
||||
// CHECK: define void @f_float_float_s_arg(float, float)
|
||||
void f_float_float_s_arg(struct float_float_s a) {}
|
||||
|
||||
// CHECK: define { float, float } @f_ret_float_float_s()
|
||||
struct float_float_s f_ret_float_float_s() {
|
||||
return (struct float_float_s){1.0, 2.0};
|
||||
}
|
||||
|
||||
// CHECK: define void @f_float_float_s_arg_insufficient_fprs(float %a, float %b, float %c, float %d, float %e, float %f, float %g, i64 %h.coerce)
|
||||
void f_float_float_s_arg_insufficient_fprs(float a, float b, float c, float d,
|
||||
float e, float f, float g, struct float_float_s h) {}
|
||||
|
||||
// Check that structs containing int+float values are expanded, provided
|
||||
// sufficient FPRs and GPRs are available. The integer components are neither
|
||||
// sign or zero-extended.
|
||||
|
||||
struct float_int8_s { float f; int8_t i; };
|
||||
struct float_uint8_s { float f; uint8_t i; };
|
||||
struct float_int32_s { float f; int32_t i; };
|
||||
struct float_int64_s { float f; int64_t i; };
|
||||
struct float_int128bf_s { float f; __int128_t i : 64; };
|
||||
struct float_int8_zbf_s { float f; int8_t i; int : 0; };
|
||||
|
||||
// CHECK: define void @f_float_int8_s_arg(float, i8)
|
||||
void f_float_int8_s_arg(struct float_int8_s a) {}
|
||||
|
||||
// CHECK: define { float, i8 } @f_ret_float_int8_s()
|
||||
struct float_int8_s f_ret_float_int8_s() {
|
||||
return (struct float_int8_s){1.0, 2};
|
||||
}
|
||||
|
||||
// CHECK: define void @f_float_uint8_s_arg(float, i8)
|
||||
void f_float_uint8_s_arg(struct float_uint8_s a) {}
|
||||
|
||||
// CHECK: define { float, i8 } @f_ret_float_uint8_s()
|
||||
struct float_uint8_s f_ret_float_uint8_s() {
|
||||
return (struct float_uint8_s){1.0, 2};
|
||||
}
|
||||
|
||||
// CHECK: define void @f_float_int32_s_arg(float, i32)
|
||||
void f_float_int32_s_arg(struct float_int32_s a) {}
|
||||
|
||||
// CHECK: define { float, i32 } @f_ret_float_int32_s()
|
||||
struct float_int32_s f_ret_float_int32_s() {
|
||||
return (struct float_int32_s){1.0, 2};
|
||||
}
|
||||
|
||||
// CHECK: define void @f_float_int64_s_arg(float, i64)
|
||||
void f_float_int64_s_arg(struct float_int64_s a) {}
|
||||
|
||||
// CHECK: define { float, i64 } @f_ret_float_int64_s()
|
||||
struct float_int64_s f_ret_float_int64_s() {
|
||||
return (struct float_int64_s){1.0, 2};
|
||||
}
|
||||
|
||||
// CHECK: define void @f_float_int128bf_s_arg(float, i64)
|
||||
void f_float_int128bf_s_arg(struct float_int128bf_s a) {}
|
||||
|
||||
// CHECK: define <{ float, i64 }> @f_ret_float_int128bf_s()
|
||||
struct float_int128bf_s f_ret_float_int128bf_s() {
|
||||
return (struct float_int128bf_s){1.0, 2};
|
||||
}
|
||||
|
||||
// The zero-width bitfield means the struct can't be passed according to the
|
||||
// floating point calling convention.
|
||||
|
||||
// CHECK: define void @f_float_int8_zbf_s(float, i8)
|
||||
void f_float_int8_zbf_s(struct float_int8_zbf_s a) {}
|
||||
|
||||
// CHECK: define { float, i8 } @f_ret_float_int8_zbf_s()
|
||||
struct float_int8_zbf_s f_ret_float_int8_zbf_s() {
|
||||
return (struct float_int8_zbf_s){1.0, 2};
|
||||
}
|
||||
|
||||
// CHECK: define void @f_float_int8_s_arg_insufficient_gprs(i32 signext %a, i32 signext %b, i32 signext %c, i32 signext %d, i32 signext %e, i32 signext %f, i32 signext %g, i32 signext %h, i64 %i.coerce)
|
||||
void f_float_int8_s_arg_insufficient_gprs(int a, int b, int c, int d, int e,
|
||||
int f, int g, int h, struct float_int8_s i) {}
|
||||
|
||||
// CHECK: define void @f_struct_float_int8_insufficient_fprs(float %a, float %b, float %c, float %d, float %e, float %f, float %g, float %h, i64 %i.coerce)
|
||||
void f_struct_float_int8_insufficient_fprs(float a, float b, float c, float d,
|
||||
float e, float f, float g, float h, struct float_int8_s i) {}
|
||||
|
||||
// Complex floating-point values or structs containing a single complex
|
||||
// floating-point value should be passed as if it were an fp+fp struct.
|
||||
|
||||
// CHECK: define void @f_floatcomplex(float %a.coerce0, float %a.coerce1)
|
||||
void f_floatcomplex(float __complex__ a) {}
|
||||
|
||||
// CHECK: define { float, float } @f_ret_floatcomplex()
|
||||
float __complex__ f_ret_floatcomplex() {
|
||||
return 1.0;
|
||||
}
|
||||
|
||||
struct floatcomplex_s { float __complex__ c; };
|
||||
|
||||
// CHECK: define void @f_floatcomplex_s_arg(float, float)
|
||||
void f_floatcomplex_s_arg(struct floatcomplex_s a) {}
|
||||
|
||||
// CHECK: define { float, float } @f_ret_floatcomplex_s()
|
||||
struct floatcomplex_s f_ret_floatcomplex_s() {
|
||||
return (struct floatcomplex_s){1.0};
|
||||
}
|
||||
|
||||
// Test single or two-element structs that need flattening. e.g. those
|
||||
// containing nested structs, floats in small arrays, zero-length structs etc.
|
||||
|
||||
struct floatarr1_s { float a[1]; };
|
||||
|
||||
// CHECK: define void @f_floatarr1_s_arg(float)
|
||||
void f_floatarr1_s_arg(struct floatarr1_s a) {}
|
||||
|
||||
// CHECK: define float @f_ret_floatarr1_s()
|
||||
struct floatarr1_s f_ret_floatarr1_s() {
|
||||
return (struct floatarr1_s){{1.0}};
|
||||
}
|
||||
|
||||
struct floatarr2_s { float a[2]; };
|
||||
|
||||
// CHECK: define void @f_floatarr2_s_arg(float, float)
|
||||
void f_floatarr2_s_arg(struct floatarr2_s a) {}
|
||||
|
||||
// CHECK: define { float, float } @f_ret_floatarr2_s()
|
||||
struct floatarr2_s f_ret_floatarr2_s() {
|
||||
return (struct floatarr2_s){{1.0, 2.0}};
|
||||
}
|
||||
|
||||
struct floatarr2_tricky1_s { struct { float f[1]; } g[2]; };
|
||||
|
||||
// CHECK: define void @f_floatarr2_tricky1_s_arg(float, float)
|
||||
void f_floatarr2_tricky1_s_arg(struct floatarr2_tricky1_s a) {}
|
||||
|
||||
// CHECK: define { float, float } @f_ret_floatarr2_tricky1_s()
|
||||
struct floatarr2_tricky1_s f_ret_floatarr2_tricky1_s() {
|
||||
return (struct floatarr2_tricky1_s){{{{1.0}}, {{2.0}}}};
|
||||
}
|
||||
|
||||
struct floatarr2_tricky2_s { struct {}; struct { float f[1]; } g[2]; };
|
||||
|
||||
// CHECK: define void @f_floatarr2_tricky2_s_arg(float, float)
|
||||
void f_floatarr2_tricky2_s_arg(struct floatarr2_tricky2_s a) {}
|
||||
|
||||
// CHECK: define { float, float } @f_ret_floatarr2_tricky2_s()
|
||||
struct floatarr2_tricky2_s f_ret_floatarr2_tricky2_s() {
|
||||
return (struct floatarr2_tricky2_s){{}, {{{1.0}}, {{2.0}}}};
|
||||
}
|
||||
|
||||
struct floatarr2_tricky3_s { union {}; struct { float f[1]; } g[2]; };
|
||||
|
||||
// CHECK: define void @f_floatarr2_tricky3_s_arg(float, float)
|
||||
void f_floatarr2_tricky3_s_arg(struct floatarr2_tricky3_s a) {}
|
||||
|
||||
// CHECK: define { float, float } @f_ret_floatarr2_tricky3_s()
|
||||
struct floatarr2_tricky3_s f_ret_floatarr2_tricky3_s() {
|
||||
return (struct floatarr2_tricky3_s){{}, {{{1.0}}, {{2.0}}}};
|
||||
}
|
||||
|
||||
struct floatarr2_tricky4_s { union {}; struct { struct {}; float f[1]; } g[2]; };
|
||||
|
||||
// CHECK: define void @f_floatarr2_tricky4_s_arg(float, float)
|
||||
void f_floatarr2_tricky4_s_arg(struct floatarr2_tricky4_s a) {}
|
||||
|
||||
// CHECK: define { float, float } @f_ret_floatarr2_tricky4_s()
|
||||
struct floatarr2_tricky4_s f_ret_floatarr2_tricky4_s() {
|
||||
return (struct floatarr2_tricky4_s){{}, {{{}, {1.0}}, {{}, {2.0}}}};
|
||||
}
|
||||
|
||||
// Test structs that should be passed according to the normal integer calling
|
||||
// convention.
|
||||
|
||||
struct int_float_int_s { int a; float b; int c; };
|
||||
|
||||
// CHECK: define void @f_int_float_int_s_arg([2 x i64] %a.coerce)
|
||||
void f_int_float_int_s_arg(struct int_float_int_s a) {}
|
||||
|
||||
// CHECK: define [2 x i64] @f_ret_int_float_int_s()
|
||||
struct int_float_int_s f_ret_int_float_int_s() {
|
||||
return (struct int_float_int_s){1, 2.0, 3};
|
||||
}
|
||||
|
||||
struct char_char_float_s { char a; char b; float c; };
|
||||
|
||||
// CHECK-LABEL: define void @f_char_char_float_s_arg(i64 %a.coerce)
|
||||
void f_char_char_float_s_arg(struct char_char_float_s a) {}
|
||||
|
||||
// CHECK: define i64 @f_ret_char_char_float_s()
|
||||
struct char_char_float_s f_ret_char_char_float_s() {
|
||||
return (struct char_char_float_s){1, 2, 3.0};
|
||||
}
|
||||
|
||||
// Unions are always passed according to the integer calling convention, even
|
||||
// if they can only contain a float.
|
||||
|
||||
union float_u { float a; };
|
||||
|
||||
// CHECK: define void @f_float_u_arg(i64 %a.coerce)
|
||||
void f_float_u_arg(union float_u a) {}
|
||||
|
||||
// CHECK: define i64 @f_ret_float_u()
|
||||
union float_u f_ret_float_u() {
|
||||
return (union float_u){1.0};
|
||||
}
|
|
@ -47,3 +47,27 @@
|
|||
// RUN: %clang -target riscv64-unknown-linux-gnu -march=rv64ic -x c -E -dM %s \
|
||||
// RUN: -o - | FileCheck --check-prefix=CHECK-C-EXT %s
|
||||
// CHECK-C-EXT: __riscv_compressed 1
|
||||
|
||||
// RUN: %clang -target riscv32-unknown-linux-gnu -march=rv32ifd -x c -E -dM %s \
|
||||
// RUN: -o - | FileCheck --check-prefix=CHECK-SOFT %s
|
||||
// RUN: %clang -target riscv64-unknown-linux-gnu -march=rv64ifd -x c -E -dM %s \
|
||||
// RUN: -o - | FileCheck --check-prefix=CHECK-SOFT %s
|
||||
// CHECK-SOFT: __riscv_float_abi_soft 1
|
||||
// CHECK-SOFT-NOT: __riscv_float_abi_single
|
||||
// CHECK-SOFT-NOT: __riscv_float_abi_double
|
||||
|
||||
// RUN: %clang -target riscv32-unknown-linux-gnu -march=rv32ifd -mabi=ilp32f -x c -E -dM %s \
|
||||
// RUN: -o - | FileCheck --check-prefix=CHECK-SINGLE %s
|
||||
// RUN: %clang -target riscv64-unknown-linux-gnu -march=rv64ifd -mabi=lp64f -x c -E -dM %s \
|
||||
// RUN: -o - | FileCheck --check-prefix=CHECK-SINGLE %s
|
||||
// CHECK-SINGLE: __riscv_float_abi_single 1
|
||||
// CHECK-SINGLE-NOT: __riscv_float_abi_soft
|
||||
// CHECK-SINGLE-NOT: __riscv_float_abi_double
|
||||
|
||||
// RUN: %clang -target riscv32-unknown-linux-gnu -march=rv32ifd -mabi=ilp32f -x c -E -dM %s \
|
||||
// RUN: -o - | FileCheck --check-prefix=CHECK-DOUBLE %s
|
||||
// RUN: %clang -target riscv64-unknown-linux-gnu -march=rv64ifd -mabi=lp64f -x c -E -dM %s \
|
||||
// RUN: -o - | FileCheck --check-prefix=CHECK-DOUBLE %s
|
||||
// CHECK-DOUBLE: __riscv_float_abi_double 1
|
||||
// CHECK-DOUBLE-NOT: __riscv_float_abi_soft
|
||||
// CHECK-DOUBLE-NOT: __riscv_float_abi_single
|
||||
|
|
Loading…
Reference in New Issue