[RISCV] Hard float ABI support

The RISC-V hard float calling convention requires the frontend to:

* Detect cases where, once "flattened", a struct can be passed using
int+fp or fp+fp registers under the hard float ABI and coerce to the
appropriate type(s) * Track usage of GPRs and FPRs in order to gate the
above, and to
determine when signext/zeroext attributes must be added to integer
scalars

This patch attempts to do this in compliance with the documented ABI,
and uses ABIArgInfo::CoerceAndExpand in order to do this. @rjmccall, as
author of that code I've tagged you as reviewer for initial feedback on
my usage.

Note that a previous version of the ABI indicated that when passing an
int+fp struct using a GPR+FPR, the int would need to be sign or
zero-extended appropriately. GCC never did this and the ABI was changed,
which makes life easier as ABIArgInfo::CoerceAndExpand can't currently
handle sign/zero-extension attributes.

Differential Revision: https://reviews.llvm.org/D60456

llvm-svn: 366450
This commit is contained in:
Alex Bradbury 2019-07-18 15:33:41 +00:00
parent d2c576110e
commit fc3aa2ab48
13 changed files with 1462 additions and 21 deletions

View File

@ -65,8 +65,17 @@ void RISCVTargetInfo::getTargetDefines(const LangOptions &Opts,
Builder.defineMacro("__riscv");
bool Is64Bit = getTriple().getArch() == llvm::Triple::riscv64;
Builder.defineMacro("__riscv_xlen", Is64Bit ? "64" : "32");
// TODO: modify when more code models and ABIs are supported.
// TODO: modify when more code models are supported.
Builder.defineMacro("__riscv_cmodel_medlow");
StringRef ABIName = getABI();
if (ABIName == "ilp32f" || ABIName == "lp64f")
Builder.defineMacro("__riscv_float_abi_single");
else if (ABIName == "ilp32d" || ABIName == "lp64d")
Builder.defineMacro("__riscv_float_abi_double");
else if (ABIName == "ilp32e")
Builder.defineMacro("__riscv_abi_rve");
else
Builder.defineMacro("__riscv_float_abi_soft");
if (HasM) {

View File

@ -87,8 +87,7 @@ public:
}
bool setABI(const std::string &Name) override {
// TODO: support ilp32f and ilp32d ABIs.
if (Name == "ilp32") {
if (Name == "ilp32" || Name == "ilp32f" || Name == "ilp32d") {
ABI = Name;
return true;
}
@ -105,8 +104,7 @@ public:
}
bool setABI(const std::string &Name) override {
// TODO: support lp64f and lp64d ABIs.
if (Name == "lp64") {
if (Name == "lp64" || Name == "lp64f" || Name == "lp64d") {
ABI = Name;
return true;
}

View File

@ -9188,25 +9188,44 @@ static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
namespace {
class RISCVABIInfo : public DefaultABIInfo {
private:
unsigned XLen; // Size of the integer ('x') registers in bits.
// Size of the integer ('x') registers in bits.
unsigned XLen;
// Size of the floating point ('f') registers in bits. Note that the target
// ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target
// with soft float ABI has FLen==0).
unsigned FLen;
static const int NumArgGPRs = 8;
static const int NumArgFPRs = 8;
bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
llvm::Type *&Field1Ty,
CharUnits &Field1Off,
llvm::Type *&Field2Ty,
CharUnits &Field2Off) const;
public:
RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen)
: DefaultABIInfo(CGT), XLen(XLen) {}
RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen)
: DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {}
// DefaultABIInfo's classifyReturnType and classifyArgumentType are
// non-virtual, but computeInfo is virtual, so we overload it.
void computeInfo(CGFunctionInfo &FI) const override;
ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed,
int &ArgGPRsLeft) const;
ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft,
int &ArgFPRsLeft) const;
ABIArgInfo classifyReturnType(QualType RetTy) const;
Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
QualType Ty) const override;
ABIArgInfo extendType(QualType Ty) const;
bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, CharUnits &Field1Off,
llvm::Type *&Field2Ty, CharUnits &Field2Off,
int &NeededArgGPRs, int &NeededArgFPRs) const;
ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty,
CharUnits Field1Off,
llvm::Type *Field2Ty,
CharUnits Field2Off) const;
};
} // end anonymous namespace
@ -9228,18 +9247,214 @@ void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const {
// different for variadic arguments, we must also track whether we are
// examining a vararg or not.
int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
int ArgFPRsLeft = FLen ? NumArgFPRs : 0;
int NumFixedArgs = FI.getNumRequiredArgs();
int ArgNum = 0;
for (auto &ArgInfo : FI.arguments()) {
bool IsFixed = ArgNum < NumFixedArgs;
ArgInfo.info = classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft);
ArgInfo.info =
classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft);
ArgNum++;
}
}
// Returns true if the struct is a potential candidate for the floating point
// calling convention. If this function returns true, the caller is
// responsible for checking that if there is only a single field then that
// field is a float.
bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
llvm::Type *&Field1Ty,
CharUnits &Field1Off,
llvm::Type *&Field2Ty,
CharUnits &Field2Off) const {
bool IsInt = Ty->isIntegralOrEnumerationType();
bool IsFloat = Ty->isRealFloatingType();
if (IsInt || IsFloat) {
uint64_t Size = getContext().getTypeSize(Ty);
if (IsInt && Size > XLen)
return false;
// Can't be eligible if larger than the FP registers. Half precision isn't
// currently supported on RISC-V and the ABI hasn't been confirmed, so
// default to the integer ABI in that case.
if (IsFloat && (Size > FLen || Size < 32))
return false;
// Can't be eligible if an integer type was already found (int+int pairs
// are not eligible).
if (IsInt && Field1Ty && Field1Ty->isIntegerTy())
return false;
if (!Field1Ty) {
Field1Ty = CGT.ConvertType(Ty);
Field1Off = CurOff;
return true;
}
if (!Field2Ty) {
Field2Ty = CGT.ConvertType(Ty);
Field2Off = CurOff;
return true;
}
return false;
}
if (auto CTy = Ty->getAs<ComplexType>()) {
if (Field1Ty)
return false;
QualType EltTy = CTy->getElementType();
if (getContext().getTypeSize(EltTy) > FLen)
return false;
Field1Ty = CGT.ConvertType(EltTy);
Field1Off = CurOff;
assert(CurOff.isZero() && "Unexpected offset for first field");
Field2Ty = Field1Ty;
Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy);
return true;
}
if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) {
uint64_t ArraySize = ATy->getSize().getZExtValue();
QualType EltTy = ATy->getElementType();
CharUnits EltSize = getContext().getTypeSizeInChars(EltTy);
for (uint64_t i = 0; i < ArraySize; ++i) {
bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty, Field1Off,
Field2Ty, Field2Off);
if (!Ret)
return false;
CurOff += EltSize;
}
return true;
}
if (const auto *RTy = Ty->getAs<RecordType>()) {
// Structures with either a non-trivial destructor or a non-trivial
// copy constructor are not eligible for the FP calling convention.
if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, CGT.getCXXABI()))
return false;
if (isEmptyRecord(getContext(), Ty, true))
return true;
const RecordDecl *RD = RTy->getDecl();
// Unions aren't eligible unless they're empty (which is caught above).
if (RD->isUnion())
return false;
int ZeroWidthBitFieldCount = 0;
for (const FieldDecl *FD : RD->fields()) {
const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex());
QualType QTy = FD->getType();
if (FD->isBitField()) {
unsigned BitWidth = FD->getBitWidthValue(getContext());
// Allow a bitfield with a type greater than XLen as long as the
// bitwidth is XLen or less.
if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen)
QTy = getContext().getIntTypeForBitwidth(XLen, false);
if (BitWidth == 0) {
ZeroWidthBitFieldCount++;
continue;
}
}
bool Ret = detectFPCCEligibleStructHelper(
QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits),
Field1Ty, Field1Off, Field2Ty, Field2Off);
if (!Ret)
return false;
// As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp
// or int+fp structs, but are ignored for a struct with an fp field and
// any number of zero-width bitfields.
if (Field2Ty && ZeroWidthBitFieldCount > 0)
return false;
}
return Field1Ty != nullptr;
}
return false;
}
// Determine if a struct is eligible for passing according to the floating
// point calling convention (i.e., when flattened it contains a single fp
// value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and
// NeededArgGPRs are incremented appropriately.
bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
CharUnits &Field1Off,
llvm::Type *&Field2Ty,
CharUnits &Field2Off,
int &NeededArgGPRs,
int &NeededArgFPRs) const {
Field1Ty = nullptr;
Field2Ty = nullptr;
NeededArgGPRs = 0;
NeededArgFPRs = 0;
bool IsCandidate = detectFPCCEligibleStructHelper(
Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off);
// Not really a candidate if we have a single int but no float.
if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy())
return IsCandidate = false;
if (!IsCandidate)
return false;
if (Field1Ty && Field1Ty->isFloatingPointTy())
NeededArgFPRs++;
else if (Field1Ty)
NeededArgGPRs++;
if (Field2Ty && Field2Ty->isFloatingPointTy())
NeededArgFPRs++;
else if (Field2Ty)
NeededArgGPRs++;
return IsCandidate;
}
// Call getCoerceAndExpand for the two-element flattened struct described by
// Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an appropriate
// coerceToType and unpaddedCoerceToType.
ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct(
llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, CharUnits Field2Off) const {
SmallVector<llvm::Type *, 3> CoerceElts;
SmallVector<llvm::Type *, 2> UnpaddedCoerceElts;
if (!Field1Off.isZero())
CoerceElts.push_back(llvm::ArrayType::get(
llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity()));
CoerceElts.push_back(Field1Ty);
UnpaddedCoerceElts.push_back(Field1Ty);
if (!Field2Ty) {
return ABIArgInfo::getCoerceAndExpand(
llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()),
UnpaddedCoerceElts[0]);
}
CharUnits Field2Align =
CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty));
CharUnits Field1Size =
CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty));
CharUnits Field2OffNoPadNoPack = Field1Size.alignTo(Field2Align);
CharUnits Padding = CharUnits::Zero();
if (Field2Off > Field2OffNoPadNoPack)
Padding = Field2Off - Field2OffNoPadNoPack;
else if (Field2Off != Field2Align && Field2Off > Field1Size)
Padding = Field2Off - Field1Size;
bool IsPacked = !Field2Off.isMultipleOf(Field2Align);
if (!Padding.isZero())
CoerceElts.push_back(llvm::ArrayType::get(
llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity()));
CoerceElts.push_back(Field2Ty);
UnpaddedCoerceElts.push_back(Field2Ty);
auto CoerceToType =
llvm::StructType::get(getVMContext(), CoerceElts, IsPacked);
auto UnpaddedCoerceToType =
llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked);
return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType);
}
ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
int &ArgGPRsLeft) const {
int &ArgGPRsLeft,
int &ArgFPRsLeft) const {
assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
Ty = useFirstFieldIfTransparentUnion(Ty);
@ -9257,6 +9472,40 @@ ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
return ABIArgInfo::getIgnore();
uint64_t Size = getContext().getTypeSize(Ty);
// Pass floating point values via FPRs if possible.
if (IsFixed && Ty->isFloatingType() && FLen >= Size && ArgFPRsLeft) {
ArgFPRsLeft--;
return ABIArgInfo::getDirect();
}
// Complex types for the hard float ABI must be passed direct rather than
// using CoerceAndExpand.
if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) {
QualType EltTy = Ty->getAs<ComplexType>()->getElementType();
if (getContext().getTypeSize(EltTy) <= FLen) {
ArgFPRsLeft -= 2;
return ABIArgInfo::getDirect();
}
}
if (IsFixed && FLen && Ty->isStructureOrClassType()) {
llvm::Type *Field1Ty = nullptr;
llvm::Type *Field2Ty = nullptr;
CharUnits Field1Off = CharUnits::Zero();
CharUnits Field2Off = CharUnits::Zero();
int NeededArgGPRs;
int NeededArgFPRs;
bool IsCandidate = detectFPCCEligibleStruct(
Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, NeededArgGPRs, NeededArgFPRs);
if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft &&
NeededArgFPRs <= ArgFPRsLeft) {
ArgGPRsLeft -= NeededArgGPRs;
ArgFPRsLeft -= NeededArgFPRs;
return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty, Field2Off);
}
}
uint64_t NeededAlign = getContext().getTypeAlign(Ty);
bool MustUseStack = false;
// Determine the number of GPRs needed to pass the current argument
@ -9315,10 +9564,12 @@ ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const {
return ABIArgInfo::getIgnore();
int ArgGPRsLeft = 2;
int ArgFPRsLeft = FLen ? 2 : 0;
// The rules for return and argument types are the same, so defer to
// classifyArgumentType.
return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft);
return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft,
ArgFPRsLeft);
}
Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
@ -9353,8 +9604,9 @@ ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const {
namespace {
class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
public:
RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen)
: TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen)) {}
RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen,
unsigned FLen)
: TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen, FLen)) {}
void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
CodeGen::CodeGenModule &CGM) const override {
@ -9493,9 +9745,16 @@ const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
case llvm::Triple::riscv32:
return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 32));
case llvm::Triple::riscv64:
return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 64));
case llvm::Triple::riscv64: {
StringRef ABIStr = getTarget().getABI();
unsigned XLen = getTarget().getPointerWidth(0);
unsigned ABIFLen = 0;
if (ABIStr.endswith("f"))
ABIFLen = 32;
else if (ABIStr.endswith("d"))
ABIFLen = 64;
return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen));
}
case llvm::Triple::systemz: {
bool HasVector = getTarget().getABI() == "vector";

View File

@ -1,4 +1,6 @@
// RUN: %clang_cc1 -triple riscv32 -emit-llvm %s -o - | FileCheck %s
// RUN: %clang_cc1 -triple riscv32 -target-feature +f -target-abi ilp32f -emit-llvm %s -o - \
// RUN: | FileCheck %s
// This file contains test cases that will have the same output for the ilp32
// and ilp32f ABIs.
@ -35,8 +37,8 @@ int f_scalar_stack_1(int32_t a, int64_t b, int32_t c, double d, long double e,
// the presence of large return values that consume a register due to the need
// to pass a pointer.
// CHECK-LABEL: define void @f_scalar_stack_2(%struct.large* noalias sret %agg.result, i32 %a, i64 %b, i64 %c, fp128 %d, i8 zeroext %e, i8 %f, i8 %g)
struct large f_scalar_stack_2(int32_t a, int64_t b, int64_t c, long double d,
// CHECK-LABEL: define void @f_scalar_stack_2(%struct.large* noalias sret %agg.result, i32 %a, i64 %b, double %c, fp128 %d, i8 zeroext %e, i8 %f, i8 %g)
struct large f_scalar_stack_2(int32_t a, int64_t b, double c, long double d,
uint8_t e, int8_t f, uint8_t g) {
return (struct large){a, e, f, g};
}

View File

@ -1,6 +1,10 @@
// RUN: %clang_cc1 -triple riscv32 -emit-llvm %s -o - | FileCheck %s
// RUN: %clang_cc1 -triple riscv32 -emit-llvm -fforce-enable-int128 %s -o - \
// RUN: | FileCheck %s -check-prefixes=CHECK,CHECK-FORCEINT128
// RUN: %clang_cc1 -triple riscv32 -target-feature +f -target-abi ilp32f -emit-llvm %s -o - \
// RUN: | FileCheck %s
// RUN: %clang_cc1 -triple riscv32 -target-feature +d -target-abi ilp32d -emit-llvm %s -o - \
// RUN: | FileCheck %s
// This file contains test cases that will have the same output for the ilp32,
// ilp32f, and ilp32d ABIs.

View File

@ -0,0 +1,282 @@
// RUN: %clang_cc1 -triple riscv32 -target-feature +d -target-abi ilp32d -emit-llvm %s -o - \
// RUN: | FileCheck %s
#include <stdint.h>
// Verify that the tracking of used GPRs and FPRs works correctly by checking
// that small integers are sign/zero extended when passed in registers.
// Doubles are passed in FPRs, so argument 'i' will be passed zero-extended
// because it will be passed in a GPR.
// CHECK: define void @f_fpr_tracking(double %a, double %b, double %c, double %d, double %e, double %f, double %g, double %h, i8 zeroext %i)
void f_fpr_tracking(double a, double b, double c, double d, double e, double f,
double g, double h, uint8_t i) {}
// Check that fp, fp+fp, and int+fp structs are lowered correctly. These will
// be passed in FPR, FPR+FPR, or GPR+FPR regs if sufficient registers are
// available the widths are <= XLEN and FLEN, and should be expanded to
// separate arguments in IR. They are passed by the same rules for returns,
// but will be lowered to simple two-element structs if necessary (as LLVM IR
// functions cannot return multiple values).
// A struct containing just one floating-point real is passed as though it
// were a standalone floating-point real.
struct double_s { double f; };
// CHECK: define void @f_double_s_arg(double)
void f_double_s_arg(struct double_s a) {}
// CHECK: define double @f_ret_double_s()
struct double_s f_ret_double_s() {
return (struct double_s){1.0};
}
// A struct containing a double and any number of zero-width bitfields is
// passed as though it were a standalone floating-point real.
struct zbf_double_s { int : 0; double f; };
struct zbf_double_zbf_s { int : 0; double f; int : 0; };
// CHECK: define void @f_zbf_double_s_arg(double)
void f_zbf_double_s_arg(struct zbf_double_s a) {}
// CHECK: define double @f_ret_zbf_double_s()
struct zbf_double_s f_ret_zbf_double_s() {
return (struct zbf_double_s){1.0};
}
// CHECK: define void @f_zbf_double_zbf_s_arg(double)
void f_zbf_double_zbf_s_arg(struct zbf_double_zbf_s a) {}
// CHECK: define double @f_ret_zbf_double_zbf_s()
struct zbf_double_zbf_s f_ret_zbf_double_zbf_s() {
return (struct zbf_double_zbf_s){1.0};
}
// Check that structs containing two floating point values (FLEN <= width) are
// expanded provided sufficient FPRs are available.
struct double_double_s { double f; double g; };
struct double_float_s { double f; float g; };
// CHECK: define void @f_double_double_s_arg(double, double)
void f_double_double_s_arg(struct double_double_s a) {}
// CHECK: define { double, double } @f_ret_double_double_s()
struct double_double_s f_ret_double_double_s() {
return (struct double_double_s){1.0, 2.0};
}
// CHECK: define void @f_double_float_s_arg(double, float)
void f_double_float_s_arg(struct double_float_s a) {}
// CHECK: define { double, float } @f_ret_double_float_s()
struct double_float_s f_ret_double_float_s() {
return (struct double_float_s){1.0, 2.0};
}
// CHECK: define void @f_double_double_s_arg_insufficient_fprs(float %a, double %b, double %c, double %d, double %e, double %f, double %g, %struct.double_double_s* %h)
void f_double_double_s_arg_insufficient_fprs(float a, double b, double c, double d,
double e, double f, double g, struct double_double_s h) {}
// Check that structs containing int+double values are expanded, provided
// sufficient FPRs and GPRs are available. The integer components are neither
// sign or zero-extended.
struct double_int8_s { double f; int8_t i; };
struct double_uint8_s { double f; uint8_t i; };
struct double_int32_s { double f; int32_t i; };
struct double_int64_s { double f; int64_t i; };
struct double_int64bf_s { double f; int64_t i : 32; };
struct double_int8_zbf_s { double f; int8_t i; int : 0; };
// CHECK: define void @f_double_int8_s_arg(double, i8)
void f_double_int8_s_arg(struct double_int8_s a) {}
// CHECK: define { double, i8 } @f_ret_double_int8_s()
struct double_int8_s f_ret_double_int8_s() {
return (struct double_int8_s){1.0, 2};
}
// CHECK: define void @f_double_uint8_s_arg(double, i8)
void f_double_uint8_s_arg(struct double_uint8_s a) {}
// CHECK: define { double, i8 } @f_ret_double_uint8_s()
struct double_uint8_s f_ret_double_uint8_s() {
return (struct double_uint8_s){1.0, 2};
}
// CHECK: define void @f_double_int32_s_arg(double, i32)
void f_double_int32_s_arg(struct double_int32_s a) {}
// CHECK: define { double, i32 } @f_ret_double_int32_s()
struct double_int32_s f_ret_double_int32_s() {
return (struct double_int32_s){1.0, 2};
}
// CHECK: define void @f_double_int64_s_arg(%struct.double_int64_s* %a)
void f_double_int64_s_arg(struct double_int64_s a) {}
// CHECK: define void @f_ret_double_int64_s(%struct.double_int64_s* noalias sret %agg.result)
struct double_int64_s f_ret_double_int64_s() {
return (struct double_int64_s){1.0, 2};
}
// CHECK: define void @f_double_int64bf_s_arg(double, i32)
void f_double_int64bf_s_arg(struct double_int64bf_s a) {}
// CHECK: define { double, i32 } @f_ret_double_int64bf_s()
struct double_int64bf_s f_ret_double_int64bf_s() {
return (struct double_int64bf_s){1.0, 2};
}
// The zero-width bitfield means the struct can't be passed according to the
// floating point calling convention.
// CHECK: define void @f_double_int8_zbf_s(double, i8)
void f_double_int8_zbf_s(struct double_int8_zbf_s a) {}
// CHECK: define { double, i8 } @f_ret_double_int8_zbf_s()
struct double_int8_zbf_s f_ret_double_int8_zbf_s() {
return (struct double_int8_zbf_s){1.0, 2};
}
// CHECK: define void @f_double_int8_s_arg_insufficient_gprs(i32 %a, i32 %b, i32 %c, i32 %d, i32 %e, i32 %f, i32 %g, i32 %h, %struct.double_int8_s* %i)
void f_double_int8_s_arg_insufficient_gprs(int a, int b, int c, int d, int e,
int f, int g, int h, struct double_int8_s i) {}
// CHECK: define void @f_struct_double_int8_insufficient_fprs(float %a, double %b, double %c, double %d, double %e, double %f, double %g, double %h, %struct.double_int8_s* %i)
void f_struct_double_int8_insufficient_fprs(float a, double b, double c, double d,
double e, double f, double g, double h, struct double_int8_s i) {}
// Complex floating-point values or structs containing a single complex
// floating-point value should be passed as if it were an fp+fp struct.
// CHECK: define void @f_doublecomplex(double %a.coerce0, double %a.coerce1)
void f_doublecomplex(double __complex__ a) {}
// CHECK: define { double, double } @f_ret_doublecomplex()
double __complex__ f_ret_doublecomplex() {
return 1.0;
}
struct doublecomplex_s { double __complex__ c; };
// CHECK: define void @f_doublecomplex_s_arg(double, double)
void f_doublecomplex_s_arg(struct doublecomplex_s a) {}
// CHECK: define { double, double } @f_ret_doublecomplex_s()
struct doublecomplex_s f_ret_doublecomplex_s() {
return (struct doublecomplex_s){1.0};
}
// Test single or two-element structs that need flattening. e.g. those
// containing nested structs, doubles in small arrays, zero-length structs etc.
struct doublearr1_s { double a[1]; };
// CHECK: define void @f_doublearr1_s_arg(double)
void f_doublearr1_s_arg(struct doublearr1_s a) {}
// CHECK: define double @f_ret_doublearr1_s()
struct doublearr1_s f_ret_doublearr1_s() {
return (struct doublearr1_s){{1.0}};
}
struct doublearr2_s { double a[2]; };
// CHECK: define void @f_doublearr2_s_arg(double, double)
void f_doublearr2_s_arg(struct doublearr2_s a) {}
// CHECK: define { double, double } @f_ret_doublearr2_s()
struct doublearr2_s f_ret_doublearr2_s() {
return (struct doublearr2_s){{1.0, 2.0}};
}
struct doublearr2_tricky1_s { struct { double f[1]; } g[2]; };
// CHECK: define void @f_doublearr2_tricky1_s_arg(double, double)
void f_doublearr2_tricky1_s_arg(struct doublearr2_tricky1_s a) {}
// CHECK: define { double, double } @f_ret_doublearr2_tricky1_s()
struct doublearr2_tricky1_s f_ret_doublearr2_tricky1_s() {
return (struct doublearr2_tricky1_s){{{{1.0}}, {{2.0}}}};
}
struct doublearr2_tricky2_s { struct {}; struct { double f[1]; } g[2]; };
// CHECK: define void @f_doublearr2_tricky2_s_arg(double, double)
void f_doublearr2_tricky2_s_arg(struct doublearr2_tricky2_s a) {}
// CHECK: define { double, double } @f_ret_doublearr2_tricky2_s()
struct doublearr2_tricky2_s f_ret_doublearr2_tricky2_s() {
return (struct doublearr2_tricky2_s){{}, {{{1.0}}, {{2.0}}}};
}
struct doublearr2_tricky3_s { union {}; struct { double f[1]; } g[2]; };
// CHECK: define void @f_doublearr2_tricky3_s_arg(double, double)
void f_doublearr2_tricky3_s_arg(struct doublearr2_tricky3_s a) {}
// CHECK: define { double, double } @f_ret_doublearr2_tricky3_s()
struct doublearr2_tricky3_s f_ret_doublearr2_tricky3_s() {
return (struct doublearr2_tricky3_s){{}, {{{1.0}}, {{2.0}}}};
}
struct doublearr2_tricky4_s { union {}; struct { struct {}; double f[1]; } g[2]; };
// CHECK: define void @f_doublearr2_tricky4_s_arg(double, double)
void f_doublearr2_tricky4_s_arg(struct doublearr2_tricky4_s a) {}
// CHECK: define { double, double } @f_ret_doublearr2_tricky4_s()
struct doublearr2_tricky4_s f_ret_doublearr2_tricky4_s() {
return (struct doublearr2_tricky4_s){{}, {{{}, {1.0}}, {{}, {2.0}}}};
}
// Test structs that should be passed according to the normal integer calling
// convention.
struct int_double_int_s { int a; double b; int c; };
// CHECK: define void @f_int_double_int_s_arg(%struct.int_double_int_s* %a)
void f_int_double_int_s_arg(struct int_double_int_s a) {}
// CHECK: define void @f_ret_int_double_int_s(%struct.int_double_int_s* noalias sret %agg.result)
struct int_double_int_s f_ret_int_double_int_s() {
return (struct int_double_int_s){1, 2.0, 3};
}
struct int64_double_s { int64_t a; double b; };
// CHECK: define void @f_int64_double_s_arg(%struct.int64_double_s* %a)
void f_int64_double_s_arg(struct int64_double_s a) {}
// CHECK: define void @f_ret_int64_double_s(%struct.int64_double_s* noalias sret %agg.result)
struct int64_double_s f_ret_int64_double_s() {
return (struct int64_double_s){1, 2.0};
}
struct char_char_double_s { char a; char b; double c; };
// CHECK-LABEL: define void @f_char_char_double_s_arg(%struct.char_char_double_s* %a)
void f_char_char_double_s_arg(struct char_char_double_s a) {}
// CHECK: define void @f_ret_char_char_double_s(%struct.char_char_double_s* noalias sret %agg.result)
struct char_char_double_s f_ret_char_char_double_s() {
return (struct char_char_double_s){1, 2, 3.0};
}
// Unions are always passed according to the integer calling convention, even
// if they can only contain a double.
union double_u { double a; };
// CHECK: define void @f_double_u_arg(i64 %a.coerce)
void f_double_u_arg(union double_u a) {}
// CHECK: define i64 @f_ret_double_u()
union double_u f_ret_double_u() {
return (union double_u){1.0};
}

View File

@ -0,0 +1,45 @@
// RUN: %clang_cc1 -triple riscv32 -target-feature +f -target-abi ilp32f -emit-llvm %s -o - \
// RUN: | FileCheck %s
#include <stdint.h>
// Doubles are still passed in GPRs, so the 'e' argument will be anyext as
// GPRs are exhausted.
// CHECK: define void @f_fpr_tracking(double %a, double %b, double %c, double %d, i8 %e)
void f_fpr_tracking(double a, double b, double c, double d, int8_t e) {}
// Lowering for doubles is unnmodified, as 64 > FLEN.
struct double_s { double d; };
// CHECK: define void @f_double_s_arg(i64 %a.coerce)
void f_double_s_arg(struct double_s a) {}
// CHECK: define i64 @f_ret_double_s()
struct double_s f_ret_double_s() {
return (struct double_s){1.0};
}
struct double_double_s { double d; double e; };
// CHECK: define void @f_double_double_s_arg(%struct.double_double_s* %a)
void f_double_double_s_arg(struct double_double_s a) {}
// CHECK: define void @f_ret_double_double_s(%struct.double_double_s* noalias sret %agg.result)
struct double_double_s f_ret_double_double_s() {
return (struct double_double_s){1.0, 2.0};
}
struct double_int8_s { double d; int64_t i; };
struct int_double_s { int a; double b; };
// CHECK: define void @f_int_double_s_arg(%struct.int_double_s* %a)
void f_int_double_s_arg(struct int_double_s a) {}
// CHECK: define void @f_ret_int_double_s(%struct.int_double_s* noalias sret %agg.result)
struct int_double_s f_ret_int_double_s() {
return (struct int_double_s){1, 2.0};
}

View File

@ -0,0 +1,275 @@
// RUN: %clang_cc1 -triple riscv32 -target-feature +f -target-abi ilp32f -emit-llvm %s -o - \
// RUN: | FileCheck %s
// RUN: %clang_cc1 -triple riscv32 -target-feature +d -target-abi ilp32d -emit-llvm %s -o - \
// RUN: | FileCheck %s
#include <stdint.h>
// Verify that the tracking of used GPRs and FPRs works correctly by checking
// that small integers are sign/zero extended when passed in registers.
// Floats are passed in FPRs, so argument 'i' will be passed zero-extended
// because it will be passed in a GPR.
// CHECK: define void @f_fpr_tracking(float %a, float %b, float %c, float %d, float %e, float %f, float %g, float %h, i8 zeroext %i)
void f_fpr_tracking(float a, float b, float c, float d, float e, float f,
float g, float h, uint8_t i) {}
// Check that fp, fp+fp, and int+fp structs are lowered correctly. These will
// be passed in FPR, FPR+FPR, or GPR+FPR regs if sufficient registers are
// available the widths are <= XLEN and FLEN, and should be expanded to
// separate arguments in IR. They are passed by the same rules for returns,
// but will be lowered to simple two-element structs if necessary (as LLVM IR
// functions cannot return multiple values).
// A struct containing just one floating-point real is passed as though it
// were a standalone floating-point real.
struct float_s { float f; };
// CHECK: define void @f_float_s_arg(float)
void f_float_s_arg(struct float_s a) {}
// CHECK: define float @f_ret_float_s()
struct float_s f_ret_float_s() {
return (struct float_s){1.0};
}
// A struct containing a float and any number of zero-width bitfields is
// passed as though it were a standalone floating-point real.
struct zbf_float_s { int : 0; float f; };
struct zbf_float_zbf_s { int : 0; float f; int : 0; };
// CHECK: define void @f_zbf_float_s_arg(float)
void f_zbf_float_s_arg(struct zbf_float_s a) {}
// CHECK: define float @f_ret_zbf_float_s()
struct zbf_float_s f_ret_zbf_float_s() {
return (struct zbf_float_s){1.0};
}
// CHECK: define void @f_zbf_float_zbf_s_arg(float)
void f_zbf_float_zbf_s_arg(struct zbf_float_zbf_s a) {}
// CHECK: define float @f_ret_zbf_float_zbf_s()
struct zbf_float_zbf_s f_ret_zbf_float_zbf_s() {
return (struct zbf_float_zbf_s){1.0};
}
// Check that structs containing two float values (FLEN <= width) are expanded
// provided sufficient FPRs are available.
struct float_float_s { float f; float g; };
// CHECK: define void @f_float_float_s_arg(float, float)
void f_float_float_s_arg(struct float_float_s a) {}
// CHECK: define { float, float } @f_ret_float_float_s()
struct float_float_s f_ret_float_float_s() {
return (struct float_float_s){1.0, 2.0};
}
// CHECK: define void @f_float_float_s_arg_insufficient_fprs(float %a, float %b, float %c, float %d, float %e, float %f, float %g, [2 x i32] %h.coerce)
void f_float_float_s_arg_insufficient_fprs(float a, float b, float c, float d,
float e, float f, float g, struct float_float_s h) {}
// Check that structs containing int+float values are expanded, provided
// sufficient FPRs and GPRs are available. The integer components are neither
// sign or zero-extended.
struct float_int8_s { float f; int8_t i; };
struct float_uint8_s { float f; uint8_t i; };
struct float_int32_s { float f; int32_t i; };
struct float_int64_s { float f; int64_t i; };
struct float_int64bf_s { float f; int64_t i : 32; };
struct float_int8_zbf_s { float f; int8_t i; int : 0; };
// CHECK: define void @f_float_int8_s_arg(float, i8)
void f_float_int8_s_arg(struct float_int8_s a) {}
// CHECK: define { float, i8 } @f_ret_float_int8_s()
struct float_int8_s f_ret_float_int8_s() {
return (struct float_int8_s){1.0, 2};
}
// CHECK: define void @f_float_uint8_s_arg(float, i8)
void f_float_uint8_s_arg(struct float_uint8_s a) {}
// CHECK: define { float, i8 } @f_ret_float_uint8_s()
struct float_uint8_s f_ret_float_uint8_s() {
return (struct float_uint8_s){1.0, 2};
}
// CHECK: define void @f_float_int32_s_arg(float, i32)
void f_float_int32_s_arg(struct float_int32_s a) {}
// CHECK: define { float, i32 } @f_ret_float_int32_s()
struct float_int32_s f_ret_float_int32_s() {
return (struct float_int32_s){1.0, 2};
}
// CHECK: define void @f_float_int64_s_arg(%struct.float_int64_s* %a)
void f_float_int64_s_arg(struct float_int64_s a) {}
// CHECK: define void @f_ret_float_int64_s(%struct.float_int64_s* noalias sret %agg.result)
struct float_int64_s f_ret_float_int64_s() {
return (struct float_int64_s){1.0, 2};
}
// CHECK: define void @f_float_int64bf_s_arg(float, i32)
void f_float_int64bf_s_arg(struct float_int64bf_s a) {}
// CHECK: define { float, i32 } @f_ret_float_int64bf_s()
struct float_int64bf_s f_ret_float_int64bf_s() {
return (struct float_int64bf_s){1.0, 2};
}
// The zero-width bitfield means the struct can't be passed according to the
// floating point calling convention.
// CHECK: define void @f_float_int8_zbf_s(float, i8)
void f_float_int8_zbf_s(struct float_int8_zbf_s a) {}
// CHECK: define { float, i8 } @f_ret_float_int8_zbf_s()
struct float_int8_zbf_s f_ret_float_int8_zbf_s() {
return (struct float_int8_zbf_s){1.0, 2};
}
// CHECK: define void @f_float_int8_s_arg_insufficient_gprs(i32 %a, i32 %b, i32 %c, i32 %d, i32 %e, i32 %f, i32 %g, i32 %h, [2 x i32] %i.coerce)
void f_float_int8_s_arg_insufficient_gprs(int a, int b, int c, int d, int e,
int f, int g, int h, struct float_int8_s i) {}
// CHECK: define void @f_struct_float_int8_insufficient_fprs(float %a, float %b, float %c, float %d, float %e, float %f, float %g, float %h, [2 x i32] %i.coerce)
void f_struct_float_int8_insufficient_fprs(float a, float b, float c, float d,
float e, float f, float g, float h, struct float_int8_s i) {}
// Complex floating-point values or structs containing a single complex
// floating-point value should be passed as if it were an fp+fp struct.
// CHECK: define void @f_floatcomplex(float %a.coerce0, float %a.coerce1)
void f_floatcomplex(float __complex__ a) {}
// CHECK: define { float, float } @f_ret_floatcomplex()
float __complex__ f_ret_floatcomplex() {
return 1.0;
}
struct floatcomplex_s { float __complex__ c; };
// CHECK: define void @f_floatcomplex_s_arg(float, float)
void f_floatcomplex_s_arg(struct floatcomplex_s a) {}
// CHECK: define { float, float } @f_ret_floatcomplex_s()
struct floatcomplex_s f_ret_floatcomplex_s() {
return (struct floatcomplex_s){1.0};
}
// Test single or two-element structs that need flattening. e.g. those
// containing nested structs, floats in small arrays, zero-length structs etc.
struct floatarr1_s { float a[1]; };
// CHECK: define void @f_floatarr1_s_arg(float)
void f_floatarr1_s_arg(struct floatarr1_s a) {}
// CHECK: define float @f_ret_floatarr1_s()
struct floatarr1_s f_ret_floatarr1_s() {
return (struct floatarr1_s){{1.0}};
}
struct floatarr2_s { float a[2]; };
// CHECK: define void @f_floatarr2_s_arg(float, float)
void f_floatarr2_s_arg(struct floatarr2_s a) {}
// CHECK: define { float, float } @f_ret_floatarr2_s()
struct floatarr2_s f_ret_floatarr2_s() {
return (struct floatarr2_s){{1.0, 2.0}};
}
struct floatarr2_tricky1_s { struct { float f[1]; } g[2]; };
// CHECK: define void @f_floatarr2_tricky1_s_arg(float, float)
void f_floatarr2_tricky1_s_arg(struct floatarr2_tricky1_s a) {}
// CHECK: define { float, float } @f_ret_floatarr2_tricky1_s()
struct floatarr2_tricky1_s f_ret_floatarr2_tricky1_s() {
return (struct floatarr2_tricky1_s){{{{1.0}}, {{2.0}}}};
}
struct floatarr2_tricky2_s { struct {}; struct { float f[1]; } g[2]; };
// CHECK: define void @f_floatarr2_tricky2_s_arg(float, float)
void f_floatarr2_tricky2_s_arg(struct floatarr2_tricky2_s a) {}
// CHECK: define { float, float } @f_ret_floatarr2_tricky2_s()
struct floatarr2_tricky2_s f_ret_floatarr2_tricky2_s() {
return (struct floatarr2_tricky2_s){{}, {{{1.0}}, {{2.0}}}};
}
struct floatarr2_tricky3_s { union {}; struct { float f[1]; } g[2]; };
// CHECK: define void @f_floatarr2_tricky3_s_arg(float, float)
void f_floatarr2_tricky3_s_arg(struct floatarr2_tricky3_s a) {}
// CHECK: define { float, float } @f_ret_floatarr2_tricky3_s()
struct floatarr2_tricky3_s f_ret_floatarr2_tricky3_s() {
return (struct floatarr2_tricky3_s){{}, {{{1.0}}, {{2.0}}}};
}
struct floatarr2_tricky4_s { union {}; struct { struct {}; float f[1]; } g[2]; };
// CHECK: define void @f_floatarr2_tricky4_s_arg(float, float)
void f_floatarr2_tricky4_s_arg(struct floatarr2_tricky4_s a) {}
// CHECK: define { float, float } @f_ret_floatarr2_tricky4_s()
struct floatarr2_tricky4_s f_ret_floatarr2_tricky4_s() {
return (struct floatarr2_tricky4_s){{}, {{{}, {1.0}}, {{}, {2.0}}}};
}
// Test structs that should be passed according to the normal integer calling
// convention.
struct int_float_int_s { int a; float b; int c; };
// CHECK: define void @f_int_float_int_s_arg(%struct.int_float_int_s* %a)
void f_int_float_int_s_arg(struct int_float_int_s a) {}
// CHECK: define void @f_ret_int_float_int_s(%struct.int_float_int_s* noalias sret %agg.result)
struct int_float_int_s f_ret_int_float_int_s() {
return (struct int_float_int_s){1, 2.0, 3};
}
struct int64_float_s { int64_t a; float b; };
// CHECK: define void @f_int64_float_s_arg(%struct.int64_float_s* %a)
void f_int64_float_s_arg(struct int64_float_s a) {}
// CHECK: define void @f_ret_int64_float_s(%struct.int64_float_s* noalias sret %agg.result)
struct int64_float_s f_ret_int64_float_s() {
return (struct int64_float_s){1, 2.0};
}
struct char_char_float_s { char a; char b; float c; };
// CHECK-LABEL: define void @f_char_char_float_s_arg([2 x i32] %a.coerce)
void f_char_char_float_s_arg(struct char_char_float_s a) {}
// CHECK: define [2 x i32] @f_ret_char_char_float_s()
struct char_char_float_s f_ret_char_char_float_s() {
return (struct char_char_float_s){1, 2, 3.0};
}
// Unions are always passed according to the integer calling convention, even
// if they can only contain a float.
union float_u { float a; };
// CHECK: define void @f_float_u_arg(i32 %a.coerce)
void f_float_u_arg(union float_u a) {}
// CHECK: define i32 @f_ret_float_u()
union float_u f_ret_float_u() {
return (union float_u){1.0};
}

View File

@ -1,4 +1,6 @@
// RUN: %clang_cc1 -triple riscv64 -emit-llvm %s -o - | FileCheck %s
// RUN: %clang_cc1 -triple riscv64 -target-feature +f -target-abi lp64f -emit-llvm %s -o - \
// RUN: | FileCheck %s
// This file contains test cases that will have the same output for the lp64
// and lp64f ABIs.

View File

@ -1,4 +1,8 @@
// RUN: %clang_cc1 -triple riscv64 -emit-llvm %s -o - | FileCheck %s
// RUN: %clang_cc1 -triple riscv64 -target-feature +f -target-abi lp64f -emit-llvm %s -o - \
// RUN: | FileCheck %s
// RUN: %clang_cc1 -triple riscv64 -target-feature +d -target-abi lp64d -emit-llvm %s -o - \
// RUN: | FileCheck %s
// This file contains test cases that will have the same output for the lp64,
// lp64f, and lp64d ABIs.

View File

@ -0,0 +1,272 @@
// RUN: %clang_cc1 -triple riscv64 -target-feature +d -target-abi lp64d -emit-llvm %s -o - \
// RUN: | FileCheck %s
#include <stdint.h>
// Verify that the tracking of used GPRs and FPRs works correctly by checking
// that small integers are sign/zero extended when passed in registers.
// Doubles are passed in FPRs, so argument 'i' will be passed zero-extended
// because it will be passed in a GPR.
// CHECK: define void @f_fpr_tracking(double %a, double %b, double %c, double %d, double %e, double %f, double %g, double %h, i8 zeroext %i)
void f_fpr_tracking(double a, double b, double c, double d, double e, double f,
double g, double h, uint8_t i) {}
// Check that fp, fp+fp, and int+fp structs are lowered correctly. These will
// be passed in FPR, FPR+FPR, or GPR+FPR regs if sufficient registers are
// available the widths are <= XLEN and FLEN, and should be expanded to
// separate arguments in IR. They are passed by the same rules for returns,
// but will be lowered to simple two-element structs if necessary (as LLVM IR
// functions cannot return multiple values).
// A struct containing just one floating-point real is passed as though it
// were a standalone floating-point real.
struct double_s { double f; };
// CHECK: define void @f_double_s_arg(double)
void f_double_s_arg(struct double_s a) {}
// CHECK: define double @f_ret_double_s()
struct double_s f_ret_double_s() {
return (struct double_s){1.0};
}
// A struct containing a double and any number of zero-width bitfields is
// passed as though it were a standalone floating-point real.
struct zbf_double_s { int : 0; double f; };
struct zbf_double_zbf_s { int : 0; double f; int : 0; };
// CHECK: define void @f_zbf_double_s_arg(double)
void f_zbf_double_s_arg(struct zbf_double_s a) {}
// CHECK: define double @f_ret_zbf_double_s()
struct zbf_double_s f_ret_zbf_double_s() {
return (struct zbf_double_s){1.0};
}
// CHECK: define void @f_zbf_double_zbf_s_arg(double)
void f_zbf_double_zbf_s_arg(struct zbf_double_zbf_s a) {}
// CHECK: define double @f_ret_zbf_double_zbf_s()
struct zbf_double_zbf_s f_ret_zbf_double_zbf_s() {
return (struct zbf_double_zbf_s){1.0};
}
// Check that structs containing two floating point values (FLEN <= width) are
// expanded provided sufficient FPRs are available.
struct double_double_s { double f; double g; };
struct double_float_s { double f; float g; };
// CHECK: define void @f_double_double_s_arg(double, double)
void f_double_double_s_arg(struct double_double_s a) {}
// CHECK: define { double, double } @f_ret_double_double_s()
struct double_double_s f_ret_double_double_s() {
return (struct double_double_s){1.0, 2.0};
}
// CHECK: define void @f_double_float_s_arg(double, float)
void f_double_float_s_arg(struct double_float_s a) {}
// CHECK: define { double, float } @f_ret_double_float_s()
struct double_float_s f_ret_double_float_s() {
return (struct double_float_s){1.0, 2.0};
}
// CHECK: define void @f_double_double_s_arg_insufficient_fprs(float %a, double %b, double %c, double %d, double %e, double %f, double %g, [2 x i64] %h.coerce)
void f_double_double_s_arg_insufficient_fprs(float a, double b, double c, double d,
double e, double f, double g, struct double_double_s h) {}
// Check that structs containing int+double values are expanded, provided
// sufficient FPRs and GPRs are available. The integer components are neither
// sign or zero-extended.
struct double_int8_s { double f; int8_t i; };
struct double_uint8_s { double f; uint8_t i; };
struct double_int32_s { double f; int32_t i; };
struct double_int64_s { double f; int64_t i; };
struct double_int128bf_s { double f; __int128_t i : 64; };
struct double_int8_zbf_s { double f; int8_t i; int : 0; };
// CHECK: define void @f_double_int8_s_arg(double, i8)
void f_double_int8_s_arg(struct double_int8_s a) {}
// CHECK: define { double, i8 } @f_ret_double_int8_s()
struct double_int8_s f_ret_double_int8_s() {
return (struct double_int8_s){1.0, 2};
}
// CHECK: define void @f_double_uint8_s_arg(double, i8)
void f_double_uint8_s_arg(struct double_uint8_s a) {}
// CHECK: define { double, i8 } @f_ret_double_uint8_s()
struct double_uint8_s f_ret_double_uint8_s() {
return (struct double_uint8_s){1.0, 2};
}
// CHECK: define void @f_double_int32_s_arg(double, i32)
void f_double_int32_s_arg(struct double_int32_s a) {}
// CHECK: define { double, i32 } @f_ret_double_int32_s()
struct double_int32_s f_ret_double_int32_s() {
return (struct double_int32_s){1.0, 2};
}
// CHECK: define void @f_double_int64_s_arg(double, i64)
void f_double_int64_s_arg(struct double_int64_s a) {}
// CHECK: define { double, i64 } @f_ret_double_int64_s()
struct double_int64_s f_ret_double_int64_s() {
return (struct double_int64_s){1.0, 2};
}
// CHECK: define void @f_double_int128bf_s_arg(double, i64)
void f_double_int128bf_s_arg(struct double_int128bf_s a) {}
// CHECK: define { double, i64 } @f_ret_double_int128bf_s()
struct double_int128bf_s f_ret_double_int128bf_s() {
return (struct double_int128bf_s){1.0, 2};
}
// The zero-width bitfield means the struct can't be passed according to the
// floating point calling convention.
// CHECK: define void @f_double_int8_zbf_s(double, i8)
void f_double_int8_zbf_s(struct double_int8_zbf_s a) {}
// CHECK: define { double, i8 } @f_ret_double_int8_zbf_s()
struct double_int8_zbf_s f_ret_double_int8_zbf_s() {
return (struct double_int8_zbf_s){1.0, 2};
}
// CHECK: define void @f_double_int8_s_arg_insufficient_gprs(i32 signext %a, i32 signext %b, i32 signext %c, i32 signext %d, i32 signext %e, i32 signext %f, i32 signext %g, i32 signext %h, [2 x i64] %i.coerce)
void f_double_int8_s_arg_insufficient_gprs(int a, int b, int c, int d, int e,
int f, int g, int h, struct double_int8_s i) {}
// CHECK: define void @f_struct_double_int8_insufficient_fprs(float %a, double %b, double %c, double %d, double %e, double %f, double %g, double %h, [2 x i64] %i.coerce)
void f_struct_double_int8_insufficient_fprs(float a, double b, double c, double d,
double e, double f, double g, double h, struct double_int8_s i) {}
// Complex floating-point values or structs containing a single complex
// floating-point value should be passed as if it were an fp+fp struct.
// CHECK: define void @f_doublecomplex(double %a.coerce0, double %a.coerce1)
void f_doublecomplex(double __complex__ a) {}
// CHECK: define { double, double } @f_ret_doublecomplex()
double __complex__ f_ret_doublecomplex() {
return 1.0;
}
struct doublecomplex_s { double __complex__ c; };
// CHECK: define void @f_doublecomplex_s_arg(double, double)
void f_doublecomplex_s_arg(struct doublecomplex_s a) {}
// CHECK: define { double, double } @f_ret_doublecomplex_s()
struct doublecomplex_s f_ret_doublecomplex_s() {
return (struct doublecomplex_s){1.0};
}
// Test single or two-element structs that need flattening. e.g. those
// containing nested structs, doubles in small arrays, zero-length structs etc.
struct doublearr1_s { double a[1]; };
// CHECK: define void @f_doublearr1_s_arg(double)
void f_doublearr1_s_arg(struct doublearr1_s a) {}
// CHECK: define double @f_ret_doublearr1_s()
struct doublearr1_s f_ret_doublearr1_s() {
return (struct doublearr1_s){{1.0}};
}
struct doublearr2_s { double a[2]; };
// CHECK: define void @f_doublearr2_s_arg(double, double)
void f_doublearr2_s_arg(struct doublearr2_s a) {}
// CHECK: define { double, double } @f_ret_doublearr2_s()
struct doublearr2_s f_ret_doublearr2_s() {
return (struct doublearr2_s){{1.0, 2.0}};
}
struct doublearr2_tricky1_s { struct { double f[1]; } g[2]; };
// CHECK: define void @f_doublearr2_tricky1_s_arg(double, double)
void f_doublearr2_tricky1_s_arg(struct doublearr2_tricky1_s a) {}
// CHECK: define { double, double } @f_ret_doublearr2_tricky1_s()
struct doublearr2_tricky1_s f_ret_doublearr2_tricky1_s() {
return (struct doublearr2_tricky1_s){{{{1.0}}, {{2.0}}}};
}
struct doublearr2_tricky2_s { struct {}; struct { double f[1]; } g[2]; };
// CHECK: define void @f_doublearr2_tricky2_s_arg(double, double)
void f_doublearr2_tricky2_s_arg(struct doublearr2_tricky2_s a) {}
// CHECK: define { double, double } @f_ret_doublearr2_tricky2_s()
struct doublearr2_tricky2_s f_ret_doublearr2_tricky2_s() {
return (struct doublearr2_tricky2_s){{}, {{{1.0}}, {{2.0}}}};
}
struct doublearr2_tricky3_s { union {}; struct { double f[1]; } g[2]; };
// CHECK: define void @f_doublearr2_tricky3_s_arg(double, double)
void f_doublearr2_tricky3_s_arg(struct doublearr2_tricky3_s a) {}
// CHECK: define { double, double } @f_ret_doublearr2_tricky3_s()
struct doublearr2_tricky3_s f_ret_doublearr2_tricky3_s() {
return (struct doublearr2_tricky3_s){{}, {{{1.0}}, {{2.0}}}};
}
struct doublearr2_tricky4_s { union {}; struct { struct {}; double f[1]; } g[2]; };
// CHECK: define void @f_doublearr2_tricky4_s_arg(double, double)
void f_doublearr2_tricky4_s_arg(struct doublearr2_tricky4_s a) {}
// CHECK: define { double, double } @f_ret_doublearr2_tricky4_s()
struct doublearr2_tricky4_s f_ret_doublearr2_tricky4_s() {
return (struct doublearr2_tricky4_s){{}, {{{}, {1.0}}, {{}, {2.0}}}};
}
// Test structs that should be passed according to the normal integer calling
// convention.
struct int_double_int_s { int a; double b; int c; };
// CHECK: define void @f_int_double_int_s_arg(%struct.int_double_int_s* %a)
void f_int_double_int_s_arg(struct int_double_int_s a) {}
// CHECK: define void @f_ret_int_double_int_s(%struct.int_double_int_s* noalias sret %agg.result)
struct int_double_int_s f_ret_int_double_int_s() {
return (struct int_double_int_s){1, 2.0, 3};
}
struct char_char_double_s { char a; char b; double c; };
// CHECK-LABEL: define void @f_char_char_double_s_arg([2 x i64] %a.coerce)
void f_char_char_double_s_arg(struct char_char_double_s a) {}
// CHECK: define [2 x i64] @f_ret_char_char_double_s()
struct char_char_double_s f_ret_char_char_double_s() {
return (struct char_char_double_s){1, 2, 3.0};
}
// Unions are always passed according to the integer calling convention, even
// if they can only contain a double.
union double_u { double a; };
// CHECK: define void @f_double_u_arg(i64 %a.coerce)
void f_double_u_arg(union double_u a) {}
// CHECK: define i64 @f_ret_double_u()
union double_u f_ret_double_u() {
return (union double_u){1.0};
}

View File

@ -0,0 +1,265 @@
// RUN: %clang_cc1 -triple riscv64 -target-feature +f -target-abi lp64f -emit-llvm %s -o - \
// RUN: | FileCheck %s
// RUN: %clang_cc1 -triple riscv64 -target-feature +d -target-abi lp64d -emit-llvm %s -o - \
// RUN: | FileCheck %s
#include <stdint.h>
// Verify that the tracking of used GPRs and FPRs works correctly by checking
// that small integers are sign/zero extended when passed in registers.
// Floats are passed in FPRs, so argument 'i' will be passed zero-extended
// because it will be passed in a GPR.
// CHECK: define void @f_fpr_tracking(float %a, float %b, float %c, float %d, float %e, float %f, float %g, float %h, i8 zeroext %i)
void f_fpr_tracking(float a, float b, float c, float d, float e, float f,
float g, float h, uint8_t i) {}
// Check that fp, fp+fp, and int+fp structs are lowered correctly. These will
// be passed in FPR, FPR+FPR, or GPR+FPR regs if sufficient registers are
// available the widths are <= XLEN and FLEN, and should be expanded to
// separate arguments in IR. They are passed by the same rules for returns,
// but will be lowered to simple two-element structs if necessary (as LLVM IR
// functions cannot return multiple values).
// A struct containing just one floating-point real is passed as though it
// were a standalone floating-point real.
struct float_s { float f; };
// CHECK: define void @f_float_s_arg(float)
void f_float_s_arg(struct float_s a) {}
// CHECK: define float @f_ret_float_s()
struct float_s f_ret_float_s() {
return (struct float_s){1.0};
}
// A struct containing a float and any number of zero-width bitfields is
// passed as though it were a standalone floating-point real.
struct zbf_float_s { int : 0; float f; };
struct zbf_float_zbf_s { int : 0; float f; int : 0; };
// CHECK: define void @f_zbf_float_s_arg(float)
void f_zbf_float_s_arg(struct zbf_float_s a) {}
// CHECK: define float @f_ret_zbf_float_s()
struct zbf_float_s f_ret_zbf_float_s() {
return (struct zbf_float_s){1.0};
}
// CHECK: define void @f_zbf_float_zbf_s_arg(float)
void f_zbf_float_zbf_s_arg(struct zbf_float_zbf_s a) {}
// CHECK: define float @f_ret_zbf_float_zbf_s()
struct zbf_float_zbf_s f_ret_zbf_float_zbf_s() {
return (struct zbf_float_zbf_s){1.0};
}
// Check that structs containing two float values (FLEN <= width) are expanded
// provided sufficient FPRs are available.
struct float_float_s { float f; float g; };
// CHECK: define void @f_float_float_s_arg(float, float)
void f_float_float_s_arg(struct float_float_s a) {}
// CHECK: define { float, float } @f_ret_float_float_s()
struct float_float_s f_ret_float_float_s() {
return (struct float_float_s){1.0, 2.0};
}
// CHECK: define void @f_float_float_s_arg_insufficient_fprs(float %a, float %b, float %c, float %d, float %e, float %f, float %g, i64 %h.coerce)
void f_float_float_s_arg_insufficient_fprs(float a, float b, float c, float d,
float e, float f, float g, struct float_float_s h) {}
// Check that structs containing int+float values are expanded, provided
// sufficient FPRs and GPRs are available. The integer components are neither
// sign or zero-extended.
struct float_int8_s { float f; int8_t i; };
struct float_uint8_s { float f; uint8_t i; };
struct float_int32_s { float f; int32_t i; };
struct float_int64_s { float f; int64_t i; };
struct float_int128bf_s { float f; __int128_t i : 64; };
struct float_int8_zbf_s { float f; int8_t i; int : 0; };
// CHECK: define void @f_float_int8_s_arg(float, i8)
void f_float_int8_s_arg(struct float_int8_s a) {}
// CHECK: define { float, i8 } @f_ret_float_int8_s()
struct float_int8_s f_ret_float_int8_s() {
return (struct float_int8_s){1.0, 2};
}
// CHECK: define void @f_float_uint8_s_arg(float, i8)
void f_float_uint8_s_arg(struct float_uint8_s a) {}
// CHECK: define { float, i8 } @f_ret_float_uint8_s()
struct float_uint8_s f_ret_float_uint8_s() {
return (struct float_uint8_s){1.0, 2};
}
// CHECK: define void @f_float_int32_s_arg(float, i32)
void f_float_int32_s_arg(struct float_int32_s a) {}
// CHECK: define { float, i32 } @f_ret_float_int32_s()
struct float_int32_s f_ret_float_int32_s() {
return (struct float_int32_s){1.0, 2};
}
// CHECK: define void @f_float_int64_s_arg(float, i64)
void f_float_int64_s_arg(struct float_int64_s a) {}
// CHECK: define { float, i64 } @f_ret_float_int64_s()
struct float_int64_s f_ret_float_int64_s() {
return (struct float_int64_s){1.0, 2};
}
// CHECK: define void @f_float_int128bf_s_arg(float, i64)
void f_float_int128bf_s_arg(struct float_int128bf_s a) {}
// CHECK: define <{ float, i64 }> @f_ret_float_int128bf_s()
struct float_int128bf_s f_ret_float_int128bf_s() {
return (struct float_int128bf_s){1.0, 2};
}
// The zero-width bitfield means the struct can't be passed according to the
// floating point calling convention.
// CHECK: define void @f_float_int8_zbf_s(float, i8)
void f_float_int8_zbf_s(struct float_int8_zbf_s a) {}
// CHECK: define { float, i8 } @f_ret_float_int8_zbf_s()
struct float_int8_zbf_s f_ret_float_int8_zbf_s() {
return (struct float_int8_zbf_s){1.0, 2};
}
// CHECK: define void @f_float_int8_s_arg_insufficient_gprs(i32 signext %a, i32 signext %b, i32 signext %c, i32 signext %d, i32 signext %e, i32 signext %f, i32 signext %g, i32 signext %h, i64 %i.coerce)
void f_float_int8_s_arg_insufficient_gprs(int a, int b, int c, int d, int e,
int f, int g, int h, struct float_int8_s i) {}
// CHECK: define void @f_struct_float_int8_insufficient_fprs(float %a, float %b, float %c, float %d, float %e, float %f, float %g, float %h, i64 %i.coerce)
void f_struct_float_int8_insufficient_fprs(float a, float b, float c, float d,
float e, float f, float g, float h, struct float_int8_s i) {}
// Complex floating-point values or structs containing a single complex
// floating-point value should be passed as if it were an fp+fp struct.
// CHECK: define void @f_floatcomplex(float %a.coerce0, float %a.coerce1)
void f_floatcomplex(float __complex__ a) {}
// CHECK: define { float, float } @f_ret_floatcomplex()
float __complex__ f_ret_floatcomplex() {
return 1.0;
}
struct floatcomplex_s { float __complex__ c; };
// CHECK: define void @f_floatcomplex_s_arg(float, float)
void f_floatcomplex_s_arg(struct floatcomplex_s a) {}
// CHECK: define { float, float } @f_ret_floatcomplex_s()
struct floatcomplex_s f_ret_floatcomplex_s() {
return (struct floatcomplex_s){1.0};
}
// Test single or two-element structs that need flattening. e.g. those
// containing nested structs, floats in small arrays, zero-length structs etc.
struct floatarr1_s { float a[1]; };
// CHECK: define void @f_floatarr1_s_arg(float)
void f_floatarr1_s_arg(struct floatarr1_s a) {}
// CHECK: define float @f_ret_floatarr1_s()
struct floatarr1_s f_ret_floatarr1_s() {
return (struct floatarr1_s){{1.0}};
}
struct floatarr2_s { float a[2]; };
// CHECK: define void @f_floatarr2_s_arg(float, float)
void f_floatarr2_s_arg(struct floatarr2_s a) {}
// CHECK: define { float, float } @f_ret_floatarr2_s()
struct floatarr2_s f_ret_floatarr2_s() {
return (struct floatarr2_s){{1.0, 2.0}};
}
struct floatarr2_tricky1_s { struct { float f[1]; } g[2]; };
// CHECK: define void @f_floatarr2_tricky1_s_arg(float, float)
void f_floatarr2_tricky1_s_arg(struct floatarr2_tricky1_s a) {}
// CHECK: define { float, float } @f_ret_floatarr2_tricky1_s()
struct floatarr2_tricky1_s f_ret_floatarr2_tricky1_s() {
return (struct floatarr2_tricky1_s){{{{1.0}}, {{2.0}}}};
}
struct floatarr2_tricky2_s { struct {}; struct { float f[1]; } g[2]; };
// CHECK: define void @f_floatarr2_tricky2_s_arg(float, float)
void f_floatarr2_tricky2_s_arg(struct floatarr2_tricky2_s a) {}
// CHECK: define { float, float } @f_ret_floatarr2_tricky2_s()
struct floatarr2_tricky2_s f_ret_floatarr2_tricky2_s() {
return (struct floatarr2_tricky2_s){{}, {{{1.0}}, {{2.0}}}};
}
struct floatarr2_tricky3_s { union {}; struct { float f[1]; } g[2]; };
// CHECK: define void @f_floatarr2_tricky3_s_arg(float, float)
void f_floatarr2_tricky3_s_arg(struct floatarr2_tricky3_s a) {}
// CHECK: define { float, float } @f_ret_floatarr2_tricky3_s()
struct floatarr2_tricky3_s f_ret_floatarr2_tricky3_s() {
return (struct floatarr2_tricky3_s){{}, {{{1.0}}, {{2.0}}}};
}
struct floatarr2_tricky4_s { union {}; struct { struct {}; float f[1]; } g[2]; };
// CHECK: define void @f_floatarr2_tricky4_s_arg(float, float)
void f_floatarr2_tricky4_s_arg(struct floatarr2_tricky4_s a) {}
// CHECK: define { float, float } @f_ret_floatarr2_tricky4_s()
struct floatarr2_tricky4_s f_ret_floatarr2_tricky4_s() {
return (struct floatarr2_tricky4_s){{}, {{{}, {1.0}}, {{}, {2.0}}}};
}
// Test structs that should be passed according to the normal integer calling
// convention.
struct int_float_int_s { int a; float b; int c; };
// CHECK: define void @f_int_float_int_s_arg([2 x i64] %a.coerce)
void f_int_float_int_s_arg(struct int_float_int_s a) {}
// CHECK: define [2 x i64] @f_ret_int_float_int_s()
struct int_float_int_s f_ret_int_float_int_s() {
return (struct int_float_int_s){1, 2.0, 3};
}
struct char_char_float_s { char a; char b; float c; };
// CHECK-LABEL: define void @f_char_char_float_s_arg(i64 %a.coerce)
void f_char_char_float_s_arg(struct char_char_float_s a) {}
// CHECK: define i64 @f_ret_char_char_float_s()
struct char_char_float_s f_ret_char_char_float_s() {
return (struct char_char_float_s){1, 2, 3.0};
}
// Unions are always passed according to the integer calling convention, even
// if they can only contain a float.
union float_u { float a; };
// CHECK: define void @f_float_u_arg(i64 %a.coerce)
void f_float_u_arg(union float_u a) {}
// CHECK: define i64 @f_ret_float_u()
union float_u f_ret_float_u() {
return (union float_u){1.0};
}

View File

@ -47,3 +47,27 @@
// RUN: %clang -target riscv64-unknown-linux-gnu -march=rv64ic -x c -E -dM %s \
// RUN: -o - | FileCheck --check-prefix=CHECK-C-EXT %s
// CHECK-C-EXT: __riscv_compressed 1
// RUN: %clang -target riscv32-unknown-linux-gnu -march=rv32ifd -x c -E -dM %s \
// RUN: -o - | FileCheck --check-prefix=CHECK-SOFT %s
// RUN: %clang -target riscv64-unknown-linux-gnu -march=rv64ifd -x c -E -dM %s \
// RUN: -o - | FileCheck --check-prefix=CHECK-SOFT %s
// CHECK-SOFT: __riscv_float_abi_soft 1
// CHECK-SOFT-NOT: __riscv_float_abi_single
// CHECK-SOFT-NOT: __riscv_float_abi_double
// RUN: %clang -target riscv32-unknown-linux-gnu -march=rv32ifd -mabi=ilp32f -x c -E -dM %s \
// RUN: -o - | FileCheck --check-prefix=CHECK-SINGLE %s
// RUN: %clang -target riscv64-unknown-linux-gnu -march=rv64ifd -mabi=lp64f -x c -E -dM %s \
// RUN: -o - | FileCheck --check-prefix=CHECK-SINGLE %s
// CHECK-SINGLE: __riscv_float_abi_single 1
// CHECK-SINGLE-NOT: __riscv_float_abi_soft
// CHECK-SINGLE-NOT: __riscv_float_abi_double
// RUN: %clang -target riscv32-unknown-linux-gnu -march=rv32ifd -mabi=ilp32f -x c -E -dM %s \
// RUN: -o - | FileCheck --check-prefix=CHECK-DOUBLE %s
// RUN: %clang -target riscv64-unknown-linux-gnu -march=rv64ifd -mabi=lp64f -x c -E -dM %s \
// RUN: -o - | FileCheck --check-prefix=CHECK-DOUBLE %s
// CHECK-DOUBLE: __riscv_float_abi_double 1
// CHECK-DOUBLE-NOT: __riscv_float_abi_soft
// CHECK-DOUBLE-NOT: __riscv_float_abi_single