[CFGDiff] Refactor Succ/Pred maps.

Summary:
Refactor Succ/Pred maps to have a single map lookup when constructing
children. The preivous desing made sense when used by GraphTraits.
This more closely matches the previous approach in DomTree.

Reviewers: dblaikie

Subscribers: llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D84567
This commit is contained in:
Alina Sbirlea 2020-07-24 16:29:58 -07:00
parent 18c725e735
commit fbca317694
2 changed files with 57 additions and 66 deletions

View File

@ -1653,6 +1653,14 @@ void erase_if(Container &C, UnaryPredicate P) {
C.erase(remove_if(C, P), C.end());
}
/// Wrapper function to remove a value from a container:
///
/// C.erase(remove(C.begin(), C.end(), V), C.end());
template <typename Container, typename ValueType>
void erase_value(Container &C, ValueType V) {
C.erase(std::remove(C.begin(), C.end(), V), C.end());
}
/// Given a sequence container Cont, replace the range [ContIt, ContEnd) with
/// the range [ValIt, ValEnd) (which is not from the same container).
template<typename Container, typename RandomAccessIterator>

View File

@ -55,21 +55,18 @@ template <bool B, typename Range> auto reverse_if(Range &&R) {
// multigraph. Added edges are pruned to be unique, and deleted edges will
// remove all existing edges between two blocks.
template <typename NodePtr, bool InverseGraph = false> class GraphDiff {
using UpdateMapType = SmallDenseMap<NodePtr, SmallVector<NodePtr, 2>>;
struct EdgesInsertedDeleted {
UpdateMapType Succ;
UpdateMapType Pred;
struct DeletesInserts {
SmallVector<NodePtr, 2> DI[2];
};
// Store Deleted edges on position 0, and Inserted edges on position 1.
EdgesInsertedDeleted Edges[2];
using UpdateMapType = SmallDenseMap<NodePtr, DeletesInserts>;
UpdateMapType Succ;
UpdateMapType Pred;
// By default, it is assumed that, given a CFG and a set of updates, we wish
// to apply these updates as given. If UpdatedAreReverseApplied is set, the
// updates will be applied in reverse: deleted edges are considered re-added
// and inserted edges are considered deleted when returning children.
bool UpdatedAreReverseApplied;
// Using a singleton empty vector for all node requests with no
// children.
SmallVector<NodePtr, 0> Empty;
// Keep the list of legalized updates for a deterministic order of updates
// when using a GraphDiff for incremental updates in the DominatorTree.
@ -77,14 +74,19 @@ template <typename NodePtr, bool InverseGraph = false> class GraphDiff {
SmallVector<cfg::Update<NodePtr>, 4> LegalizedUpdates;
void printMap(raw_ostream &OS, const UpdateMapType &M) const {
for (auto Pair : M)
for (auto Child : Pair.second) {
OS << "(";
Pair.first->printAsOperand(OS, false);
OS << ", ";
Child->printAsOperand(OS, false);
OS << ") ";
StringRef DIText[2] = {"Delete", "Insert"};
for (auto Pair : M) {
for (unsigned IsInsert = 0; IsInsert <= 1; ++IsInsert) {
OS << DIText[IsInsert] << " edges: \n";
for (auto Child : Pair.second.DI[IsInsert]) {
OS << "(";
Pair.first->printAsOperand(OS, false);
OS << ", ";
Child->printAsOperand(OS, false);
OS << ") ";
}
}
}
OS << "\n";
}
@ -93,13 +95,11 @@ public:
GraphDiff(ArrayRef<cfg::Update<NodePtr>> Updates,
bool ReverseApplyUpdates = false) {
cfg::LegalizeUpdates<NodePtr>(Updates, LegalizedUpdates, InverseGraph);
// The legalized updates are stored in reverse so we can pop_back when doing
// incremental updates.
for (auto U : LegalizedUpdates) {
unsigned IsInsert =
(U.getKind() == cfg::UpdateKind::Insert) == !ReverseApplyUpdates;
Edges[IsInsert].Succ[U.getFrom()].push_back(U.getTo());
Edges[IsInsert].Pred[U.getTo()].push_back(U.getFrom());
Succ[U.getFrom()].DI[IsInsert].push_back(U.getTo());
Pred[U.getTo()].DI[IsInsert].push_back(U.getFrom());
}
UpdatedAreReverseApplied = ReverseApplyUpdates;
}
@ -115,73 +115,56 @@ public:
auto U = LegalizedUpdates.pop_back_val();
unsigned IsInsert =
(U.getKind() == cfg::UpdateKind::Insert) == !UpdatedAreReverseApplied;
auto &SuccList = Edges[IsInsert].Succ[U.getFrom()];
auto &SuccDIList = Succ[U.getFrom()];
auto &SuccList = SuccDIList.DI[IsInsert];
assert(SuccList.back() == U.getTo());
SuccList.pop_back();
if (SuccList.empty())
Edges[IsInsert].Succ.erase(U.getFrom());
if (SuccList.empty() && SuccDIList.DI[!IsInsert].empty())
Succ.erase(U.getFrom());
auto &PredList = Edges[IsInsert].Pred[U.getTo()];
auto &PredDIList = Pred[U.getTo()];
auto &PredList = PredDIList.DI[IsInsert];
assert(PredList.back() == U.getFrom());
PredList.pop_back();
if (PredList.empty())
Edges[IsInsert].Pred.erase(U.getTo());
if (PredList.empty() && PredDIList.DI[!IsInsert].empty())
Pred.erase(U.getTo());
return U;
}
bool ignoreChild(const NodePtr BB, NodePtr EdgeEnd, bool InverseEdge) const {
// Used to filter nullptr in clang.
if (EdgeEnd == nullptr)
return true;
auto &DeleteChildren =
(InverseEdge != InverseGraph) ? Edges[0].Pred : Edges[0].Succ;
auto It = DeleteChildren.find(BB);
if (It == DeleteChildren.end())
return false;
auto &EdgesForBB = It->second;
return llvm::find(EdgesForBB, EdgeEnd) != EdgesForBB.end();
}
iterator_range<typename SmallVectorImpl<NodePtr>::const_iterator>
getAddedChildren(const NodePtr BB, bool InverseEdge) const {
auto &InsertChildren =
(InverseEdge != InverseGraph) ? Edges[1].Pred : Edges[1].Succ;
auto It = InsertChildren.find(BB);
if (It == InsertChildren.end())
return make_range(Empty.begin(), Empty.end());
return make_range(It->second.begin(), It->second.end());
}
using VectRet = SmallVector<NodePtr, 8>;
template <bool InverseEdge> VectRet getChildren(NodePtr N) const {
using DirectedNodeT =
std::conditional_t<InverseEdge, Inverse<NodePtr>, NodePtr>;
auto R = children<DirectedNodeT>(N);
auto CurrentCFGChildren = detail::reverse_if<!InverseEdge>(R);
VectRet Res = VectRet(detail::reverse_if<!InverseEdge>(R));
VectRet UpdatedCFGChildren;
for (auto Child : CurrentCFGChildren)
if (Child && !ignoreChild(N, Child, InverseEdge))
UpdatedCFGChildren.push_back(Child);
// Remove nullptr children for clang.
llvm::erase_value(Res, nullptr);
auto AddedCFGChildren = getAddedChildren(N, InverseEdge);
UpdatedCFGChildren.insert(UpdatedCFGChildren.end(),
AddedCFGChildren.begin(), AddedCFGChildren.end());
return UpdatedCFGChildren;
auto &Children = (InverseEdge != InverseGraph) ? Pred : Succ;
auto It = Children.find(N);
if (It == Children.end())
return Res;
// Remove children present in the CFG but not in the snapshot.
for (auto *Child : It->second.DI[0])
llvm::erase_value(Res, Child);
// Add children present in the snapshot for not in the real CFG.
auto &AddedChildren = It->second.DI[1];
Res.insert(Res.end(), AddedChildren.begin(), AddedChildren.end());
return Res;
}
void print(raw_ostream &OS) const {
OS << "===== GraphDiff: CFG edge changes to create a CFG snapshot. \n"
"===== (Note: notion of children/inverse_children depends on "
"the direction of edges and the graph.)\n";
OS << "Children to insert:\n\t";
printMap(OS, Edges[1].Succ);
OS << "Children to delete:\n\t";
printMap(OS, Edges[0].Succ);
OS << "Inverse_children to insert:\n\t";
printMap(OS, Edges[1].Pred);
OS << "Inverse_children to delete:\n\t";
printMap(OS, Edges[0].Pred);
OS << "Children to delete/insert:\n\t";
printMap(OS, Succ);
OS << "Inverse_children to delete/insert:\n\t";
printMap(OS, Pred);
OS << "\n";
}