Re-apply r194300 with fixes for warnings.

llvm-svn: 194311
This commit is contained in:
Lang Hames 2013-11-09 03:08:56 +00:00
parent 279430585a
commit fb82630a91
7 changed files with 448 additions and 436 deletions

View File

@ -20,79 +20,63 @@
#include "llvm/ADT/ilist_node.h" #include "llvm/ADT/ilist_node.h"
#include <list> #include <list>
#include <map> #include <map>
#include <set>
namespace PBQP { namespace PBQP {
/// PBQP Graph class. /// PBQP Graph class.
/// Instances of this class describe PBQP problems. /// Instances of this class describe PBQP problems.
class Graph { class Graph {
private:
// ----- TYPEDEFS -----
class NodeEntry;
class EdgeEntry;
typedef llvm::ilist<NodeEntry> NodeList;
typedef llvm::ilist<EdgeEntry> EdgeList;
public: public:
typedef NodeList::iterator NodeItr; typedef unsigned NodeId;
typedef NodeList::const_iterator ConstNodeItr; typedef unsigned EdgeId;
typedef EdgeList::iterator EdgeItr;
typedef EdgeList::const_iterator ConstEdgeItr;
private: private:
typedef std::list<EdgeItr> AdjEdgeList; typedef std::set<NodeId> AdjEdgeList;
public: public:
typedef AdjEdgeList::iterator AdjEdgeItr; typedef AdjEdgeList::iterator AdjEdgeItr;
private: private:
class NodeEntry : public llvm::ilist_node<NodeEntry> { class NodeEntry {
friend struct llvm::ilist_sentinel_traits<NodeEntry>;
private: private:
Vector costs; Vector costs;
AdjEdgeList adjEdges; AdjEdgeList adjEdges;
unsigned degree;
void *data; void *data;
NodeEntry() : costs(0, 0) {} NodeEntry() : costs(0, 0) {}
public: public:
NodeEntry(const Vector &costs) : costs(costs), degree(0) {} NodeEntry(const Vector &costs) : costs(costs), data(0) {}
Vector& getCosts() { return costs; } Vector& getCosts() { return costs; }
const Vector& getCosts() const { return costs; } const Vector& getCosts() const { return costs; }
unsigned getDegree() const { return degree; } unsigned getDegree() const { return adjEdges.size(); }
AdjEdgeItr edgesBegin() { return adjEdges.begin(); } AdjEdgeItr edgesBegin() { return adjEdges.begin(); }
AdjEdgeItr edgesEnd() { return adjEdges.end(); } AdjEdgeItr edgesEnd() { return adjEdges.end(); }
AdjEdgeItr addEdge(EdgeItr e) { AdjEdgeItr addEdge(EdgeId e) {
++degree;
return adjEdges.insert(adjEdges.end(), e); return adjEdges.insert(adjEdges.end(), e);
} }
void removeEdge(AdjEdgeItr ae) { void removeEdge(AdjEdgeItr ae) {
--degree;
adjEdges.erase(ae); adjEdges.erase(ae);
} }
void setData(void *data) { this->data = data; } void setData(void *data) { this->data = data; }
void* getData() { return data; } void* getData() { return data; }
}; };
class EdgeEntry : public llvm::ilist_node<EdgeEntry> { class EdgeEntry {
friend struct llvm::ilist_sentinel_traits<EdgeEntry>;
private: private:
NodeItr node1, node2; NodeId node1, node2;
Matrix costs; Matrix costs;
AdjEdgeItr node1AEItr, node2AEItr; AdjEdgeItr node1AEItr, node2AEItr;
void *data; void *data;
EdgeEntry() : costs(0, 0, 0) {} EdgeEntry() : costs(0, 0, 0), data(0) {}
public: public:
EdgeEntry(NodeItr node1, NodeItr node2, const Matrix &costs) EdgeEntry(NodeId node1, NodeId node2, const Matrix &costs)
: node1(node1), node2(node2), costs(costs) {} : node1(node1), node2(node2), costs(costs) {}
NodeItr getNode1() const { return node1; } NodeId getNode1() const { return node1; }
NodeItr getNode2() const { return node2; } NodeId getNode2() const { return node2; }
Matrix& getCosts() { return costs; } Matrix& getCosts() { return costs; }
const Matrix& getCosts() const { return costs; } const Matrix& getCosts() const { return costs; }
void setNode1AEItr(AdjEdgeItr ae) { node1AEItr = ae; } void setNode1AEItr(AdjEdgeItr ae) { node1AEItr = ae; }
@ -105,72 +89,128 @@ namespace PBQP {
// ----- MEMBERS ----- // ----- MEMBERS -----
NodeList nodes; typedef std::vector<NodeEntry> NodeVector;
unsigned numNodes; typedef std::vector<NodeId> FreeNodeVector;
NodeVector nodes;
FreeNodeVector freeNodes;
EdgeList edges; typedef std::vector<EdgeEntry> EdgeVector;
unsigned numEdges; typedef std::vector<EdgeId> FreeEdgeVector;
EdgeVector edges;
FreeEdgeVector freeEdges;
// ----- INTERNAL METHODS ----- // ----- INTERNAL METHODS -----
NodeEntry& getNode(NodeItr nItr) { return *nItr; } NodeEntry& getNode(NodeId nId) { return nodes[nId]; }
const NodeEntry& getNode(ConstNodeItr nItr) const { return *nItr; } const NodeEntry& getNode(NodeId nId) const { return nodes[nId]; }
EdgeEntry& getEdge(EdgeItr eItr) { return *eItr; } EdgeEntry& getEdge(EdgeId eId) { return edges[eId]; }
const EdgeEntry& getEdge(ConstEdgeItr eItr) const { return *eItr; } const EdgeEntry& getEdge(EdgeId eId) const { return edges[eId]; }
NodeItr addConstructedNode(const NodeEntry &n) { NodeId addConstructedNode(const NodeEntry &n) {
++numNodes; NodeId nodeId = 0;
return nodes.insert(nodes.end(), n); if (!freeNodes.empty()) {
nodeId = freeNodes.back();
freeNodes.pop_back();
nodes[nodeId] = n;
} else {
nodeId = nodes.size();
nodes.push_back(n);
}
return nodeId;
} }
EdgeItr addConstructedEdge(const EdgeEntry &e) { EdgeId addConstructedEdge(const EdgeEntry &e) {
assert(findEdge(e.getNode1(), e.getNode2()) == edges.end() && assert(findEdge(e.getNode1(), e.getNode2()) == invalidEdgeId() &&
"Attempt to add duplicate edge."); "Attempt to add duplicate edge.");
++numEdges; EdgeId edgeId = 0;
EdgeItr edgeItr = edges.insert(edges.end(), e); if (!freeEdges.empty()) {
EdgeEntry &ne = getEdge(edgeItr); edgeId = freeEdges.back();
freeEdges.pop_back();
edges[edgeId] = e;
} else {
edgeId = edges.size();
edges.push_back(e);
}
EdgeEntry &ne = getEdge(edgeId);
NodeEntry &n1 = getNode(ne.getNode1()); NodeEntry &n1 = getNode(ne.getNode1());
NodeEntry &n2 = getNode(ne.getNode2()); NodeEntry &n2 = getNode(ne.getNode2());
// Sanity check on matrix dimensions: // Sanity check on matrix dimensions:
assert((n1.getCosts().getLength() == ne.getCosts().getRows()) && assert((n1.getCosts().getLength() == ne.getCosts().getRows()) &&
(n2.getCosts().getLength() == ne.getCosts().getCols()) && (n2.getCosts().getLength() == ne.getCosts().getCols()) &&
"Edge cost dimensions do not match node costs dimensions."); "Edge cost dimensions do not match node costs dimensions.");
ne.setNode1AEItr(n1.addEdge(edgeItr));
ne.setNode2AEItr(n2.addEdge(edgeItr)); ne.setNode1AEItr(n1.addEdge(edgeId));
return edgeItr; ne.setNode2AEItr(n2.addEdge(edgeId));
return edgeId;
} }
inline void copyFrom(const Graph &other); Graph(const Graph &other) {}
void operator=(const Graph &other) {}
public: public:
class NodeItr {
public:
NodeItr(NodeId nodeId, const Graph &g)
: nodeId(nodeId), endNodeId(g.nodes.size()), freeNodes(g.freeNodes) {
this->nodeId = findNextInUse(nodeId); // Move to the first in-use nodeId
}
bool operator==(const NodeItr& n) const { return nodeId == n.nodeId; }
bool operator!=(const NodeItr& n) const { return !(*this == n); }
NodeItr& operator++() { nodeId = findNextInUse(++nodeId); return *this; }
NodeId operator*() const { return nodeId; }
private:
NodeId findNextInUse(NodeId n) const {
while (n < endNodeId &&
std::find(freeNodes.begin(), freeNodes.end(), n) !=
freeNodes.end()) {
++n;
}
return n;
}
NodeId nodeId, endNodeId;
const FreeNodeVector& freeNodes;
};
class EdgeItr {
public:
EdgeItr(EdgeId edgeId, const Graph &g)
: edgeId(edgeId), endEdgeId(g.edges.size()), freeEdges(g.freeEdges) {
this->edgeId = findNextInUse(edgeId); // Move to the first in-use edgeId
}
bool operator==(const EdgeItr& n) const { return edgeId == n.edgeId; }
bool operator!=(const EdgeItr& n) const { return !(*this == n); }
EdgeItr& operator++() { edgeId = findNextInUse(++edgeId); return *this; }
EdgeId operator*() const { return edgeId; }
private:
EdgeId findNextInUse(EdgeId n) const {
while (n < endEdgeId &&
std::find(freeEdges.begin(), freeEdges.end(), n) !=
freeEdges.end()) {
++n;
}
return n;
}
EdgeId edgeId, endEdgeId;
const FreeEdgeVector& freeEdges;
};
/// \brief Construct an empty PBQP graph. /// \brief Construct an empty PBQP graph.
Graph() : numNodes(0), numEdges(0) {} Graph() {}
/// \brief Copy construct this graph from "other". Note: Does not copy node
/// and edge data, only graph structure and costs.
/// @param other Source graph to copy from.
Graph(const Graph &other) : numNodes(0), numEdges(0) {
copyFrom(other);
}
/// \brief Make this graph a copy of "other". Note: Does not copy node and
/// edge data, only graph structure and costs.
/// @param other The graph to copy from.
/// @return A reference to this graph.
///
/// This will clear the current graph, erasing any nodes and edges added,
/// before copying from other.
Graph& operator=(const Graph &other) {
clear();
copyFrom(other);
return *this;
}
/// \brief Add a node with the given costs. /// \brief Add a node with the given costs.
/// @param costs Cost vector for the new node. /// @param costs Cost vector for the new node.
/// @return Node iterator for the added node. /// @return Node iterator for the added node.
NodeItr addNode(const Vector &costs) { NodeId addNode(const Vector &costs) {
return addConstructedNode(NodeEntry(costs)); return addConstructedNode(NodeEntry(costs));
} }
@ -178,32 +218,31 @@ namespace PBQP {
/// @param n1Itr First node. /// @param n1Itr First node.
/// @param n2Itr Second node. /// @param n2Itr Second node.
/// @return Edge iterator for the added edge. /// @return Edge iterator for the added edge.
EdgeItr addEdge(Graph::NodeItr n1Itr, Graph::NodeItr n2Itr, EdgeId addEdge(NodeId n1Id, NodeId n2Id, const Matrix &costs) {
const Matrix &costs) { assert(getNodeCosts(n1Id).getLength() == costs.getRows() &&
assert(getNodeCosts(n1Itr).getLength() == costs.getRows() && getNodeCosts(n2Id).getLength() == costs.getCols() &&
getNodeCosts(n2Itr).getLength() == costs.getCols() &&
"Matrix dimensions mismatch."); "Matrix dimensions mismatch.");
return addConstructedEdge(EdgeEntry(n1Itr, n2Itr, costs)); return addConstructedEdge(EdgeEntry(n1Id, n2Id, costs));
} }
/// \brief Get the number of nodes in the graph. /// \brief Get the number of nodes in the graph.
/// @return Number of nodes in the graph. /// @return Number of nodes in the graph.
unsigned getNumNodes() const { return numNodes; } unsigned getNumNodes() const { return nodes.size() - freeNodes.size(); }
/// \brief Get the number of edges in the graph. /// \brief Get the number of edges in the graph.
/// @return Number of edges in the graph. /// @return Number of edges in the graph.
unsigned getNumEdges() const { return numEdges; } unsigned getNumEdges() const { return edges.size() - freeEdges.size(); }
/// \brief Get a node's cost vector. /// \brief Get a node's cost vector.
/// @param nItr Node iterator. /// @param nItr Node iterator.
/// @return Node cost vector. /// @return Node cost vector.
Vector& getNodeCosts(NodeItr nItr) { return getNode(nItr).getCosts(); } Vector& getNodeCosts(NodeId nId) { return getNode(nId).getCosts(); }
/// \brief Get a node's cost vector (const version). /// \brief Get a node's cost vector (const version).
/// @param nItr Node iterator. /// @param nItr Node iterator.
/// @return Node cost vector. /// @return Node cost vector.
const Vector& getNodeCosts(ConstNodeItr nItr) const { const Vector& getNodeCosts(NodeId nId) const {
return getNode(nItr).getCosts(); return getNode(nId).getCosts();
} }
/// \brief Set a node's data pointer. /// \brief Set a node's data pointer.
@ -211,23 +250,23 @@ namespace PBQP {
/// @param data Pointer to node data. /// @param data Pointer to node data.
/// ///
/// Typically used by a PBQP solver to attach data to aid in solution. /// Typically used by a PBQP solver to attach data to aid in solution.
void setNodeData(NodeItr nItr, void *data) { getNode(nItr).setData(data); } void setNodeData(NodeId nId, void *data) { getNode(nId).setData(data); }
/// \brief Get the node's data pointer. /// \brief Get the node's data pointer.
/// @param nItr Node iterator. /// @param nItr Node iterator.
/// @return Pointer to node data. /// @return Pointer to node data.
void* getNodeData(NodeItr nItr) { return getNode(nItr).getData(); } void* getNodeData(NodeId nId) { return getNode(nId).getData(); }
/// \brief Get an edge's cost matrix. /// \brief Get an edge's cost matrix.
/// @param eItr Edge iterator. /// @param eItr Edge iterator.
/// @return Edge cost matrix. /// @return Edge cost matrix.
Matrix& getEdgeCosts(EdgeItr eItr) { return getEdge(eItr).getCosts(); } Matrix& getEdgeCosts(EdgeId eId) { return getEdge(eId).getCosts(); }
/// \brief Get an edge's cost matrix (const version). /// \brief Get an edge's cost matrix (const version).
/// @param eItr Edge iterator. /// @param eItr Edge iterator.
/// @return Edge cost matrix. /// @return Edge cost matrix.
const Matrix& getEdgeCosts(ConstEdgeItr eItr) const { const Matrix& getEdgeCosts(EdgeId eId) const {
return getEdge(eItr).getCosts(); return getEdge(eId).getCosts();
} }
/// \brief Set an edge's data pointer. /// \brief Set an edge's data pointer.
@ -235,124 +274,120 @@ namespace PBQP {
/// @param data Pointer to edge data. /// @param data Pointer to edge data.
/// ///
/// Typically used by a PBQP solver to attach data to aid in solution. /// Typically used by a PBQP solver to attach data to aid in solution.
void setEdgeData(EdgeItr eItr, void *data) { getEdge(eItr).setData(data); } void setEdgeData(EdgeId eId, void *data) { getEdge(eId).setData(data); }
/// \brief Get an edge's data pointer. /// \brief Get an edge's data pointer.
/// @param eItr Edge iterator. /// @param eItr Edge iterator.
/// @return Pointer to edge data. /// @return Pointer to edge data.
void* getEdgeData(EdgeItr eItr) { return getEdge(eItr).getData(); } void* getEdgeData(EdgeId eId) { return getEdge(eId).getData(); }
/// \brief Get a node's degree. /// \brief Get a node's degree.
/// @param nItr Node iterator. /// @param nItr Node iterator.
/// @return The degree of the node. /// @return The degree of the node.
unsigned getNodeDegree(NodeItr nItr) const { unsigned getNodeDegree(NodeId nId) const {
return getNode(nItr).getDegree(); return getNode(nId).getDegree();
} }
/// \brief Begin iterator for node set. /// \brief Begin iterator for node set.
NodeItr nodesBegin() { return nodes.begin(); } NodeItr nodesBegin() const { return NodeItr(0, *this); }
/// \brief Begin const iterator for node set.
ConstNodeItr nodesBegin() const { return nodes.begin(); }
/// \brief End iterator for node set. /// \brief End iterator for node set.
NodeItr nodesEnd() { return nodes.end(); } NodeItr nodesEnd() const { return NodeItr(nodes.size(), *this); }
/// \brief End const iterator for node set.
ConstNodeItr nodesEnd() const { return nodes.end(); }
/// \brief Begin iterator for edge set. /// \brief Begin iterator for edge set.
EdgeItr edgesBegin() { return edges.begin(); } EdgeItr edgesBegin() const { return EdgeItr(0, *this); }
/// \brief End iterator for edge set. /// \brief End iterator for edge set.
EdgeItr edgesEnd() { return edges.end(); } EdgeItr edgesEnd() const { return EdgeItr(edges.size(), *this); }
/// \brief Get begin iterator for adjacent edge set. /// \brief Get begin iterator for adjacent edge set.
/// @param nItr Node iterator. /// @param nItr Node iterator.
/// @return Begin iterator for the set of edges connected to the given node. /// @return Begin iterator for the set of edges connected to the given node.
AdjEdgeItr adjEdgesBegin(NodeItr nItr) { AdjEdgeItr adjEdgesBegin(NodeId nId) {
return getNode(nItr).edgesBegin(); return getNode(nId).edgesBegin();
} }
/// \brief Get end iterator for adjacent edge set. /// \brief Get end iterator for adjacent edge set.
/// @param nItr Node iterator. /// @param nItr Node iterator.
/// @return End iterator for the set of edges connected to the given node. /// @return End iterator for the set of edges connected to the given node.
AdjEdgeItr adjEdgesEnd(NodeItr nItr) { AdjEdgeItr adjEdgesEnd(NodeId nId) {
return getNode(nItr).edgesEnd(); return getNode(nId).edgesEnd();
} }
/// \brief Get the first node connected to this edge. /// \brief Get the first node connected to this edge.
/// @param eItr Edge iterator. /// @param eItr Edge iterator.
/// @return The first node connected to the given edge. /// @return The first node connected to the given edge.
NodeItr getEdgeNode1(EdgeItr eItr) { NodeId getEdgeNode1(EdgeId eId) {
return getEdge(eItr).getNode1(); return getEdge(eId).getNode1();
} }
/// \brief Get the second node connected to this edge. /// \brief Get the second node connected to this edge.
/// @param eItr Edge iterator. /// @param eItr Edge iterator.
/// @return The second node connected to the given edge. /// @return The second node connected to the given edge.
NodeItr getEdgeNode2(EdgeItr eItr) { NodeId getEdgeNode2(EdgeId eId) {
return getEdge(eItr).getNode2(); return getEdge(eId).getNode2();
} }
/// \brief Get the "other" node connected to this edge. /// \brief Get the "other" node connected to this edge.
/// @param eItr Edge iterator. /// @param eItr Edge iterator.
/// @param nItr Node iterator for the "given" node. /// @param nItr Node iterator for the "given" node.
/// @return The iterator for the "other" node connected to this edge. /// @return The iterator for the "other" node connected to this edge.
NodeItr getEdgeOtherNode(EdgeItr eItr, NodeItr nItr) { NodeId getEdgeOtherNode(EdgeId eId, NodeId nId) {
EdgeEntry &e = getEdge(eItr); EdgeEntry &e = getEdge(eId);
if (e.getNode1() == nItr) { if (e.getNode1() == nId) {
return e.getNode2(); return e.getNode2();
} // else } // else
return e.getNode1(); return e.getNode1();
} }
EdgeId invalidEdgeId() const {
return std::numeric_limits<EdgeId>::max();
}
/// \brief Get the edge connecting two nodes. /// \brief Get the edge connecting two nodes.
/// @param n1Itr First node iterator. /// @param n1Id First node id.
/// @param n2Itr Second node iterator. /// @param n2Id Second node id.
/// @return An iterator for edge (n1Itr, n2Itr) if such an edge exists, /// @return An id for edge (n1Id, n2Id) if such an edge exists,
/// otherwise returns edgesEnd(). /// otherwise returns an invalid edge id.
EdgeItr findEdge(NodeItr n1Itr, NodeItr n2Itr) { EdgeId findEdge(NodeId n1Id, NodeId n2Id) {
for (AdjEdgeItr aeItr = adjEdgesBegin(n1Itr), aeEnd = adjEdgesEnd(n1Itr); for (AdjEdgeItr aeItr = adjEdgesBegin(n1Id), aeEnd = adjEdgesEnd(n1Id);
aeItr != aeEnd; ++aeItr) { aeItr != aeEnd; ++aeItr) {
if ((getEdgeNode1(*aeItr) == n2Itr) || if ((getEdgeNode1(*aeItr) == n2Id) ||
(getEdgeNode2(*aeItr) == n2Itr)) { (getEdgeNode2(*aeItr) == n2Id)) {
return *aeItr; return *aeItr;
} }
} }
return edges.end(); return invalidEdgeId();
} }
/// \brief Remove a node from the graph. /// \brief Remove a node from the graph.
/// @param nItr Node iterator. /// @param nItr Node id.
void removeNode(NodeItr nItr) { void removeNode(NodeId nId) {
NodeEntry &n = getNode(nItr); NodeEntry &n = getNode(nId);
for (AdjEdgeItr itr = n.edgesBegin(), end = n.edgesEnd(); itr != end;) { for (AdjEdgeItr itr = n.edgesBegin(), end = n.edgesEnd(); itr != end; ++itr) {
EdgeItr eItr = *itr; EdgeId eId = *itr;
++itr; removeEdge(eId);
removeEdge(eItr);
} }
nodes.erase(nItr); freeNodes.push_back(nId);
--numNodes;
} }
/// \brief Remove an edge from the graph. /// \brief Remove an edge from the graph.
/// @param eItr Edge iterator. /// @param eItr Edge iterator.
void removeEdge(EdgeItr eItr) { void removeEdge(EdgeId eId) {
EdgeEntry &e = getEdge(eItr); EdgeEntry &e = getEdge(eId);
NodeEntry &n1 = getNode(e.getNode1()); NodeEntry &n1 = getNode(e.getNode1());
NodeEntry &n2 = getNode(e.getNode2()); NodeEntry &n2 = getNode(e.getNode2());
n1.removeEdge(e.getNode1AEItr()); n1.removeEdge(e.getNode1AEItr());
n2.removeEdge(e.getNode2AEItr()); n2.removeEdge(e.getNode2AEItr());
edges.erase(eItr); freeEdges.push_back(eId);
--numEdges;
} }
/// \brief Remove all nodes and edges from the graph. /// \brief Remove all nodes and edges from the graph.
void clear() { void clear() {
nodes.clear(); nodes.clear();
freeNodes.clear();
edges.clear(); edges.clear();
numNodes = numEdges = 0; freeEdges.clear();
} }
/// \brief Dump a graph to an output stream. /// \brief Dump a graph to an output stream.
@ -362,7 +397,7 @@ namespace PBQP {
for (NodeItr nodeItr = nodesBegin(), nodeEnd = nodesEnd(); for (NodeItr nodeItr = nodesBegin(), nodeEnd = nodesEnd();
nodeItr != nodeEnd; ++nodeItr) { nodeItr != nodeEnd; ++nodeItr) {
const Vector& v = getNodeCosts(nodeItr); const Vector& v = getNodeCosts(*nodeItr);
os << "\n" << v.getLength() << "\n"; os << "\n" << v.getLength() << "\n";
assert(v.getLength() != 0 && "Empty vector in graph."); assert(v.getLength() != 0 && "Empty vector in graph.");
os << v[0]; os << v[0];
@ -374,10 +409,10 @@ namespace PBQP {
for (EdgeItr edgeItr = edgesBegin(), edgeEnd = edgesEnd(); for (EdgeItr edgeItr = edgesBegin(), edgeEnd = edgesEnd();
edgeItr != edgeEnd; ++edgeItr) { edgeItr != edgeEnd; ++edgeItr) {
unsigned n1 = std::distance(nodesBegin(), getEdgeNode1(edgeItr)); NodeId n1 = getEdgeNode1(*edgeItr);
unsigned n2 = std::distance(nodesBegin(), getEdgeNode2(edgeItr)); NodeId n2 = getEdgeNode2(*edgeItr);
assert(n1 != n2 && "PBQP graphs shound not have self-edges."); assert(n1 != n2 && "PBQP graphs shound not have self-edges.");
const Matrix& m = getEdgeCosts(edgeItr); const Matrix& m = getEdgeCosts(*edgeItr);
os << "\n" << n1 << " " << n2 << "\n" os << "\n" << n1 << " " << n2 << "\n"
<< m.getRows() << " " << m.getCols() << "\n"; << m.getRows() << " " << m.getCols() << "\n";
assert(m.getRows() != 0 && "No rows in matrix."); assert(m.getRows() != 0 && "No rows in matrix.");
@ -403,7 +438,7 @@ namespace PBQP {
nodeItr != nodeEnd; ++nodeItr) { nodeItr != nodeEnd; ++nodeItr) {
os << " node" << nodeItr << " [ label=\"" os << " node" << nodeItr << " [ label=\""
<< nodeItr << ": " << getNodeCosts(nodeItr) << "\" ]\n"; << nodeItr << ": " << getNodeCosts(*nodeItr) << "\" ]\n";
} }
os << " edge [ len=" << getNumNodes() << " ]\n"; os << " edge [ len=" << getNumNodes() << " ]\n";
@ -411,11 +446,11 @@ namespace PBQP {
for (EdgeItr edgeItr = edgesBegin(), edgeEnd = edgesEnd(); for (EdgeItr edgeItr = edgesBegin(), edgeEnd = edgesEnd();
edgeItr != edgeEnd; ++edgeItr) { edgeItr != edgeEnd; ++edgeItr) {
os << " node" << getEdgeNode1(edgeItr) os << " node" << getEdgeNode1(*edgeItr)
<< " -- node" << getEdgeNode2(edgeItr) << " -- node" << getEdgeNode2(*edgeItr)
<< " [ label=\""; << " [ label=\"";
const Matrix &edgeCosts = getEdgeCosts(edgeItr); const Matrix &edgeCosts = getEdgeCosts(*edgeItr);
for (unsigned i = 0; i < edgeCosts.getRows(); ++i) { for (unsigned i = 0; i < edgeCosts.getRows(); ++i) {
os << edgeCosts.getRowAsVector(i) << "\\n"; os << edgeCosts.getRowAsVector(i) << "\\n";
@ -427,39 +462,16 @@ namespace PBQP {
}; };
class NodeItrComparator { // void Graph::copyFrom(const Graph &other) {
public: // std::map<Graph::ConstNodeItr, Graph::NodeItr,
bool operator()(Graph::NodeItr n1, Graph::NodeItr n2) const { // NodeItrComparator> nodeMap;
return &*n1 < &*n2;
}
bool operator()(Graph::ConstNodeItr n1, Graph::ConstNodeItr n2) const { // for (Graph::ConstNodeItr nItr = other.nodesBegin(),
return &*n1 < &*n2; // nEnd = other.nodesEnd();
} // nItr != nEnd; ++nItr) {
}; // nodeMap[nItr] = addNode(other.getNodeCosts(nItr));
// }
class EdgeItrCompartor { // }
public:
bool operator()(Graph::EdgeItr e1, Graph::EdgeItr e2) const {
return &*e1 < &*e2;
}
bool operator()(Graph::ConstEdgeItr e1, Graph::ConstEdgeItr e2) const {
return &*e1 < &*e2;
}
};
void Graph::copyFrom(const Graph &other) {
std::map<Graph::ConstNodeItr, Graph::NodeItr,
NodeItrComparator> nodeMap;
for (Graph::ConstNodeItr nItr = other.nodesBegin(),
nEnd = other.nodesEnd();
nItr != nEnd; ++nItr) {
nodeMap[nItr] = addNode(other.getNodeCosts(nItr));
}
}
} }

View File

@ -52,7 +52,7 @@ namespace PBQP {
class HeuristicBase { class HeuristicBase {
private: private:
typedef std::list<Graph::NodeItr> OptimalList; typedef std::list<Graph::NodeId> OptimalList;
HeuristicSolverImpl<HImpl> &s; HeuristicSolverImpl<HImpl> &s;
Graph &g; Graph &g;
@ -63,8 +63,8 @@ namespace PBQP {
// Add the given node to the optimal reductions list. Keep an iterator to // Add the given node to the optimal reductions list. Keep an iterator to
// its location for fast removal. // its location for fast removal.
void addToOptimalReductionList(Graph::NodeItr nItr) { void addToOptimalReductionList(Graph::NodeId nId) {
optimalList.insert(optimalList.end(), nItr); optimalList.insert(optimalList.end(), nId);
} }
public: public:
@ -105,8 +105,8 @@ namespace PBQP {
/// criteria. Note however that your criteria for selecting optimal nodes /// criteria. Note however that your criteria for selecting optimal nodes
/// should be <i>at least</i> as strong as this. I.e. Nodes of degree 3 or /// should be <i>at least</i> as strong as this. I.e. Nodes of degree 3 or
/// higher should not be selected under any circumstances. /// higher should not be selected under any circumstances.
bool shouldOptimallyReduce(Graph::NodeItr nItr) { bool shouldOptimallyReduce(Graph::NodeId nId) {
if (g.getNodeDegree(nItr) < 3) if (g.getNodeDegree(nId) < 3)
return true; return true;
// else // else
return false; return false;
@ -118,8 +118,8 @@ namespace PBQP {
/// You probably don't want to over-ride this, except perhaps to record /// You probably don't want to over-ride this, except perhaps to record
/// statistics before calling this implementation. HeuristicBase relies on /// statistics before calling this implementation. HeuristicBase relies on
/// its behaviour. /// its behaviour.
void addToOptimalReduceList(Graph::NodeItr nItr) { void addToOptimalReduceList(Graph::NodeId nId) {
optimalList.push_back(nItr); optimalList.push_back(nId);
} }
/// \brief Initialise the heuristic. /// \brief Initialise the heuristic.
@ -132,10 +132,10 @@ namespace PBQP {
void setup() { void setup() {
for (Graph::NodeItr nItr = g.nodesBegin(), nEnd = g.nodesEnd(); for (Graph::NodeItr nItr = g.nodesBegin(), nEnd = g.nodesEnd();
nItr != nEnd; ++nItr) { nItr != nEnd; ++nItr) {
if (impl().shouldOptimallyReduce(nItr)) { if (impl().shouldOptimallyReduce(*nItr)) {
addToOptimalReduceList(nItr); addToOptimalReduceList(*nItr);
} else { } else {
impl().addToHeuristicReduceList(nItr); impl().addToHeuristicReduceList(*nItr);
} }
} }
} }
@ -150,13 +150,13 @@ namespace PBQP {
if (optimalList.empty()) if (optimalList.empty())
return false; return false;
Graph::NodeItr nItr = optimalList.front(); Graph::NodeId nId = optimalList.front();
optimalList.pop_front(); optimalList.pop_front();
switch (s.getSolverDegree(nItr)) { switch (s.getSolverDegree(nId)) {
case 0: s.applyR0(nItr); break; case 0: s.applyR0(nId); break;
case 1: s.applyR1(nItr); break; case 1: s.applyR1(nId); break;
case 2: s.applyR2(nItr); break; case 2: s.applyR2(nId); break;
default: llvm_unreachable( default: llvm_unreachable(
"Optimal reductions of degree > 2 nodes is invalid."); "Optimal reductions of degree > 2 nodes is invalid.");
} }
@ -185,7 +185,7 @@ namespace PBQP {
/// \brief Add a node to the heuristic reduce list. /// \brief Add a node to the heuristic reduce list.
/// @param nItr Node iterator to add to the heuristic reduce list. /// @param nItr Node iterator to add to the heuristic reduce list.
void addToHeuristicList(Graph::NodeItr nItr) { void addToHeuristicList(Graph::NodeId nId) {
llvm_unreachable("Must be implemented in derived class."); llvm_unreachable("Must be implemented in derived class.");
} }
@ -200,19 +200,19 @@ namespace PBQP {
/// \brief Prepare a change in the costs on the given edge. /// \brief Prepare a change in the costs on the given edge.
/// @param eItr Edge iterator. /// @param eItr Edge iterator.
void preUpdateEdgeCosts(Graph::EdgeItr eItr) { void preUpdateEdgeCosts(Graph::EdgeId eId) {
llvm_unreachable("Must be implemented in derived class."); llvm_unreachable("Must be implemented in derived class.");
} }
/// \brief Handle the change in the costs on the given edge. /// \brief Handle the change in the costs on the given edge.
/// @param eItr Edge iterator. /// @param eItr Edge iterator.
void postUpdateEdgeCostts(Graph::EdgeItr eItr) { void postUpdateEdgeCostts(Graph::EdgeId eId) {
llvm_unreachable("Must be implemented in derived class."); llvm_unreachable("Must be implemented in derived class.");
} }
/// \brief Handle the addition of a new edge into the PBQP graph. /// \brief Handle the addition of a new edge into the PBQP graph.
/// @param eItr Edge iterator for the added edge. /// @param eItr Edge iterator for the added edge.
void handleAddEdge(Graph::EdgeItr eItr) { void handleAddEdge(Graph::EdgeId eId) {
llvm_unreachable("Must be implemented in derived class."); llvm_unreachable("Must be implemented in derived class.");
} }
@ -223,7 +223,7 @@ namespace PBQP {
/// Edges are frequently removed due to the removal of a node. This /// Edges are frequently removed due to the removal of a node. This
/// method allows for the effect to be computed only for the remaining /// method allows for the effect to be computed only for the remaining
/// node in the graph. /// node in the graph.
void handleRemoveEdge(Graph::EdgeItr eItr, Graph::NodeItr nItr) { void handleRemoveEdge(Graph::EdgeId eId, Graph::NodeId nId) {
llvm_unreachable("Must be implemented in derived class."); llvm_unreachable("Must be implemented in derived class.");
} }

View File

@ -40,7 +40,7 @@ namespace PBQP {
typedef typename HImpl::NodeData HeuristicNodeData; typedef typename HImpl::NodeData HeuristicNodeData;
typedef typename HImpl::EdgeData HeuristicEdgeData; typedef typename HImpl::EdgeData HeuristicEdgeData;
typedef std::list<Graph::EdgeItr> SolverEdges; typedef std::list<Graph::EdgeId> SolverEdges;
public: public:
@ -55,9 +55,9 @@ namespace PBQP {
HeuristicNodeData& getHeuristicData() { return hData; } HeuristicNodeData& getHeuristicData() { return hData; }
SolverEdgeItr addSolverEdge(Graph::EdgeItr eItr) { SolverEdgeItr addSolverEdge(Graph::EdgeId eId) {
++solverDegree; ++solverDegree;
return solverEdges.insert(solverEdges.end(), eItr); return solverEdges.insert(solverEdges.end(), eId);
} }
void removeSolverEdge(SolverEdgeItr seItr) { void removeSolverEdge(SolverEdgeItr seItr) {
@ -104,7 +104,7 @@ namespace PBQP {
Graph &g; Graph &g;
HImpl h; HImpl h;
Solution s; Solution s;
std::vector<Graph::NodeItr> stack; std::vector<Graph::NodeId> stack;
typedef std::list<NodeData> NodeDataList; typedef std::list<NodeData> NodeDataList;
NodeDataList nodeDataList; NodeDataList nodeDataList;
@ -127,15 +127,15 @@ namespace PBQP {
/// \brief Get the heuristic data attached to the given node. /// \brief Get the heuristic data attached to the given node.
/// @param nItr Node iterator. /// @param nItr Node iterator.
/// @return The heuristic data attached to the given node. /// @return The heuristic data attached to the given node.
HeuristicNodeData& getHeuristicNodeData(Graph::NodeItr nItr) { HeuristicNodeData& getHeuristicNodeData(Graph::NodeId nId) {
return getSolverNodeData(nItr).getHeuristicData(); return getSolverNodeData(nId).getHeuristicData();
} }
/// \brief Get the heuristic data attached to the given edge. /// \brief Get the heuristic data attached to the given edge.
/// @param eItr Edge iterator. /// @param eItr Edge iterator.
/// @return The heuristic data attached to the given node. /// @return The heuristic data attached to the given node.
HeuristicEdgeData& getHeuristicEdgeData(Graph::EdgeItr eItr) { HeuristicEdgeData& getHeuristicEdgeData(Graph::EdgeId eId) {
return getSolverEdgeData(eItr).getHeuristicData(); return getSolverEdgeData(eId).getHeuristicData();
} }
/// \brief Begin iterator for the set of edges adjacent to the given node in /// \brief Begin iterator for the set of edges adjacent to the given node in
@ -143,8 +143,8 @@ namespace PBQP {
/// @param nItr Node iterator. /// @param nItr Node iterator.
/// @return Begin iterator for the set of edges adjacent to the given node /// @return Begin iterator for the set of edges adjacent to the given node
/// in the solver graph. /// in the solver graph.
SolverEdgeItr solverEdgesBegin(Graph::NodeItr nItr) { SolverEdgeItr solverEdgesBegin(Graph::NodeId nId) {
return getSolverNodeData(nItr).solverEdgesBegin(); return getSolverNodeData(nId).solverEdgesBegin();
} }
/// \brief End iterator for the set of edges adjacent to the given node in /// \brief End iterator for the set of edges adjacent to the given node in
@ -152,8 +152,8 @@ namespace PBQP {
/// @param nItr Node iterator. /// @param nItr Node iterator.
/// @return End iterator for the set of edges adjacent to the given node in /// @return End iterator for the set of edges adjacent to the given node in
/// the solver graph. /// the solver graph.
SolverEdgeItr solverEdgesEnd(Graph::NodeItr nItr) { SolverEdgeItr solverEdgesEnd(Graph::NodeId nId) {
return getSolverNodeData(nItr).solverEdgesEnd(); return getSolverNodeData(nId).solverEdgesEnd();
} }
/// \brief Remove a node from the solver graph. /// \brief Remove a node from the solver graph.
@ -161,10 +161,10 @@ namespace PBQP {
/// ///
/// Does <i>not</i> notify the heuristic of the removal. That should be /// Does <i>not</i> notify the heuristic of the removal. That should be
/// done manually if necessary. /// done manually if necessary.
void removeSolverEdge(Graph::EdgeItr eItr) { void removeSolverEdge(Graph::EdgeId eId) {
EdgeData &eData = getSolverEdgeData(eItr); EdgeData &eData = getSolverEdgeData(eId);
NodeData &n1Data = getSolverNodeData(g.getEdgeNode1(eItr)), NodeData &n1Data = getSolverNodeData(g.getEdgeNode1(eId)),
&n2Data = getSolverNodeData(g.getEdgeNode2(eItr)); &n2Data = getSolverNodeData(g.getEdgeNode2(eId));
n1Data.removeSolverEdge(eData.getN1SolverEdgeItr()); n1Data.removeSolverEdge(eData.getN1SolverEdgeItr());
n2Data.removeSolverEdge(eData.getN2SolverEdgeItr()); n2Data.removeSolverEdge(eData.getN2SolverEdgeItr());
@ -189,30 +189,30 @@ namespace PBQP {
/// \brief Add to the end of the stack. /// \brief Add to the end of the stack.
/// @param nItr Node iterator to add to the reduction stack. /// @param nItr Node iterator to add to the reduction stack.
void pushToStack(Graph::NodeItr nItr) { void pushToStack(Graph::NodeId nId) {
getSolverNodeData(nItr).clearSolverEdges(); getSolverNodeData(nId).clearSolverEdges();
stack.push_back(nItr); stack.push_back(nId);
} }
/// \brief Returns the solver degree of the given node. /// \brief Returns the solver degree of the given node.
/// @param nItr Node iterator for which degree is requested. /// @param nItr Node iterator for which degree is requested.
/// @return Node degree in the <i>solver</i> graph (not the original graph). /// @return Node degree in the <i>solver</i> graph (not the original graph).
unsigned getSolverDegree(Graph::NodeItr nItr) { unsigned getSolverDegree(Graph::NodeId nId) {
return getSolverNodeData(nItr).getSolverDegree(); return getSolverNodeData(nId).getSolverDegree();
} }
/// \brief Set the solution of the given node. /// \brief Set the solution of the given node.
/// @param nItr Node iterator to set solution for. /// @param nItr Node iterator to set solution for.
/// @param selection Selection for node. /// @param selection Selection for node.
void setSolution(const Graph::NodeItr &nItr, unsigned selection) { void setSolution(const Graph::NodeId &nId, unsigned selection) {
s.setSelection(nItr, selection); s.setSelection(nId, selection);
for (Graph::AdjEdgeItr aeItr = g.adjEdgesBegin(nItr), for (Graph::AdjEdgeItr aeItr = g.adjEdgesBegin(nId),
aeEnd = g.adjEdgesEnd(nItr); aeEnd = g.adjEdgesEnd(nId);
aeItr != aeEnd; ++aeItr) { aeItr != aeEnd; ++aeItr) {
Graph::EdgeItr eItr(*aeItr); Graph::EdgeId eId(*aeItr);
Graph::NodeItr anItr(g.getEdgeOtherNode(eItr, nItr)); Graph::NodeId anId(g.getEdgeOtherNode(eId, nId));
getSolverNodeData(anItr).addSolverEdge(eItr); getSolverNodeData(anId).addSolverEdge(eId);
} }
} }
@ -220,12 +220,12 @@ namespace PBQP {
/// @param nItr Node iterator for node to apply R0 to. /// @param nItr Node iterator for node to apply R0 to.
/// ///
/// Node will be automatically pushed to the solver stack. /// Node will be automatically pushed to the solver stack.
void applyR0(Graph::NodeItr nItr) { void applyR0(Graph::NodeId nId) {
assert(getSolverNodeData(nItr).getSolverDegree() == 0 && assert(getSolverNodeData(nId).getSolverDegree() == 0 &&
"R0 applied to node with degree != 0."); "R0 applied to node with degree != 0.");
// Nothing to do. Just push the node onto the reduction stack. // Nothing to do. Just push the node onto the reduction stack.
pushToStack(nItr); pushToStack(nId);
s.recordR0(); s.recordR0();
} }
@ -234,20 +234,20 @@ namespace PBQP {
/// @param xnItr Node iterator for node to apply R1 to. /// @param xnItr Node iterator for node to apply R1 to.
/// ///
/// Node will be automatically pushed to the solver stack. /// Node will be automatically pushed to the solver stack.
void applyR1(Graph::NodeItr xnItr) { void applyR1(Graph::NodeId xnId) {
NodeData &nd = getSolverNodeData(xnItr); NodeData &nd = getSolverNodeData(xnId);
assert(nd.getSolverDegree() == 1 && assert(nd.getSolverDegree() == 1 &&
"R1 applied to node with degree != 1."); "R1 applied to node with degree != 1.");
Graph::EdgeItr eItr = *nd.solverEdgesBegin(); Graph::EdgeId eId = *nd.solverEdgesBegin();
const Matrix &eCosts = g.getEdgeCosts(eItr); const Matrix &eCosts = g.getEdgeCosts(eId);
const Vector &xCosts = g.getNodeCosts(xnItr); const Vector &xCosts = g.getNodeCosts(xnId);
// Duplicate a little to avoid transposing matrices. // Duplicate a little to avoid transposing matrices.
if (xnItr == g.getEdgeNode1(eItr)) { if (xnId == g.getEdgeNode1(eId)) {
Graph::NodeItr ynItr = g.getEdgeNode2(eItr); Graph::NodeId ynId = g.getEdgeNode2(eId);
Vector &yCosts = g.getNodeCosts(ynItr); Vector &yCosts = g.getNodeCosts(ynId);
for (unsigned j = 0; j < yCosts.getLength(); ++j) { for (unsigned j = 0; j < yCosts.getLength(); ++j) {
PBQPNum min = eCosts[0][j] + xCosts[0]; PBQPNum min = eCosts[0][j] + xCosts[0];
for (unsigned i = 1; i < xCosts.getLength(); ++i) { for (unsigned i = 1; i < xCosts.getLength(); ++i) {
@ -257,10 +257,10 @@ namespace PBQP {
} }
yCosts[j] += min; yCosts[j] += min;
} }
h.handleRemoveEdge(eItr, ynItr); h.handleRemoveEdge(eId, ynId);
} else { } else {
Graph::NodeItr ynItr = g.getEdgeNode1(eItr); Graph::NodeId ynId = g.getEdgeNode1(eId);
Vector &yCosts = g.getNodeCosts(ynItr); Vector &yCosts = g.getNodeCosts(ynId);
for (unsigned i = 0; i < yCosts.getLength(); ++i) { for (unsigned i = 0; i < yCosts.getLength(); ++i) {
PBQPNum min = eCosts[i][0] + xCosts[0]; PBQPNum min = eCosts[i][0] + xCosts[0];
for (unsigned j = 1; j < xCosts.getLength(); ++j) { for (unsigned j = 1; j < xCosts.getLength(); ++j) {
@ -270,12 +270,12 @@ namespace PBQP {
} }
yCosts[i] += min; yCosts[i] += min;
} }
h.handleRemoveEdge(eItr, ynItr); h.handleRemoveEdge(eId, ynId);
} }
removeSolverEdge(eItr); removeSolverEdge(eId);
assert(nd.getSolverDegree() == 0 && assert(nd.getSolverDegree() == 0 &&
"Degree 1 with edge removed should be 0."); "Degree 1 with edge removed should be 0.");
pushToStack(xnItr); pushToStack(xnId);
s.recordR1(); s.recordR1();
} }
@ -283,30 +283,30 @@ namespace PBQP {
/// @param xnItr Node iterator for node to apply R2 to. /// @param xnItr Node iterator for node to apply R2 to.
/// ///
/// Node will be automatically pushed to the solver stack. /// Node will be automatically pushed to the solver stack.
void applyR2(Graph::NodeItr xnItr) { void applyR2(Graph::NodeId xnId) {
assert(getSolverNodeData(xnItr).getSolverDegree() == 2 && assert(getSolverNodeData(xnId).getSolverDegree() == 2 &&
"R2 applied to node with degree != 2."); "R2 applied to node with degree != 2.");
NodeData &nd = getSolverNodeData(xnItr); NodeData &nd = getSolverNodeData(xnId);
const Vector &xCosts = g.getNodeCosts(xnItr); const Vector &xCosts = g.getNodeCosts(xnId);
SolverEdgeItr aeItr = nd.solverEdgesBegin(); SolverEdgeItr aeItr = nd.solverEdgesBegin();
Graph::EdgeItr yxeItr = *aeItr, Graph::EdgeId yxeId = *aeItr,
zxeItr = *(++aeItr); zxeId = *(++aeItr);
Graph::NodeItr ynItr = g.getEdgeOtherNode(yxeItr, xnItr), Graph::NodeId ynId = g.getEdgeOtherNode(yxeId, xnId),
znItr = g.getEdgeOtherNode(zxeItr, xnItr); znId = g.getEdgeOtherNode(zxeId, xnId);
bool flipEdge1 = (g.getEdgeNode1(yxeItr) == xnItr), bool flipEdge1 = (g.getEdgeNode1(yxeId) == xnId),
flipEdge2 = (g.getEdgeNode1(zxeItr) == xnItr); flipEdge2 = (g.getEdgeNode1(zxeId) == xnId);
const Matrix *yxeCosts = flipEdge1 ? const Matrix *yxeCosts = flipEdge1 ?
new Matrix(g.getEdgeCosts(yxeItr).transpose()) : new Matrix(g.getEdgeCosts(yxeId).transpose()) :
&g.getEdgeCosts(yxeItr); &g.getEdgeCosts(yxeId);
const Matrix *zxeCosts = flipEdge2 ? const Matrix *zxeCosts = flipEdge2 ?
new Matrix(g.getEdgeCosts(zxeItr).transpose()) : new Matrix(g.getEdgeCosts(zxeId).transpose()) :
&g.getEdgeCosts(zxeItr); &g.getEdgeCosts(zxeId);
unsigned xLen = xCosts.getLength(), unsigned xLen = xCosts.getLength(),
yLen = yxeCosts->getRows(), yLen = yxeCosts->getRows(),
@ -333,27 +333,27 @@ namespace PBQP {
if (flipEdge2) if (flipEdge2)
delete zxeCosts; delete zxeCosts;
Graph::EdgeItr yzeItr = g.findEdge(ynItr, znItr); Graph::EdgeId yzeId = g.findEdge(ynId, znId);
bool addedEdge = false; bool addedEdge = false;
if (yzeItr == g.edgesEnd()) { if (yzeId == g.invalidEdgeId()) {
yzeItr = g.addEdge(ynItr, znItr, delta); yzeId = g.addEdge(ynId, znId, delta);
addedEdge = true; addedEdge = true;
} else { } else {
Matrix &yzeCosts = g.getEdgeCosts(yzeItr); Matrix &yzeCosts = g.getEdgeCosts(yzeId);
h.preUpdateEdgeCosts(yzeItr); h.preUpdateEdgeCosts(yzeId);
if (ynItr == g.getEdgeNode1(yzeItr)) { if (ynId == g.getEdgeNode1(yzeId)) {
yzeCosts += delta; yzeCosts += delta;
} else { } else {
yzeCosts += delta.transpose(); yzeCosts += delta.transpose();
} }
} }
bool nullCostEdge = tryNormaliseEdgeMatrix(yzeItr); bool nullCostEdge = tryNormaliseEdgeMatrix(yzeId);
if (!addedEdge) { if (!addedEdge) {
// If we modified the edge costs let the heuristic know. // If we modified the edge costs let the heuristic know.
h.postUpdateEdgeCosts(yzeItr); h.postUpdateEdgeCosts(yzeId);
} }
if (nullCostEdge) { if (nullCostEdge) {
@ -361,26 +361,26 @@ namespace PBQP {
if (!addedEdge) { if (!addedEdge) {
// We didn't just add it, so we need to notify the heuristic // We didn't just add it, so we need to notify the heuristic
// and remove it from the solver. // and remove it from the solver.
h.handleRemoveEdge(yzeItr, ynItr); h.handleRemoveEdge(yzeId, ynId);
h.handleRemoveEdge(yzeItr, znItr); h.handleRemoveEdge(yzeId, znId);
removeSolverEdge(yzeItr); removeSolverEdge(yzeId);
} }
g.removeEdge(yzeItr); g.removeEdge(yzeId);
} else if (addedEdge) { } else if (addedEdge) {
// If the edge was added, and non-null, finish setting it up, add it to // If the edge was added, and non-null, finish setting it up, add it to
// the solver & notify heuristic. // the solver & notify heuristic.
edgeDataList.push_back(EdgeData()); edgeDataList.push_back(EdgeData());
g.setEdgeData(yzeItr, &edgeDataList.back()); g.setEdgeData(yzeId, &edgeDataList.back());
addSolverEdge(yzeItr); addSolverEdge(yzeId);
h.handleAddEdge(yzeItr); h.handleAddEdge(yzeId);
} }
h.handleRemoveEdge(yxeItr, ynItr); h.handleRemoveEdge(yxeId, ynId);
removeSolverEdge(yxeItr); removeSolverEdge(yxeId);
h.handleRemoveEdge(zxeItr, znItr); h.handleRemoveEdge(zxeId, znId);
removeSolverEdge(zxeItr); removeSolverEdge(zxeId);
pushToStack(xnItr); pushToStack(xnId);
s.recordR2(); s.recordR2();
} }
@ -391,21 +391,21 @@ namespace PBQP {
private: private:
NodeData& getSolverNodeData(Graph::NodeItr nItr) { NodeData& getSolverNodeData(Graph::NodeId nId) {
return *static_cast<NodeData*>(g.getNodeData(nItr)); return *static_cast<NodeData*>(g.getNodeData(nId));
} }
EdgeData& getSolverEdgeData(Graph::EdgeItr eItr) { EdgeData& getSolverEdgeData(Graph::EdgeId eId) {
return *static_cast<EdgeData*>(g.getEdgeData(eItr)); return *static_cast<EdgeData*>(g.getEdgeData(eId));
} }
void addSolverEdge(Graph::EdgeItr eItr) { void addSolverEdge(Graph::EdgeId eId) {
EdgeData &eData = getSolverEdgeData(eItr); EdgeData &eData = getSolverEdgeData(eId);
NodeData &n1Data = getSolverNodeData(g.getEdgeNode1(eItr)), NodeData &n1Data = getSolverNodeData(g.getEdgeNode1(eId)),
&n2Data = getSolverNodeData(g.getEdgeNode2(eItr)); &n2Data = getSolverNodeData(g.getEdgeNode2(eId));
eData.setN1SolverEdgeItr(n1Data.addSolverEdge(eItr)); eData.setN1SolverEdgeItr(n1Data.addSolverEdge(eId));
eData.setN2SolverEdgeItr(n2Data.addSolverEdge(eItr)); eData.setN2SolverEdgeItr(n2Data.addSolverEdge(eId));
} }
void setup() { void setup() {
@ -417,15 +417,15 @@ namespace PBQP {
for (Graph::NodeItr nItr = g.nodesBegin(), nEnd = g.nodesEnd(); for (Graph::NodeItr nItr = g.nodesBegin(), nEnd = g.nodesEnd();
nItr != nEnd; ++nItr) { nItr != nEnd; ++nItr) {
nodeDataList.push_back(NodeData()); nodeDataList.push_back(NodeData());
g.setNodeData(nItr, &nodeDataList.back()); g.setNodeData(*nItr, &nodeDataList.back());
} }
// Create edge data objects. // Create edge data objects.
for (Graph::EdgeItr eItr = g.edgesBegin(), eEnd = g.edgesEnd(); for (Graph::EdgeItr eItr = g.edgesBegin(), eEnd = g.edgesEnd();
eItr != eEnd; ++eItr) { eItr != eEnd; ++eItr) {
edgeDataList.push_back(EdgeData()); edgeDataList.push_back(EdgeData());
g.setEdgeData(eItr, &edgeDataList.back()); g.setEdgeData(*eItr, &edgeDataList.back());
addSolverEdge(eItr); addSolverEdge(*eItr);
} }
} }
@ -441,28 +441,30 @@ namespace PBQP {
for (Graph::NodeItr nItr = g.nodesBegin(), nEnd = g.nodesEnd(); for (Graph::NodeItr nItr = g.nodesBegin(), nEnd = g.nodesEnd();
nItr != nEnd; ++nItr) { nItr != nEnd; ++nItr) {
if (g.getNodeCosts(nItr).getLength() == 1) { Graph::NodeId nId = *nItr;
std::vector<Graph::EdgeItr> edgesToRemove; if (g.getNodeCosts(nId).getLength() == 1) {
for (Graph::AdjEdgeItr aeItr = g.adjEdgesBegin(nItr), std::vector<Graph::EdgeId> edgesToRemove;
aeEnd = g.adjEdgesEnd(nItr);
for (Graph::AdjEdgeItr aeItr = g.adjEdgesBegin(nId),
aeEnd = g.adjEdgesEnd(nId);
aeItr != aeEnd; ++aeItr) { aeItr != aeEnd; ++aeItr) {
Graph::EdgeItr eItr = *aeItr; Graph::EdgeId eId = *aeItr;
if (g.getEdgeNode1(eItr) == nItr) { if (g.getEdgeNode1(eId) == nId) {
Graph::NodeItr otherNodeItr = g.getEdgeNode2(eItr); Graph::NodeId otherNodeId = g.getEdgeNode2(eId);
g.getNodeCosts(otherNodeItr) += g.getNodeCosts(otherNodeId) +=
g.getEdgeCosts(eItr).getRowAsVector(0); g.getEdgeCosts(eId).getRowAsVector(0);
} }
else { else {
Graph::NodeItr otherNodeItr = g.getEdgeNode1(eItr); Graph::NodeId otherNodeId = g.getEdgeNode1(eId);
g.getNodeCosts(otherNodeItr) += g.getNodeCosts(otherNodeId) +=
g.getEdgeCosts(eItr).getColAsVector(0); g.getEdgeCosts(eId).getColAsVector(0);
} }
edgesToRemove.push_back(eItr); edgesToRemove.push_back(eId);
} }
if (!edgesToRemove.empty()) if (!edgesToRemove.empty())
@ -477,12 +479,12 @@ namespace PBQP {
} }
void eliminateIndependentEdges() { void eliminateIndependentEdges() {
std::vector<Graph::EdgeItr> edgesToProcess; std::vector<Graph::EdgeId> edgesToProcess;
unsigned numEliminated = 0; unsigned numEliminated = 0;
for (Graph::EdgeItr eItr = g.edgesBegin(), eEnd = g.edgesEnd(); for (Graph::EdgeItr eItr = g.edgesBegin(), eEnd = g.edgesEnd();
eItr != eEnd; ++eItr) { eItr != eEnd; ++eItr) {
edgesToProcess.push_back(eItr); edgesToProcess.push_back(*eItr);
} }
while (!edgesToProcess.empty()) { while (!edgesToProcess.empty()) {
@ -492,21 +494,21 @@ namespace PBQP {
} }
} }
bool tryToEliminateEdge(Graph::EdgeItr eItr) { bool tryToEliminateEdge(Graph::EdgeId eId) {
if (tryNormaliseEdgeMatrix(eItr)) { if (tryNormaliseEdgeMatrix(eId)) {
g.removeEdge(eItr); g.removeEdge(eId);
return true; return true;
} }
return false; return false;
} }
bool tryNormaliseEdgeMatrix(Graph::EdgeItr &eItr) { bool tryNormaliseEdgeMatrix(Graph::EdgeId &eId) {
const PBQPNum infinity = std::numeric_limits<PBQPNum>::infinity(); const PBQPNum infinity = std::numeric_limits<PBQPNum>::infinity();
Matrix &edgeCosts = g.getEdgeCosts(eItr); Matrix &edgeCosts = g.getEdgeCosts(eId);
Vector &uCosts = g.getNodeCosts(g.getEdgeNode1(eItr)), Vector &uCosts = g.getNodeCosts(g.getEdgeNode1(eId)),
&vCosts = g.getNodeCosts(g.getEdgeNode2(eItr)); &vCosts = g.getNodeCosts(g.getEdgeNode2(eId));
for (unsigned r = 0; r < edgeCosts.getRows(); ++r) { for (unsigned r = 0; r < edgeCosts.getRows(); ++r) {
PBQPNum rowMin = infinity; PBQPNum rowMin = infinity;
@ -554,34 +556,34 @@ namespace PBQP {
} }
} }
void computeSolution(Graph::NodeItr nItr) { void computeSolution(Graph::NodeId nId) {
NodeData &nodeData = getSolverNodeData(nItr); NodeData &nodeData = getSolverNodeData(nId);
Vector v(g.getNodeCosts(nItr)); Vector v(g.getNodeCosts(nId));
// Solve based on existing solved edges. // Solve based on existing solved edges.
for (SolverEdgeItr solvedEdgeItr = nodeData.solverEdgesBegin(), for (SolverEdgeItr solvedEdgeItr = nodeData.solverEdgesBegin(),
solvedEdgeEnd = nodeData.solverEdgesEnd(); solvedEdgeEnd = nodeData.solverEdgesEnd();
solvedEdgeItr != solvedEdgeEnd; ++solvedEdgeItr) { solvedEdgeItr != solvedEdgeEnd; ++solvedEdgeItr) {
Graph::EdgeItr eItr(*solvedEdgeItr); Graph::EdgeId eId(*solvedEdgeItr);
Matrix &edgeCosts = g.getEdgeCosts(eItr); Matrix &edgeCosts = g.getEdgeCosts(eId);
if (nItr == g.getEdgeNode1(eItr)) { if (nId == g.getEdgeNode1(eId)) {
Graph::NodeItr adjNode(g.getEdgeNode2(eItr)); Graph::NodeId adjNode(g.getEdgeNode2(eId));
unsigned adjSolution = s.getSelection(adjNode); unsigned adjSolution = s.getSelection(adjNode);
v += edgeCosts.getColAsVector(adjSolution); v += edgeCosts.getColAsVector(adjSolution);
} }
else { else {
Graph::NodeItr adjNode(g.getEdgeNode1(eItr)); Graph::NodeId adjNode(g.getEdgeNode1(eId));
unsigned adjSolution = s.getSelection(adjNode); unsigned adjSolution = s.getSelection(adjNode);
v += edgeCosts.getRowAsVector(adjSolution); v += edgeCosts.getRowAsVector(adjSolution);
} }
} }
setSolution(nItr, v.minIndex()); setSolution(nId, v.minIndex());
} }
void cleanup() { void cleanup() {

View File

@ -47,8 +47,8 @@ namespace PBQP {
class LinkDegreeComparator { class LinkDegreeComparator {
public: public:
LinkDegreeComparator(HeuristicSolverImpl<Briggs> &s) : s(&s) {} LinkDegreeComparator(HeuristicSolverImpl<Briggs> &s) : s(&s) {}
bool operator()(Graph::NodeItr n1Itr, Graph::NodeItr n2Itr) const { bool operator()(Graph::NodeId n1Id, Graph::NodeId n2Id) const {
if (s->getSolverDegree(n1Itr) > s->getSolverDegree(n2Itr)) if (s->getSolverDegree(n1Id) > s->getSolverDegree(n2Id))
return true; return true;
return false; return false;
} }
@ -60,12 +60,12 @@ namespace PBQP {
public: public:
SpillCostComparator(HeuristicSolverImpl<Briggs> &s) SpillCostComparator(HeuristicSolverImpl<Briggs> &s)
: s(&s), g(&s.getGraph()) {} : s(&s), g(&s.getGraph()) {}
bool operator()(Graph::NodeItr n1Itr, Graph::NodeItr n2Itr) const { bool operator()(Graph::NodeId n1Id, Graph::NodeId n2Id) const {
const PBQP::Vector &cv1 = g->getNodeCosts(n1Itr); const PBQP::Vector &cv1 = g->getNodeCosts(n1Id);
const PBQP::Vector &cv2 = g->getNodeCosts(n2Itr); const PBQP::Vector &cv2 = g->getNodeCosts(n2Id);
PBQPNum cost1 = cv1[0] / s->getSolverDegree(n1Itr); PBQPNum cost1 = cv1[0] / s->getSolverDegree(n1Id);
PBQPNum cost2 = cv2[0] / s->getSolverDegree(n2Itr); PBQPNum cost2 = cv2[0] / s->getSolverDegree(n2Id);
if (cost1 < cost2) if (cost1 < cost2)
return true; return true;
@ -77,10 +77,10 @@ namespace PBQP {
Graph *g; Graph *g;
}; };
typedef std::list<Graph::NodeItr> RNAllocableList; typedef std::list<Graph::NodeId> RNAllocableList;
typedef RNAllocableList::iterator RNAllocableListItr; typedef RNAllocableList::iterator RNAllocableListItr;
typedef std::list<Graph::NodeItr> RNUnallocableList; typedef std::list<Graph::NodeId> RNUnallocableList;
typedef RNUnallocableList::iterator RNUnallocableListItr; typedef RNUnallocableList::iterator RNUnallocableListItr;
public: public:
@ -123,8 +123,8 @@ namespace PBQP {
/// infinite are checked for allocability first. Allocable nodes may be /// infinite are checked for allocability first. Allocable nodes may be
/// optimally reduced, but nodes whose allocability cannot be proven are /// optimally reduced, but nodes whose allocability cannot be proven are
/// selected for heuristic reduction instead. /// selected for heuristic reduction instead.
bool shouldOptimallyReduce(Graph::NodeItr nItr) { bool shouldOptimallyReduce(Graph::NodeId nId) {
if (getSolver().getSolverDegree(nItr) < 3) { if (getSolver().getSolverDegree(nId) < 3) {
return true; return true;
} }
// else // else
@ -133,14 +133,14 @@ namespace PBQP {
/// \brief Add a node to the heuristic reduce list. /// \brief Add a node to the heuristic reduce list.
/// @param nItr Node iterator to add to the heuristic reduce list. /// @param nItr Node iterator to add to the heuristic reduce list.
void addToHeuristicReduceList(Graph::NodeItr nItr) { void addToHeuristicReduceList(Graph::NodeId nId) {
NodeData &nd = getHeuristicNodeData(nItr); NodeData &nd = getHeuristicNodeData(nId);
initializeNode(nItr); initializeNode(nId);
nd.isHeuristic = true; nd.isHeuristic = true;
if (nd.isAllocable) { if (nd.isAllocable) {
nd.rnaItr = rnAllocableList.insert(rnAllocableList.end(), nItr); nd.rnaItr = rnAllocableList.insert(rnAllocableList.end(), nId);
} else { } else {
nd.rnuItr = rnUnallocableList.insert(rnUnallocableList.end(), nItr); nd.rnuItr = rnUnallocableList.insert(rnUnallocableList.end(), nId);
} }
} }
@ -159,19 +159,19 @@ namespace PBQP {
RNAllocableListItr rnaItr = RNAllocableListItr rnaItr =
min_element(rnAllocableList.begin(), rnAllocableList.end(), min_element(rnAllocableList.begin(), rnAllocableList.end(),
LinkDegreeComparator(getSolver())); LinkDegreeComparator(getSolver()));
Graph::NodeItr nItr = *rnaItr; Graph::NodeId nId = *rnaItr;
rnAllocableList.erase(rnaItr); rnAllocableList.erase(rnaItr);
handleRemoveNode(nItr); handleRemoveNode(nId);
getSolver().pushToStack(nItr); getSolver().pushToStack(nId);
return true; return true;
} else if (!rnUnallocableList.empty()) { } else if (!rnUnallocableList.empty()) {
RNUnallocableListItr rnuItr = RNUnallocableListItr rnuItr =
min_element(rnUnallocableList.begin(), rnUnallocableList.end(), min_element(rnUnallocableList.begin(), rnUnallocableList.end(),
SpillCostComparator(getSolver())); SpillCostComparator(getSolver()));
Graph::NodeItr nItr = *rnuItr; Graph::NodeId nId = *rnuItr;
rnUnallocableList.erase(rnuItr); rnUnallocableList.erase(rnuItr);
handleRemoveNode(nItr); handleRemoveNode(nId);
getSolver().pushToStack(nItr); getSolver().pushToStack(nId);
return true; return true;
} }
// else // else
@ -180,28 +180,28 @@ namespace PBQP {
/// \brief Prepare a change in the costs on the given edge. /// \brief Prepare a change in the costs on the given edge.
/// @param eItr Edge iterator. /// @param eItr Edge iterator.
void preUpdateEdgeCosts(Graph::EdgeItr eItr) { void preUpdateEdgeCosts(Graph::EdgeId eId) {
Graph &g = getGraph(); Graph &g = getGraph();
Graph::NodeItr n1Itr = g.getEdgeNode1(eItr), Graph::NodeId n1Id = g.getEdgeNode1(eId),
n2Itr = g.getEdgeNode2(eItr); n2Id = g.getEdgeNode2(eId);
NodeData &n1 = getHeuristicNodeData(n1Itr), NodeData &n1 = getHeuristicNodeData(n1Id),
&n2 = getHeuristicNodeData(n2Itr); &n2 = getHeuristicNodeData(n2Id);
if (n1.isHeuristic) if (n1.isHeuristic)
subtractEdgeContributions(eItr, getGraph().getEdgeNode1(eItr)); subtractEdgeContributions(eId, getGraph().getEdgeNode1(eId));
if (n2.isHeuristic) if (n2.isHeuristic)
subtractEdgeContributions(eItr, getGraph().getEdgeNode2(eItr)); subtractEdgeContributions(eId, getGraph().getEdgeNode2(eId));
EdgeData &ed = getHeuristicEdgeData(eItr); EdgeData &ed = getHeuristicEdgeData(eId);
ed.isUpToDate = false; ed.isUpToDate = false;
} }
/// \brief Handle the change in the costs on the given edge. /// \brief Handle the change in the costs on the given edge.
/// @param eItr Edge iterator. /// @param eItr Edge iterator.
void postUpdateEdgeCosts(Graph::EdgeItr eItr) { void postUpdateEdgeCosts(Graph::EdgeId eId) {
// This is effectively the same as adding a new edge now, since // This is effectively the same as adding a new edge now, since
// we've factored out the costs of the old one. // we've factored out the costs of the old one.
handleAddEdge(eItr); handleAddEdge(eId);
} }
/// \brief Handle the addition of a new edge into the PBQP graph. /// \brief Handle the addition of a new edge into the PBQP graph.
@ -210,12 +210,12 @@ namespace PBQP {
/// Updates allocability of any nodes connected by this edge which are /// Updates allocability of any nodes connected by this edge which are
/// being managed by the heuristic. If allocability changes they are /// being managed by the heuristic. If allocability changes they are
/// moved to the appropriate list. /// moved to the appropriate list.
void handleAddEdge(Graph::EdgeItr eItr) { void handleAddEdge(Graph::EdgeId eId) {
Graph &g = getGraph(); Graph &g = getGraph();
Graph::NodeItr n1Itr = g.getEdgeNode1(eItr), Graph::NodeId n1Id = g.getEdgeNode1(eId),
n2Itr = g.getEdgeNode2(eItr); n2Id = g.getEdgeNode2(eId);
NodeData &n1 = getHeuristicNodeData(n1Itr), NodeData &n1 = getHeuristicNodeData(n1Id),
&n2 = getHeuristicNodeData(n2Itr); &n2 = getHeuristicNodeData(n2Id);
// If neither node is managed by the heuristic there's nothing to be // If neither node is managed by the heuristic there's nothing to be
// done. // done.
@ -223,29 +223,29 @@ namespace PBQP {
return; return;
// Ok - we need to update at least one node. // Ok - we need to update at least one node.
computeEdgeContributions(eItr); computeEdgeContributions(eId);
// Update node 1 if it's managed by the heuristic. // Update node 1 if it's managed by the heuristic.
if (n1.isHeuristic) { if (n1.isHeuristic) {
bool n1WasAllocable = n1.isAllocable; bool n1WasAllocable = n1.isAllocable;
addEdgeContributions(eItr, n1Itr); addEdgeContributions(eId, n1Id);
updateAllocability(n1Itr); updateAllocability(n1Id);
if (n1WasAllocable && !n1.isAllocable) { if (n1WasAllocable && !n1.isAllocable) {
rnAllocableList.erase(n1.rnaItr); rnAllocableList.erase(n1.rnaItr);
n1.rnuItr = n1.rnuItr =
rnUnallocableList.insert(rnUnallocableList.end(), n1Itr); rnUnallocableList.insert(rnUnallocableList.end(), n1Id);
} }
} }
// Likewise for node 2. // Likewise for node 2.
if (n2.isHeuristic) { if (n2.isHeuristic) {
bool n2WasAllocable = n2.isAllocable; bool n2WasAllocable = n2.isAllocable;
addEdgeContributions(eItr, n2Itr); addEdgeContributions(eId, n2Id);
updateAllocability(n2Itr); updateAllocability(n2Id);
if (n2WasAllocable && !n2.isAllocable) { if (n2WasAllocable && !n2.isAllocable) {
rnAllocableList.erase(n2.rnaItr); rnAllocableList.erase(n2.rnaItr);
n2.rnuItr = n2.rnuItr =
rnUnallocableList.insert(rnUnallocableList.end(), n2Itr); rnUnallocableList.insert(rnUnallocableList.end(), n2Id);
} }
} }
} }
@ -256,27 +256,27 @@ namespace PBQP {
/// ///
/// Updates allocability of the given node and, if appropriate, moves the /// Updates allocability of the given node and, if appropriate, moves the
/// node to a new list. /// node to a new list.
void handleRemoveEdge(Graph::EdgeItr eItr, Graph::NodeItr nItr) { void handleRemoveEdge(Graph::EdgeId eId, Graph::NodeId nId) {
NodeData &nd = getHeuristicNodeData(nItr); NodeData &nd =getHeuristicNodeData(nId);
// If the node is not managed by the heuristic there's nothing to be // If the node is not managed by the heuristic there's nothing to be
// done. // done.
if (!nd.isHeuristic) if (!nd.isHeuristic)
return; return;
EdgeData &ed = getHeuristicEdgeData(eItr); EdgeData &ed = getHeuristicEdgeData(eId);
(void)ed; (void)ed;
assert(ed.isUpToDate && "Edge data is not up to date."); assert(ed.isUpToDate && "Edge data is not up to date.");
// Update node. // Update node.
bool ndWasAllocable = nd.isAllocable; bool ndWasAllocable = nd.isAllocable;
subtractEdgeContributions(eItr, nItr); subtractEdgeContributions(eId, nId);
updateAllocability(nItr); updateAllocability(nId);
// If the node has gone optimal... // If the node has gone optimal...
if (shouldOptimallyReduce(nItr)) { if (shouldOptimallyReduce(nId)) {
nd.isHeuristic = false; nd.isHeuristic = false;
addToOptimalReduceList(nItr); addToOptimalReduceList(nId);
if (ndWasAllocable) { if (ndWasAllocable) {
rnAllocableList.erase(nd.rnaItr); rnAllocableList.erase(nd.rnaItr);
} else { } else {
@ -287,30 +287,30 @@ namespace PBQP {
// from "unallocable" to "allocable". // from "unallocable" to "allocable".
if (!ndWasAllocable && nd.isAllocable) { if (!ndWasAllocable && nd.isAllocable) {
rnUnallocableList.erase(nd.rnuItr); rnUnallocableList.erase(nd.rnuItr);
nd.rnaItr = rnAllocableList.insert(rnAllocableList.end(), nItr); nd.rnaItr = rnAllocableList.insert(rnAllocableList.end(), nId);
} }
} }
} }
private: private:
NodeData& getHeuristicNodeData(Graph::NodeItr nItr) { NodeData& getHeuristicNodeData(Graph::NodeId nId) {
return getSolver().getHeuristicNodeData(nItr); return getSolver().getHeuristicNodeData(nId);
} }
EdgeData& getHeuristicEdgeData(Graph::EdgeItr eItr) { EdgeData& getHeuristicEdgeData(Graph::EdgeId eId) {
return getSolver().getHeuristicEdgeData(eItr); return getSolver().getHeuristicEdgeData(eId);
} }
// Work out what this edge will contribute to the allocability of the // Work out what this edge will contribute to the allocability of the
// nodes connected to it. // nodes connected to it.
void computeEdgeContributions(Graph::EdgeItr eItr) { void computeEdgeContributions(Graph::EdgeId eId) {
EdgeData &ed = getHeuristicEdgeData(eItr); EdgeData &ed = getHeuristicEdgeData(eId);
if (ed.isUpToDate) if (ed.isUpToDate)
return; // Edge data is already up to date. return; // Edge data is already up to date.
Matrix &eCosts = getGraph().getEdgeCosts(eItr); Matrix &eCosts = getGraph().getEdgeCosts(eId);
unsigned numRegs = eCosts.getRows() - 1, unsigned numRegs = eCosts.getRows() - 1,
numReverseRegs = eCosts.getCols() - 1; numReverseRegs = eCosts.getCols() - 1;
@ -352,15 +352,15 @@ namespace PBQP {
// numDenied and safe members. No action is taken other than to update // numDenied and safe members. No action is taken other than to update
// these member values. Once updated these numbers can be used by clients // these member values. Once updated these numbers can be used by clients
// to update the node's allocability. // to update the node's allocability.
void addEdgeContributions(Graph::EdgeItr eItr, Graph::NodeItr nItr) { void addEdgeContributions(Graph::EdgeId eId, Graph::NodeId nId) {
EdgeData &ed = getHeuristicEdgeData(eItr); EdgeData &ed = getHeuristicEdgeData(eId);
assert(ed.isUpToDate && "Using out-of-date edge numbers."); assert(ed.isUpToDate && "Using out-of-date edge numbers.");
NodeData &nd = getHeuristicNodeData(nItr); NodeData &nd = getHeuristicNodeData(nId);
unsigned numRegs = getGraph().getNodeCosts(nItr).getLength() - 1; unsigned numRegs = getGraph().getNodeCosts(nId).getLength() - 1;
bool nIsNode1 = nItr == getGraph().getEdgeNode1(eItr); bool nIsNode1 = nId == getGraph().getEdgeNode1(eId);
EdgeData::UnsafeArray &unsafe = EdgeData::UnsafeArray &unsafe =
nIsNode1 ? ed.unsafe : ed.reverseUnsafe; nIsNode1 ? ed.unsafe : ed.reverseUnsafe;
nd.numDenied += nIsNode1 ? ed.worst : ed.reverseWorst; nd.numDenied += nIsNode1 ? ed.worst : ed.reverseWorst;
@ -379,15 +379,15 @@ namespace PBQP {
// numDenied and safe members. No action is taken other than to update // numDenied and safe members. No action is taken other than to update
// these member values. Once updated these numbers can be used by clients // these member values. Once updated these numbers can be used by clients
// to update the node's allocability. // to update the node's allocability.
void subtractEdgeContributions(Graph::EdgeItr eItr, Graph::NodeItr nItr) { void subtractEdgeContributions(Graph::EdgeId eId, Graph::NodeId nId) {
EdgeData &ed = getHeuristicEdgeData(eItr); EdgeData &ed = getHeuristicEdgeData(eId);
assert(ed.isUpToDate && "Using out-of-date edge numbers."); assert(ed.isUpToDate && "Using out-of-date edge numbers.");
NodeData &nd = getHeuristicNodeData(nItr); NodeData &nd = getHeuristicNodeData(nId);
unsigned numRegs = getGraph().getNodeCosts(nItr).getLength() - 1; unsigned numRegs = getGraph().getNodeCosts(nId).getLength() - 1;
bool nIsNode1 = nItr == getGraph().getEdgeNode1(eItr); bool nIsNode1 = nId == getGraph().getEdgeNode1(eId);
EdgeData::UnsafeArray &unsafe = EdgeData::UnsafeArray &unsafe =
nIsNode1 ? ed.unsafe : ed.reverseUnsafe; nIsNode1 ? ed.unsafe : ed.reverseUnsafe;
nd.numDenied -= nIsNode1 ? ed.worst : ed.reverseWorst; nd.numDenied -= nIsNode1 ? ed.worst : ed.reverseWorst;
@ -402,22 +402,22 @@ namespace PBQP {
} }
} }
void updateAllocability(Graph::NodeItr nItr) { void updateAllocability(Graph::NodeId nId) {
NodeData &nd = getHeuristicNodeData(nItr); NodeData &nd = getHeuristicNodeData(nId);
unsigned numRegs = getGraph().getNodeCosts(nItr).getLength() - 1; unsigned numRegs = getGraph().getNodeCosts(nId).getLength() - 1;
nd.isAllocable = nd.numDenied < numRegs || nd.numSafe > 0; nd.isAllocable = nd.numDenied < numRegs || nd.numSafe > 0;
} }
void initializeNode(Graph::NodeItr nItr) { void initializeNode(Graph::NodeId nId) {
NodeData &nd = getHeuristicNodeData(nItr); NodeData &nd = getHeuristicNodeData(nId);
if (nd.isInitialized) if (nd.isInitialized)
return; // Node data is already up to date. return; // Node data is already up to date.
unsigned numRegs = getGraph().getNodeCosts(nItr).getLength() - 1; unsigned numRegs = getGraph().getNodeCosts(nId).getLength() - 1;
nd.numDenied = 0; nd.numDenied = 0;
const Vector& nCosts = getGraph().getNodeCosts(nItr); const Vector& nCosts = getGraph().getNodeCosts(nId);
for (unsigned i = 1; i < nCosts.getLength(); ++i) { for (unsigned i = 1; i < nCosts.getLength(); ++i) {
if (nCosts[i] == std::numeric_limits<PBQPNum>::infinity()) if (nCosts[i] == std::numeric_limits<PBQPNum>::infinity())
++nd.numDenied; ++nd.numDenied;
@ -428,27 +428,27 @@ namespace PBQP {
typedef HeuristicSolverImpl<Briggs>::SolverEdgeItr SolverEdgeItr; typedef HeuristicSolverImpl<Briggs>::SolverEdgeItr SolverEdgeItr;
for (SolverEdgeItr aeItr = getSolver().solverEdgesBegin(nItr), for (SolverEdgeItr aeItr = getSolver().solverEdgesBegin(nId),
aeEnd = getSolver().solverEdgesEnd(nItr); aeEnd = getSolver().solverEdgesEnd(nId);
aeItr != aeEnd; ++aeItr) { aeItr != aeEnd; ++aeItr) {
Graph::EdgeItr eItr = *aeItr; Graph::EdgeId eId = *aeItr;
computeEdgeContributions(eItr); computeEdgeContributions(eId);
addEdgeContributions(eItr, nItr); addEdgeContributions(eId, nId);
} }
updateAllocability(nItr); updateAllocability(nId);
nd.isInitialized = true; nd.isInitialized = true;
} }
void handleRemoveNode(Graph::NodeItr xnItr) { void handleRemoveNode(Graph::NodeId xnId) {
typedef HeuristicSolverImpl<Briggs>::SolverEdgeItr SolverEdgeItr; typedef HeuristicSolverImpl<Briggs>::SolverEdgeItr SolverEdgeItr;
std::vector<Graph::EdgeItr> edgesToRemove; std::vector<Graph::EdgeId> edgesToRemove;
for (SolverEdgeItr aeItr = getSolver().solverEdgesBegin(xnItr), for (SolverEdgeItr aeItr = getSolver().solverEdgesBegin(xnId),
aeEnd = getSolver().solverEdgesEnd(xnItr); aeEnd = getSolver().solverEdgesEnd(xnId);
aeItr != aeEnd; ++aeItr) { aeItr != aeEnd; ++aeItr) {
Graph::NodeItr ynItr = getGraph().getEdgeOtherNode(*aeItr, xnItr); Graph::NodeId ynId = getGraph().getEdgeOtherNode(*aeItr, xnId);
handleRemoveEdge(*aeItr, ynItr); handleRemoveEdge(*aeItr, ynId);
edgesToRemove.push_back(*aeItr); edgesToRemove.push_back(*aeItr);
} }
while (!edgesToRemove.empty()) { while (!edgesToRemove.empty()) {

View File

@ -26,8 +26,7 @@ namespace PBQP {
class Solution { class Solution {
private: private:
typedef std::map<Graph::ConstNodeItr, unsigned, typedef std::map<Graph::NodeId, unsigned> SelectionsMap;
NodeItrComparator> SelectionsMap;
SelectionsMap selections; SelectionsMap selections;
unsigned r0Reductions, r1Reductions, r2Reductions, rNReductions; unsigned r0Reductions, r1Reductions, r2Reductions, rNReductions;
@ -73,15 +72,15 @@ namespace PBQP {
/// \brief Set the selection for a given node. /// \brief Set the selection for a given node.
/// @param nItr Node iterator. /// @param nItr Node iterator.
/// @param selection Selection for nItr. /// @param selection Selection for nItr.
void setSelection(Graph::NodeItr nItr, unsigned selection) { void setSelection(Graph::NodeId nodeId, unsigned selection) {
selections[nItr] = selection; selections[nodeId] = selection;
} }
/// \brief Get a node's selection. /// \brief Get a node's selection.
/// @param nItr Node iterator. /// @param nItr Node iterator.
/// @return The selection for nItr; /// @return The selection for nItr;
unsigned getSelection(Graph::ConstNodeItr nItr) const { unsigned getSelection(Graph::NodeId nodeId) const {
SelectionsMap::const_iterator sItr = selections.find(nItr); SelectionsMap::const_iterator sItr = selections.find(nodeId);
assert(sItr != selections.end() && "No selection for node."); assert(sItr != selections.end() && "No selection for node.");
return sItr->second; return sItr->second;
} }

View File

@ -52,22 +52,22 @@ namespace llvm {
/// PBQPBuilder you are unlikely to need this: Nodes and options for all /// PBQPBuilder you are unlikely to need this: Nodes and options for all
/// vregs will already have been set up for you by the base class. /// vregs will already have been set up for you by the base class.
template <typename AllowedRegsItr> template <typename AllowedRegsItr>
void recordVReg(unsigned vreg, PBQP::Graph::NodeItr node, void recordVReg(unsigned vreg, PBQP::Graph::NodeId nodeId,
AllowedRegsItr arBegin, AllowedRegsItr arEnd) { AllowedRegsItr arBegin, AllowedRegsItr arEnd) {
assert(node2VReg.find(node) == node2VReg.end() && "Re-mapping node."); assert(node2VReg.find(nodeId) == node2VReg.end() && "Re-mapping node.");
assert(vreg2Node.find(vreg) == vreg2Node.end() && "Re-mapping vreg."); assert(vreg2Node.find(vreg) == vreg2Node.end() && "Re-mapping vreg.");
assert(allowedSets[vreg].empty() && "vreg already has pregs."); assert(allowedSets[vreg].empty() && "vreg already has pregs.");
node2VReg[node] = vreg; node2VReg[nodeId] = vreg;
vreg2Node[vreg] = node; vreg2Node[vreg] = nodeId;
std::copy(arBegin, arEnd, std::back_inserter(allowedSets[vreg])); std::copy(arBegin, arEnd, std::back_inserter(allowedSets[vreg]));
} }
/// Get the virtual register corresponding to the given PBQP node. /// Get the virtual register corresponding to the given PBQP node.
unsigned getVRegForNode(PBQP::Graph::ConstNodeItr node) const; unsigned getVRegForNode(PBQP::Graph::NodeId nodeId) const;
/// Get the PBQP node corresponding to the given virtual register. /// Get the PBQP node corresponding to the given virtual register.
PBQP::Graph::NodeItr getNodeForVReg(unsigned vreg) const; PBQP::Graph::NodeId getNodeForVReg(unsigned vreg) const;
/// Returns true if the given PBQP option represents a physical register, /// Returns true if the given PBQP option represents a physical register,
/// false otherwise. /// false otherwise.
@ -92,9 +92,8 @@ namespace llvm {
private: private:
typedef std::map<PBQP::Graph::ConstNodeItr, unsigned, typedef std::map<PBQP::Graph::NodeId, unsigned> Node2VReg;
PBQP::NodeItrComparator> Node2VReg; typedef DenseMap<unsigned, PBQP::Graph::NodeId> VReg2Node;
typedef DenseMap<unsigned, PBQP::Graph::NodeItr> VReg2Node;
typedef DenseMap<unsigned, AllowedSet> AllowedSetMap; typedef DenseMap<unsigned, AllowedSet> AllowedSetMap;
PBQP::Graph graph; PBQP::Graph graph;

View File

@ -158,13 +158,13 @@ char RegAllocPBQP::ID = 0;
} // End anonymous namespace. } // End anonymous namespace.
unsigned PBQPRAProblem::getVRegForNode(PBQP::Graph::ConstNodeItr node) const { unsigned PBQPRAProblem::getVRegForNode(PBQP::Graph::NodeId node) const {
Node2VReg::const_iterator vregItr = node2VReg.find(node); Node2VReg::const_iterator vregItr = node2VReg.find(node);
assert(vregItr != node2VReg.end() && "No vreg for node."); assert(vregItr != node2VReg.end() && "No vreg for node.");
return vregItr->second; return vregItr->second;
} }
PBQP::Graph::NodeItr PBQPRAProblem::getNodeForVReg(unsigned vreg) const { PBQP::Graph::NodeId PBQPRAProblem::getNodeForVReg(unsigned vreg) const {
VReg2Node::const_iterator nodeItr = vreg2Node.find(vreg); VReg2Node::const_iterator nodeItr = vreg2Node.find(vreg);
assert(nodeItr != vreg2Node.end() && "No node for vreg."); assert(nodeItr != vreg2Node.end() && "No node for vreg.");
return nodeItr->second; return nodeItr->second;
@ -247,7 +247,7 @@ PBQPRAProblem *PBQPBuilder::build(MachineFunction *mf, const LiveIntervals *lis,
} }
// Construct the node. // Construct the node.
PBQP::Graph::NodeItr node = PBQP::Graph::NodeId node =
g.addNode(PBQP::Vector(vrAllowed.size() + 1, 0)); g.addNode(PBQP::Vector(vrAllowed.size() + 1, 0));
// Record the mapping and allowed set in the problem. // Record the mapping and allowed set in the problem.
@ -273,7 +273,7 @@ PBQPRAProblem *PBQPBuilder::build(MachineFunction *mf, const LiveIntervals *lis,
assert(!l2.empty() && "Empty interval in vreg set?"); assert(!l2.empty() && "Empty interval in vreg set?");
if (l1.overlaps(l2)) { if (l1.overlaps(l2)) {
PBQP::Graph::EdgeItr edge = PBQP::Graph::EdgeId edge =
g.addEdge(p->getNodeForVReg(vr1), p->getNodeForVReg(vr2), g.addEdge(p->getNodeForVReg(vr1), p->getNodeForVReg(vr2),
PBQP::Matrix(vr1Allowed.size()+1, vr2Allowed.size()+1, 0)); PBQP::Matrix(vr1Allowed.size()+1, vr2Allowed.size()+1, 0));
@ -364,16 +364,16 @@ PBQPRAProblem *PBQPBuilderWithCoalescing::build(MachineFunction *mf,
} }
if (pregOpt < allowed.size()) { if (pregOpt < allowed.size()) {
++pregOpt; // +1 to account for spill option. ++pregOpt; // +1 to account for spill option.
PBQP::Graph::NodeItr node = p->getNodeForVReg(src); PBQP::Graph::NodeId node = p->getNodeForVReg(src);
addPhysRegCoalesce(g.getNodeCosts(node), pregOpt, cBenefit); addPhysRegCoalesce(g.getNodeCosts(node), pregOpt, cBenefit);
} }
} else { } else {
const PBQPRAProblem::AllowedSet *allowed1 = &p->getAllowedSet(dst); const PBQPRAProblem::AllowedSet *allowed1 = &p->getAllowedSet(dst);
const PBQPRAProblem::AllowedSet *allowed2 = &p->getAllowedSet(src); const PBQPRAProblem::AllowedSet *allowed2 = &p->getAllowedSet(src);
PBQP::Graph::NodeItr node1 = p->getNodeForVReg(dst); PBQP::Graph::NodeId node1 = p->getNodeForVReg(dst);
PBQP::Graph::NodeItr node2 = p->getNodeForVReg(src); PBQP::Graph::NodeId node2 = p->getNodeForVReg(src);
PBQP::Graph::EdgeItr edge = g.findEdge(node1, node2); PBQP::Graph::EdgeId edge = g.findEdge(node1, node2);
if (edge == g.edgesEnd()) { if (edge == g.invalidEdgeId()) {
edge = g.addEdge(node1, node2, PBQP::Matrix(allowed1->size() + 1, edge = g.addEdge(node1, node2, PBQP::Matrix(allowed1->size() + 1,
allowed2->size() + 1, allowed2->size() + 1,
0)); 0));
@ -477,11 +477,11 @@ bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAProblem &problem,
const PBQP::Graph &g = problem.getGraph(); const PBQP::Graph &g = problem.getGraph();
// Iterate over the nodes mapping the PBQP solution to a register // Iterate over the nodes mapping the PBQP solution to a register
// assignment. // assignment.
for (PBQP::Graph::ConstNodeItr node = g.nodesBegin(), for (PBQP::Graph::NodeItr nodeItr = g.nodesBegin(),
nodeEnd = g.nodesEnd(); nodeEnd = g.nodesEnd();
node != nodeEnd; ++node) { nodeItr != nodeEnd; ++nodeItr) {
unsigned vreg = problem.getVRegForNode(node); unsigned vreg = problem.getVRegForNode(*nodeItr);
unsigned alloc = solution.getSelection(node); unsigned alloc = solution.getSelection(*nodeItr);
if (problem.isPRegOption(vreg, alloc)) { if (problem.isPRegOption(vreg, alloc)) {
unsigned preg = problem.getPRegForOption(vreg, alloc); unsigned preg = problem.getPRegForOption(vreg, alloc);