From fb77b2ba13c96715e80f73cdec930c2abce95209 Mon Sep 17 00:00:00 2001 From: Reid Spencer Date: Tue, 20 Feb 2007 08:51:03 +0000 Subject: [PATCH] First version that can process arith.cpp test case up to 1024 bits: 1. Ensure pVal is set to 0 in each constructor. 2. Fix roundToDouble to make correct calculations and not read beyond the end of allocated memory. 3. Implement Knuth's "classical algorithm" for division from scratch and eliminate buffer overflows and uninitialized mememory reads. Document it properly too. 4. Implement a wrapper function for KnuthDiv which handles the 64-bit to 32-bit conversion and back. It also implement short division for the n == 1 case that Knuth's algorithm can't handle. 5. Simplify the logic of udiv and urem a little, make them exit early, and have them use the "divide" wrapper function to perform the division or remainder operation. 6. Move the toString function to the end of the file, closer to where the division functions are located. Note: division is still broken for some > 64 bit values, but at least it doesn't crash any more. llvm-svn: 34449 --- llvm/lib/Support/APInt.cpp | 594 ++++++++++++++++++++++++++----------- 1 file changed, 423 insertions(+), 171 deletions(-) diff --git a/llvm/lib/Support/APInt.cpp b/llvm/lib/Support/APInt.cpp index ec47a69146a1..ad728e9f6a5b 100644 --- a/llvm/lib/Support/APInt.cpp +++ b/llvm/lib/Support/APInt.cpp @@ -36,7 +36,7 @@ inline static uint64_t* getMemory(uint32_t numWords) { } APInt::APInt(uint32_t numBits, uint64_t val) - : BitWidth(numBits) { + : BitWidth(numBits), pVal(0) { assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small"); assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large"); if (isSingleWord()) @@ -48,7 +48,7 @@ APInt::APInt(uint32_t numBits, uint64_t val) } APInt::APInt(uint32_t numBits, uint32_t numWords, uint64_t bigVal[]) - : BitWidth(numBits) { + : BitWidth(numBits), pVal(0) { assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small"); assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large"); assert(bigVal && "Null pointer detected!"); @@ -71,20 +71,22 @@ APInt::APInt(uint32_t numBits, uint32_t numWords, uint64_t bigVal[]) /// @brief Create a new APInt by translating the char array represented /// integer value. APInt::APInt(uint32_t numbits, const char StrStart[], uint32_t slen, - uint8_t radix) { + uint8_t radix) + : BitWidth(numbits), pVal(0) { fromString(numbits, StrStart, slen, radix); } /// @brief Create a new APInt by translating the string represented /// integer value. -APInt::APInt(uint32_t numbits, const std::string& Val, uint8_t radix) { +APInt::APInt(uint32_t numbits, const std::string& Val, uint8_t radix) + : BitWidth(numbits), pVal(0) { assert(!Val.empty() && "String empty?"); fromString(numbits, Val.c_str(), Val.size(), radix); } /// @brief Copy constructor APInt::APInt(const APInt& APIVal) - : BitWidth(APIVal.BitWidth) { + : BitWidth(APIVal.BitWidth), pVal(0) { if (isSingleWord()) VAL = APIVal.VAL; else { @@ -94,7 +96,8 @@ APInt::APInt(const APInt& APIVal) } APInt::~APInt() { - if (!isSingleWord() && pVal) delete[] pVal; + if (!isSingleWord() && pVal) + delete[] pVal; } /// @brief Copy assignment operator. Create a new object from the given @@ -641,80 +644,6 @@ APInt& APInt::flip(uint32_t bitPosition) { return *this; } -/// to_string - This function translates the APInt into a string. -std::string APInt::toString(uint8_t radix, bool wantSigned) const { - assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) && - "Radix should be 2, 8, 10, or 16!"); - static const char *digits[] = { - "0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F" - }; - std::string result; - uint32_t bits_used = getActiveBits(); - if (isSingleWord()) { - char buf[65]; - const char *format = (radix == 10 ? (wantSigned ? "%lld" : "%llu") : - (radix == 16 ? "%llX" : (radix == 8 ? "%llo" : 0))); - if (format) { - if (wantSigned) { - int64_t sextVal = (int64_t(VAL) << (APINT_BITS_PER_WORD-BitWidth)) >> - (APINT_BITS_PER_WORD-BitWidth); - sprintf(buf, format, sextVal); - } else - sprintf(buf, format, VAL); - } else { - memset(buf, 0, 65); - uint64_t v = VAL; - while (bits_used) { - uint32_t bit = v & 1; - bits_used--; - buf[bits_used] = digits[bit][0]; - v >>=1; - } - } - result = buf; - return result; - } - - if (radix != 10) { - uint64_t mask = radix - 1; - uint32_t shift = (radix == 16 ? 4 : radix == 8 ? 3 : 1); - uint32_t nibbles = APINT_BITS_PER_WORD / shift; - for (uint32_t i = 0; i < getNumWords(); ++i) { - uint64_t value = pVal[i]; - for (uint32_t j = 0; j < nibbles; ++j) { - result.insert(0, digits[ value & mask ]); - value >>= shift; - } - } - return result; - } - - APInt tmp(*this); - APInt divisor(tmp.getBitWidth(), 10); - APInt zero(tmp.getBitWidth(), 0); - size_t insert_at = 0; - if (wantSigned && tmp[BitWidth-1]) { - // They want to print the signed version and it is a negative value - // Flip the bits and add one to turn it into the equivalent positive - // value and put a '-' in the result. - tmp.flip(); - tmp++; - result = "-"; - insert_at = 1; - } - if (tmp == 0) - result = "0"; - else while (tmp.ne(zero)) { - APInt APdigit = APIntOps::urem(tmp,divisor); - uint32_t digit = APdigit.getValue(); - assert(digit < radix && "urem failed"); - result.insert(insert_at,digits[digit]); - tmp = APIntOps::udiv(tmp, divisor); - } - - return result; -} - /// getMaxValue - This function returns the largest value /// for an APInt of the specified bit-width and if isSign == true, /// it should be largest signed value, otherwise unsigned value. @@ -881,6 +810,8 @@ APInt llvm::APIntOps::RoundDoubleToAPInt(double Double) { /// | 1[63] 11[62-52] 52[51-00] 1023 | /// -------------------------------------- double APInt::roundToDouble(bool isSigned) const { + + // Handle the simple case where the value is contained in one uint64_t. if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) { if (isSigned) { int64_t sext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth); @@ -889,29 +820,46 @@ double APInt::roundToDouble(bool isSigned) const { return double(VAL); } + // Determine if the value is negative. bool isNeg = isSigned ? (*this)[BitWidth-1] : false; + + // Construct the absolute value if we're negative. APInt Tmp(isNeg ? -(*this) : (*this)); + + // Figure out how many bits we're using. uint32_t n = Tmp.getActiveBits(); - // Exponent when normalized to have decimal point directly after - // leading one. This is stored excess 1023 in the exponent bit field. - uint64_t exp = n - 1; - // Gross overflow. - assert(exp <= 1023 && "Infinity value!"); + // The exponent (without bias normalization) is just the number of bits + // we are using. Note that the sign bit is gone since we constructed the + // absolute value. + uint64_t exp = n; - // Number of bits in mantissa including the leading one - // equals to 53. + // Return infinity for exponent overflow + if (exp > 1023) { + if (!isSigned || !isNeg) + return double(0x0.0p2047L); // positive infinity + else + return double(-0x0.0p2047L); // negative infinity + } + exp += 1023; // Increment for 1023 bias + + // Number of bits in mantissa is 52. To obtain the mantissa value, we must + // extract the high 52 bits from the correct words in pVal. uint64_t mantissa; - if (n % APINT_BITS_PER_WORD >= 53) - mantissa = Tmp.pVal[whichWord(n - 1)] >> (n % APINT_BITS_PER_WORD - 53); - else - mantissa = (Tmp.pVal[whichWord(n - 1)] << (53 - n % APINT_BITS_PER_WORD)) | - (Tmp.pVal[whichWord(n - 1) - 1] >> - (11 + n % APINT_BITS_PER_WORD)); + unsigned hiWord = whichWord(n-1); + if (hiWord == 0) { + mantissa = Tmp.pVal[0]; + if (n > 52) + mantissa >>= n - 52; // shift down, we want the top 52 bits. + } else { + assert(hiWord > 0 && "huh?"); + uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD); + uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD); + mantissa = hibits | lobits; + } + // The leading bit of mantissa is implicit, so get rid of it. - mantissa &= ~(1ULL << 52); uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0; - exp += 1023; union { double D; uint64_t I; @@ -1011,6 +959,7 @@ APInt APInt::shl(uint32_t shiftAmt) const { return API; } +#if 0 /// subMul - This function substracts x[len-1:0] * y from /// dest[offset+len-1:offset], and returns the most significant /// word of the product, minus the borrow-out from the subtraction. @@ -1057,6 +1006,8 @@ static uint64_t unitDiv(uint64_t N, uint32_t D) { return (r << 32) | (q & 0xFFFFFFFFl); } +#endif + /// div - This is basically Knuth's formulation of the classical algorithm. /// Correspondance with Knuth's notation: /// Knuth's u[0:m+n] == zds[nx:0]. @@ -1066,39 +1017,281 @@ static uint64_t unitDiv(uint64_t N, uint32_t D) { /// Our nx == Knuth's m+n. /// Could be re-implemented using gmp's mpn_divrem: /// zds[nx] = mpn_divrem (&zds[ny], 0, zds, nx, y, ny). -static void div(uint32_t zds[], uint32_t nx, uint32_t y[], uint32_t ny) { - uint32_t j = nx; - do { // loop over digits of quotient - // Knuth's j == our nx-j. - // Knuth's u[j:j+n] == our zds[j:j-ny]. - uint32_t qhat; // treated as unsigned - if (zds[j] == y[ny-1]) - qhat = -1U; // 0xffffffff - else { - uint64_t w = (((uint64_t)(zds[j])) << 32) + - ((uint64_t)zds[j-1] & 0xffffffffL); - qhat = (uint32_t) unitDiv(w, y[ny-1]); + +/// Implementation of Knuth's Algorithm D (Division of nonnegative integers) +/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The +/// variables here have the same names as in the algorithm. Comments explain +/// the algorithm and any deviation from it. +static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r, + uint32_t m, uint32_t n) { + assert(u && "Must provide dividend"); + assert(v && "Must provide divisor"); + assert(q && "Must provide quotient"); + assert(n>1 && "n must be > 1"); + + // Knuth uses the value b as the base of the number system. In our case b + // is 2^31 so we just set it to -1u. + uint64_t b = uint64_t(1) << 32; + + // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of + // u and v by d. Note that we have taken Knuth's advice here to use a power + // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of + // 2 allows us to shift instead of multiply and it is easy to determine the + // shift amount from the leading zeros. We are basically normalizing the u + // and v so that its high bits are shifted to the top of v's range without + // overflow. Note that this can require an extra word in u so that u must + // be of length m+n+1. + uint32_t shift = CountLeadingZeros_32(v[n-1]); + uint32_t v_carry = 0; + uint32_t u_carry = 0; + if (shift) { + for (uint32_t i = 0; i < m+n; ++i) { + uint32_t u_tmp = u[i] >> (32 - shift); + u[i] = (u[i] << shift) | u_carry; + u_carry = u_tmp; } - if (qhat) { - uint32_t borrow = subMul(zds, j - ny, y, ny, qhat); - uint32_t save = zds[j]; - uint64_t num = ((uint64_t)save&0xffffffffL) - - ((uint64_t)borrow&0xffffffffL); - while (num) { - qhat--; - uint64_t carry = 0; - for (uint32_t i = 0; i < ny; i++) { - carry += ((uint64_t) zds[j-ny+i] & 0xffffffffL) - + ((uint64_t) y[i] & 0xffffffffL); - zds[j-ny+i] = (uint32_t) carry; - carry >>= 32; - } - zds[j] += carry; - num = carry - 1; + for (uint32_t i = 0; i < n; ++i) { + uint32_t v_tmp = v[i] >> (32 - shift); + v[i] = (v[i] << shift) | v_carry; + v_carry = v_tmp; + } + } + u[m+n] = u_carry; + + // D2. [Initialize j.] Set j to m. This is the loop counter over the places. + int j = m; + do { + // D3. [Calculate q'.]. + // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q') + // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r') + // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease + // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test + // on v[n-2] determines at high speed most of the cases in which the trial + // value qp is one too large, and it eliminates all cases where qp is two + // too large. + uint64_t qp = ((uint64_t(u[j+n]) << 32) | uint64_t(u[j+n-1])) / v[n-1]; + uint64_t rp = ((uint64_t(u[j+n]) << 32) | uint64_t(u[j+n-1])) % v[n-1]; + if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) { + qp--; + rp += v[n-1]; + } + if (rp < b) + if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) { + qp--; + rp += v[n-1]; + } + + // D4. [Multiply and subtract.] Replace u with u - q*v (for each word). + uint32_t borrow = 0; + for (uint32_t i = 0; i < n; i++) { + uint32_t save = u[j+i]; + u[j+i] = uint64_t(u[j+i]) - (qp * v[i]) - borrow; + if (u[j+i] > save) { + borrow = 1; + u[j+i+1] += b; + } else { + borrow = 0; } } - zds[j] = qhat; - } while (--j >= ny); + if (borrow) + u[j+n] += 1; + + // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was + // negative, go to step D6; otherwise go on to step D7. + q[j] = qp; + if (borrow) { + // D6. [Add back]. The probability that this step is necessary is very + // small, on the order of only 2/b. Make sure that test data accounts for + // this possibility. Decreate qj by 1 and add v[...] to u[...]. A carry + // will occur to the left of u[j+n], and it should be ignored since it + // cancels with the borrow that occurred in D4. + uint32_t carry = 0; + for (uint32_t i = 0; i < n; i++) { + uint32_t save = u[j+i]; + u[j+i] += v[i] + carry; + carry = u[j+i] < save; + } + } + + // D7. [Loop on j.] Decreate j by one. Now if j >= 0, go back to D3. + j--; + } while (j >= 0); + + // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired + // remainder may be obtained by dividing u[...] by d. If r is non-null we + // compute the remainder (urem uses this). + if (r) { + // The value d is expressed by the "shift" value above since we avoided + // multiplication by d by using a shift left. So, all we have to do is + // shift right here. In order to mak + uint32_t mask = ~0u >> (32 - shift); + uint32_t carry = 0; + for (int i = n-1; i >= 0; i--) { + uint32_t save = u[i] & mask; + r[i] = (u[i] >> shift) | carry; + carry = save; + } + } +} + +// This function makes calling KnuthDiv a little more convenient. It uses +// APInt parameters instead of uint32_t* parameters. It can also divide APInt +// values of different widths. +void APInt::divide(const APInt LHS, uint32_t lhsWords, + const APInt &RHS, uint32_t rhsWords, + APInt *Quotient, APInt *Remainder) +{ + assert(lhsWords >= rhsWords && "Fractional result"); + + // First, compose the values into an array of 32-bit words instead of + // 64-bit words. This is a necessity of both the "short division" algorithm + // and the the Knuth "classical algorithm" which requires there to be native + // operations for +, -, and * on an m bit value with an m*2 bit result. We + // can't use 64-bit operands here because we don't have native results of + // 128-bits. Furthremore, casting the 64-bit values to 32-bit values won't + // work on large-endian machines. + uint64_t mask = ~0ull >> (sizeof(uint32_t)*8); + uint32_t n = rhsWords * 2; + uint32_t m = (lhsWords * 2) - n; + // FIXME: allocate space on stack if m and n are sufficiently small. + uint32_t *U = new uint32_t[m + n + 1]; + memset(U, 0, (m+n+1)*sizeof(uint32_t)); + for (unsigned i = 0; i < lhsWords; ++i) { + uint64_t tmp = (lhsWords == 1 ? LHS.VAL : LHS.pVal[i]); + U[i * 2] = tmp & mask; + U[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8); + } + U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm. + + uint32_t *V = new uint32_t[n]; + memset(V, 0, (n)*sizeof(uint32_t)); + for (unsigned i = 0; i < rhsWords; ++i) { + uint64_t tmp = (rhsWords == 1 ? RHS.VAL : RHS.pVal[i]); + V[i * 2] = tmp & mask; + V[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8); + } + + // Set up the quotient and remainder + uint32_t *Q = new uint32_t[m+n]; + memset(Q, 0, (m+n) * sizeof(uint32_t)); + uint32_t *R = 0; + if (Remainder) { + R = new uint32_t[n]; + memset(R, 0, n * sizeof(uint32_t)); + } + + // Now, adjust m and n for the Knuth division. n is the number of words in + // the divisor. m is the number of words by which the dividend exceeds the + // divisor (i.e. m+n is the length of the dividend). These sizes must not + // contain any zero words or the Knuth algorithm fails. + for (unsigned i = n; i > 0 && V[i-1] == 0; i--) { + n--; + m++; + } + for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--) + m--; + + // If we're left with only a single word for the divisor, Knuth doesn't work + // so we implement the short division algorithm here. This is much simpler + // and faster because we are certain that we can divide a 64-bit quantity + // by a 32-bit quantity at hardware speed and short division is simply a + // series of such operations. This is just like doing short division but we + // are using base 2^32 instead of base 10. + assert(n != 0 && "Divide by zero?"); + if (n == 1) { + uint32_t divisor = V[0]; + uint32_t remainder = 0; + for (int i = m+n-1; i >= 0; i--) { + uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i]; + if (partial_dividend == 0) { + Q[i] = 0; + remainder = 0; + } else if (partial_dividend < divisor) { + Q[i] = 0; + remainder = partial_dividend; + } else if (partial_dividend == divisor) { + Q[i] = 1; + remainder = 0; + } else { + Q[i] = partial_dividend / divisor; + remainder = partial_dividend - (Q[i] * divisor); + } + } + if (R) + R[0] = remainder; + } else { + // Now we're ready to invoke the Knuth classical divide algorithm. In this + // case n > 1. + KnuthDiv(U, V, Q, R, m, n); + } + + // If the caller wants the quotient + if (Quotient) { + // Set up the Quotient value's memory. + if (Quotient->BitWidth != LHS.BitWidth) { + if (Quotient->isSingleWord()) + Quotient->VAL = 0; + else + delete Quotient->pVal; + Quotient->BitWidth = LHS.BitWidth; + if (!Quotient->isSingleWord()) + Quotient->pVal = getClearedMemory(lhsWords); + } else + Quotient->clear(); + + // The quotient is in Q. Reconstitute the quotient into Quotient's low + // order words. + if (lhsWords == 1) { + uint64_t tmp = + uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2)); + if (Quotient->isSingleWord()) + Quotient->VAL = tmp; + else + Quotient->pVal[0] = tmp; + } else { + assert(!Quotient->isSingleWord() && "Quotient APInt not large enough"); + for (unsigned i = 0; i < lhsWords; ++i) + Quotient->pVal[i] = + uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2)); + } + } + + // If the caller wants the remainder + if (Remainder) { + // Set up the Remainder value's memory. + if (Remainder->BitWidth != RHS.BitWidth) { + if (Remainder->isSingleWord()) + Remainder->VAL = 0; + else + delete Remainder->pVal; + Remainder->BitWidth = RHS.BitWidth; + if (!Remainder->isSingleWord()) + Remainder->pVal = getClearedMemory(rhsWords); + } else + Remainder->clear(); + + // The remainder is in R. Reconstitute the remainder into Remainder's low + // order words. + if (rhsWords == 1) { + uint64_t tmp = + uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2)); + if (Remainder->isSingleWord()) + Remainder->VAL = tmp; + else + Remainder->pVal[0] = tmp; + } else { + assert(!Remainder->isSingleWord() && "Remainder APInt not large enough"); + for (unsigned i = 0; i < rhsWords; ++i) + Remainder->pVal[i] = + uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2)); + } + } + + // Clean up the memory we allocated. + delete [] U; + delete [] V; + delete [] Q; + delete [] R; } /// Unsigned divide this APInt by APInt RHS. @@ -1112,47 +1305,38 @@ APInt APInt::udiv(const APInt& RHS) const { return APInt(BitWidth, VAL / RHS.VAL); } - // Make a temporary to hold the result - APInt Result(*this); - // Get some facts about the LHS and RHS number of bits and words uint32_t rhsBits = RHS.getActiveBits(); uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); assert(rhsWords && "Divided by zero???"); - uint32_t lhsBits = Result.getActiveBits(); + uint32_t lhsBits = this->getActiveBits(); uint32_t lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1); + // Make a temporary to hold the result + APInt Result(*this); + // Deal with some degenerate cases if (!lhsWords) return Result; // 0 / X == 0 - else if (lhsWords < rhsWords || Result.ult(RHS)) + else if (lhsWords < rhsWords || Result.ult(RHS)) { // X / Y with X < Y == 0 memset(Result.pVal, 0, Result.getNumWords() * APINT_WORD_SIZE); - else if (Result == RHS) { + return Result; + } else if (Result == RHS) { // X / X == 1 memset(Result.pVal, 0, Result.getNumWords() * APINT_WORD_SIZE); Result.pVal[0] = 1; - } else if (lhsWords == 1) + return Result; + } else if (lhsWords == 1 && rhsWords == 1) { // All high words are zero, just use native divide Result.pVal[0] /= RHS.pVal[0]; - else { - // Compute it the hard way .. - APInt X(BitWidth, 0); - APInt Y(BitWidth, 0); - uint32_t nshift = - (APINT_BITS_PER_WORD - 1) - ((rhsBits - 1) % APINT_BITS_PER_WORD ); - if (nshift) { - Y = APIntOps::shl(RHS, nshift); - X = APIntOps::shl(Result, nshift); - ++lhsWords; - } - div((uint32_t*)X.pVal, lhsWords * 2 - 1, - (uint32_t*)(Y.isSingleWord()? &Y.VAL : Y.pVal), rhsWords*2); - memset(Result.pVal, 0, Result.getNumWords() * APINT_WORD_SIZE); - memcpy(Result.pVal, X.pVal + rhsWords, - (lhsWords - rhsWords) * APINT_WORD_SIZE); + return Result; } - return Result; + + // We have to compute it the hard way. Invoke the Knuth divide algorithm. + APInt Quotient(1,0); // to hold result. + divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0); + return Quotient; } /// Unsigned remainder operation on APInt. @@ -1177,37 +1361,27 @@ APInt APInt::urem(const APInt& RHS) const { uint32_t lhsWords = !lhsBits ? 0 : (Result.whichWord(lhsBits - 1) + 1); // Check the degenerate cases - if (lhsWords == 0) + if (lhsWords == 0) { // 0 % Y == 0 memset(Result.pVal, 0, Result.getNumWords() * APINT_WORD_SIZE); - else if (lhsWords < rhsWords || Result.ult(RHS)) + return Result; + } else if (lhsWords < rhsWords || Result.ult(RHS)) { // X % Y == X iff X < Y return Result; - else if (Result == RHS) + } else if (Result == RHS) { // X % X == 0; memset(Result.pVal, 0, Result.getNumWords() * APINT_WORD_SIZE); - else if (lhsWords == 1) + return Result; + } else if (lhsWords == 1) { // All high words are zero, just use native remainder Result.pVal[0] %= RHS.pVal[0]; - else { - // Do it the hard way - APInt X((lhsWords+1)*APINT_BITS_PER_WORD, 0); - APInt Y(rhsWords*APINT_BITS_PER_WORD, 0); - uint32_t nshift = - (APINT_BITS_PER_WORD - 1) - (rhsBits - 1) % APINT_BITS_PER_WORD; - if (nshift) { - APIntOps::shl(Y, nshift); - APIntOps::shl(X, nshift); - } - div((uint32_t*)X.pVal, rhsWords*2-1, - (uint32_t*)(Y.isSingleWord()? &Y.VAL : Y.pVal), rhsWords*2); - memset(Result.pVal, 0, Result.getNumWords() * APINT_WORD_SIZE); - for (uint32_t i = 0; i < rhsWords-1; ++i) - Result.pVal[i] = (X.pVal[i] >> nshift) | - (X.pVal[i+1] << (APINT_BITS_PER_WORD - nshift)); - Result.pVal[rhsWords-1] = X.pVal[rhsWords-1] >> nshift; + return Result; } - return Result; + + // We have to compute it the hard way. Invoke the Knute divide algorithm. + APInt Remainder(1,0); + divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder); + return Remainder; } /// @brief Converts a char array into an integer. @@ -1279,3 +1453,81 @@ void APInt::fromString(uint32_t numbits, const char *StrStart, uint32_t slen, } } } + +/// to_string - This function translates the APInt into a string. +std::string APInt::toString(uint8_t radix, bool wantSigned) const { + assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) && + "Radix should be 2, 8, 10, or 16!"); + static const char *digits[] = { + "0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F" + }; + std::string result; + uint32_t bits_used = getActiveBits(); + if (isSingleWord()) { + char buf[65]; + const char *format = (radix == 10 ? (wantSigned ? "%lld" : "%llu") : + (radix == 16 ? "%llX" : (radix == 8 ? "%llo" : 0))); + if (format) { + if (wantSigned) { + int64_t sextVal = (int64_t(VAL) << (APINT_BITS_PER_WORD-BitWidth)) >> + (APINT_BITS_PER_WORD-BitWidth); + sprintf(buf, format, sextVal); + } else + sprintf(buf, format, VAL); + } else { + memset(buf, 0, 65); + uint64_t v = VAL; + while (bits_used) { + uint32_t bit = v & 1; + bits_used--; + buf[bits_used] = digits[bit][0]; + v >>=1; + } + } + result = buf; + return result; + } + + if (radix != 10) { + uint64_t mask = radix - 1; + uint32_t shift = (radix == 16 ? 4 : radix == 8 ? 3 : 1); + uint32_t nibbles = APINT_BITS_PER_WORD / shift; + for (uint32_t i = 0; i < getNumWords(); ++i) { + uint64_t value = pVal[i]; + for (uint32_t j = 0; j < nibbles; ++j) { + result.insert(0, digits[ value & mask ]); + value >>= shift; + } + } + return result; + } + + APInt tmp(*this); + APInt divisor(4, radix); + APInt zero(tmp.getBitWidth(), 0); + size_t insert_at = 0; + if (wantSigned && tmp[BitWidth-1]) { + // They want to print the signed version and it is a negative value + // Flip the bits and add one to turn it into the equivalent positive + // value and put a '-' in the result. + tmp.flip(); + tmp++; + result = "-"; + insert_at = 1; + } + if (tmp == 0) + result = "0"; + else while (tmp.ne(zero)) { + APInt APdigit(1,0); + divide(tmp, tmp.getNumWords(), divisor, divisor.getNumWords(), 0, &APdigit); + uint32_t digit = APdigit.getValue(); + assert(digit < radix && "urem failed"); + result.insert(insert_at,digits[digit]); + APInt tmp2(tmp.getBitWidth(), 0); + divide(tmp, tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2, 0); + tmp = tmp2; + } + + return result; +} +