Initial commit of the machine code LICM pass. It successfully hoists this:

_foo:
        li r2, 0
LBB1_1: ; bb
        li r5, 0
        stw r5, 0(r3)
        addi r2, r2, 1
        addi r3, r3, 4
        cmplw cr0, r2, r4
        bne cr0, LBB1_1 ; bb
LBB1_2: ; return
        blr 

to:

_foo:
        li r2, 0
        li r5, 0
LBB1_1: ; bb
        stw r5, 0(r3)
        addi r2, r2, 1
        addi r3, r3, 4
        cmplw cr0, r2, r4
        bne cr0, LBB1_1 ; bb
LBB1_2: ; return
        blr

ZOMG!! :-)

Moar to come...

llvm-svn: 44687
This commit is contained in:
Bill Wendling 2007-12-07 21:42:31 +00:00
parent b41d838d28
commit fb706bc52b
4 changed files with 357 additions and 10 deletions

View File

@ -135,6 +135,10 @@ namespace llvm {
/// for the Sparc.
FunctionPass *getRegisterAllocator(TargetMachine &T);
/// createMachineLICMPass - This pass performs LICM on machine instructions.
///
FunctionPass *createMachineLICMPass();
} // End llvm namespace
#endif

View File

@ -66,7 +66,9 @@ LLVMTargetMachine::addPassesToEmitFile(FunctionPassManager &PM,
// Print the instruction selected machine code...
if (PrintMachineCode)
PM.add(createMachineFunctionPrinterPass(cerr));
PM.add(createMachineLICMPass());
// Perform register allocation to convert to a concrete x86 representation
PM.add(createRegisterAllocator());
@ -92,7 +94,7 @@ LLVMTargetMachine::addPassesToEmitFile(FunctionPassManager &PM,
// Branch folding must be run after regalloc and prolog/epilog insertion.
if (!Fast)
PM.add(createBranchFoldingPass(getEnableTailMergeDefault()));
// Fold redundant debug labels.
PM.add(createDebugLabelFoldingPass());
@ -175,7 +177,9 @@ bool LLVMTargetMachine::addPassesToEmitMachineCode(FunctionPassManager &PM,
// Print the instruction selected machine code...
if (PrintMachineCode)
PM.add(createMachineFunctionPrinterPass(cerr));
PM.add(createMachineLICMPass());
// Perform register allocation to convert to a concrete x86 representation
PM.add(createRegisterAllocator());
@ -204,7 +208,7 @@ bool LLVMTargetMachine::addPassesToEmitMachineCode(FunctionPassManager &PM,
// Branch folding must be run after regalloc and prolog/epilog insertion.
if (!Fast)
PM.add(createBranchFoldingPass(getEnableTailMergeDefault()));
if (addPreEmitPass(PM, Fast) && PrintMachineCode)
PM.add(createMachineFunctionPrinterPass(cerr));

View File

@ -0,0 +1,336 @@
//===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Bill Wendling and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass performs loop invariant code motion on machine instructions. We
// attempt to remove as much code from the body of a loop as possible.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "machine-licm"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetMachine.h"
#include <map>
using namespace llvm;
namespace {
// Hidden options to help debugging
cl::opt<bool>
PerformLICM("machine-licm",
cl::init(false), cl::Hidden);
}
namespace {
class VISIBILITY_HIDDEN MachineLICM : public MachineFunctionPass {
// Various analyses that we use...
MachineLoopInfo *LI; // Current MachineLoopInfo
MachineDominatorTree *DT; // Machine dominator tree for the current Loop
const TargetInstrInfo *TII;
// State that is updated as we process loops
bool Changed; // True if a loop is changed.
MachineLoop *CurLoop; // The current loop we are working on.
// Map the def of a virtual register to the machine instruction.
std::map<unsigned, const MachineInstr*> VRegDefs;
public:
static char ID; // Pass identification, replacement for typeid
MachineLICM() : MachineFunctionPass((intptr_t)&ID) {}
virtual bool runOnMachineFunction(MachineFunction &MF);
/// FIXME: Loop preheaders?
///
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequired<MachineLoopInfo>();
AU.addRequired<MachineDominatorTree>();
}
private:
/// GatherAllLoops - Get all loops in depth first order.
///
void GatherAllLoops(MachineLoop *L, SmallVectorImpl<MachineLoop*> &Loops) {
const std::vector<MachineLoop*> &SubLoops = L->getSubLoops();
for (MachineLoop::iterator
I = SubLoops.begin(), E = SubLoops.end(); I != E; ++I)
GatherAllLoops(*I, Loops);
Loops.push_back(L);
}
/// MapVirtualRegisterDefs - Create a map of which machine instruction
/// defines a virtual register.
///
void MapVirtualRegisterDefs(const MachineFunction &MF);
/// isInSubLoop - A little predicate that returns true if the specified
/// basic block is in a subloop of the current one, not the current one
/// itself.
///
bool isInSubLoop(MachineBasicBlock *BB) {
assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
for (MachineLoop::iterator
I = CurLoop->begin(), E = CurLoop->end(); I != E; ++I)
if ((*I)->contains(BB))
return true; // A subloop actually contains this block!
return false;
}
/// CanHoistInst - Checks that this instructions is one that can be hoisted
/// out of the loop. I.e., it has no side effects, isn't a control flow
/// instr, etc.
///
bool CanHoistInst(MachineInstr &I) const {
const TargetInstrDescriptor *TID = I.getInstrDescriptor();
MachineOpCode Opcode = TID->Opcode;
return TII->isTriviallyReMaterializable(&I) &&
// FIXME: Below necessary?
!(TII->isReturn(Opcode) ||
TII->isTerminatorInstr(Opcode) ||
TII->isBranch(Opcode) ||
TII->isIndirectBranch(Opcode) ||
TII->isBarrier(Opcode) ||
TII->isCall(Opcode) ||
TII->isLoad(Opcode) || // TODO: Do loads and stores.
TII->isStore(Opcode));
}
/// isLoopInvariantInst - Returns true if the instruction is loop
/// invariant. I.e., all virtual register operands are defined outside of
/// the loop, physical registers aren't accessed (explicitly or implicitly),
/// and the instruction is hoistable.
///
bool isLoopInvariantInst(MachineInstr &I);
/// FindPredecessors - Get all of the predecessors of the loop that are not
/// back-edges.
///
void FindPredecessors(std::vector<MachineBasicBlock*> &Preds){
const MachineBasicBlock *Header = CurLoop->getHeader();
for (MachineBasicBlock::const_pred_iterator
I = Header->pred_begin(), E = Header->pred_end(); I != E; ++I)
if (!CurLoop->contains(*I))
Preds.push_back(*I);
}
/// MoveInstToBlock - Moves the machine instruction to the bottom of the
/// predecessor basic block (but before the terminator instructions).
///
void MoveInstToBlock(MachineBasicBlock *MBB, MachineInstr *MI) {
MachineBasicBlock::iterator Iter = MBB->getFirstTerminator();
MBB->insert(Iter, MI);
}
/// HoistRegion - Walk the specified region of the CFG (defined by all
/// blocks dominated by the specified block, and that are in the current
/// loop) in depth first order w.r.t the DominatorTree. This allows us to
/// visit definitions before uses, allowing us to hoist a loop body in one
/// pass without iteration.
///
void HoistRegion(MachineDomTreeNode *N);
/// Hoist - When an instruction is found to only use loop invariant operands
/// that is safe to hoist, this instruction is called to do the dirty work.
///
bool Hoist(MachineInstr &MI);
};
char MachineLICM::ID = 0;
RegisterPass<MachineLICM> X("machine-licm",
"Machine Loop Invariant Code Motion");
} // end anonymous namespace
FunctionPass *llvm::createMachineLICMPass() { return new MachineLICM(); }
/// Hoist expressions out of the specified loop. Note, alias info for inner loop
/// is not preserved so it is not a good idea to run LICM multiple times on one
/// loop.
///
bool MachineLICM::runOnMachineFunction(MachineFunction &MF) {
if (!PerformLICM) return false; // For debugging.
Changed = false;
TII = MF.getTarget().getInstrInfo();
// Get our Loop information...
LI = &getAnalysis<MachineLoopInfo>();
DT = &getAnalysis<MachineDominatorTree>();
for (MachineLoopInfo::iterator
I = LI->begin(), E = LI->end(); I != E; ++I) {
MachineLoop *L = *I;
CurLoop = L;
// Visit all of the instructions of the loop. We want to visit the subloops
// first, though, so that we can hoist their invariants first into their
// containing loop before we process that loop.
SmallVector<MachineLoop*, 16> Loops;
GatherAllLoops(L, Loops);
for (SmallVector<MachineLoop*, 8>::iterator
II = Loops.begin(), IE = Loops.end(); II != IE; ++II) {
L = *II;
// Traverse the body of the loop in depth first order on the dominator
// tree so that we are guaranteed to see definitions before we see uses.
HoistRegion(DT->getNode(L->getHeader()));
}
}
return Changed;
}
/// MapVirtualRegisterDefs - Create a map of which machine instruction defines a
/// virtual register.
///
void MachineLICM::MapVirtualRegisterDefs(const MachineFunction &MF) {
for (MachineFunction::const_iterator
I = MF.begin(), E = MF.end(); I != E; ++I) {
const MachineBasicBlock &MBB = *I;
for (MachineBasicBlock::const_iterator
II = MBB.begin(), IE = MBB.end(); II != IE; ++II) {
const MachineInstr &MI = *II;
if (MI.getNumOperands() > 0) {
const MachineOperand &MO = MI.getOperand(0);
if (MO.isRegister() && MO.isDef() &&
MRegisterInfo::isVirtualRegister(MO.getReg()))
VRegDefs[MO.getReg()] = &MI;
}
}
}
}
/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
/// dominated by the specified block, and that are in the current loop) in depth
/// first order w.r.t the DominatorTree. This allows us to visit definitions
/// before uses, allowing us to hoist a loop body in one pass without iteration.
///
void MachineLICM::HoistRegion(MachineDomTreeNode *N) {
assert(N != 0 && "Null dominator tree node?");
MachineBasicBlock *BB = N->getBlock();
// If this subregion is not in the top level loop at all, exit.
if (!CurLoop->contains(BB)) return;
// Only need to process the contents of this block if it is not part of a
// subloop (which would already have been processed).
if (!isInSubLoop(BB))
for (MachineBasicBlock::iterator
I = BB->begin(), E = BB->end(); I != E; ) {
MachineInstr &MI = *I++;
// Try hoisting the instruction out of the loop. We can only do this if
// all of the operands of the instruction are loop invariant and if it is
// safe to hoist the instruction.
if (Hoist(MI))
// Hoisting was successful! Remove bothersome instruction now.
MI.getParent()->remove(&MI);
}
const std::vector<MachineDomTreeNode*> &Children = N->getChildren();
for (unsigned I = 0, E = Children.size(); I != E; ++I)
HoistRegion(Children[I]);
}
/// isLoopInvariantInst - Returns true if the instruction is loop
/// invariant. I.e., all virtual register operands are defined outside of the
/// loop, physical registers aren't accessed (explicitly or implicitly), and the
/// instruction is hoistable.
///
bool MachineLICM::isLoopInvariantInst(MachineInstr &I) {
const TargetInstrDescriptor *TID = I.getInstrDescriptor();
// Don't hoist if this instruction implicitly reads physical registers or
// doesn't take any operands.
if (TID->ImplicitUses || !I.getNumOperands()) return false;
if (!CanHoistInst(I)) return false;
// The instruction is loop invariant if all of its operands are loop-invariant
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
const MachineOperand &MO = I.getOperand(i);
if (!MO.isRegister() || !MO.isUse())
continue;
unsigned Reg = MO.getReg();
// Don't hoist instructions that access physical registers.
if (!MRegisterInfo::isVirtualRegister(Reg))
return false;
assert(VRegDefs[Reg] && "Machine instr not mapped for this vreg?!");
// If the loop contains the definition of an operand, then the instruction
// isn't loop invariant.
if (CurLoop->contains(VRegDefs[Reg]->getParent()))
return false;
}
// If we got this far, the instruction is loop invariant!
return true;
}
/// Hoist - When an instruction is found to only use loop invariant operands
/// that is safe to hoist, this instruction is called to do the dirty work.
///
bool MachineLICM::Hoist(MachineInstr &MI) {
if (!isLoopInvariantInst(MI)) return false;
std::vector<MachineBasicBlock*> Preds;
// Non-back-edge predecessors.
FindPredecessors(Preds);
if (Preds.empty()) return false;
// Check that the predecessors are qualified to take the hoisted
// instruction. I.e., there is only one edge from each predecessor, and it's
// to the loop header.
for (std::vector<MachineBasicBlock*>::iterator
I = Preds.begin(), E = Preds.end(); I != E; ++I) {
MachineBasicBlock *MBB = *I;
// FIXME: We are assuming at first that the basic blocks coming into this
// loop have only one successor each. This isn't the case in general because
// we haven't broken critical edges or added preheaders.
if (MBB->succ_size() != 1) return false;
assert(*MBB->succ_begin() == CurLoop->getHeader() &&
"The predecessor doesn't feed directly into the loop header!");
}
// Now move the instructions to the predecessors.
for (std::vector<MachineBasicBlock*>::iterator
I = Preds.begin(), E = Preds.end(); I != E; ++I)
MoveInstToBlock(*I, MI.clone());
Changed = true;
return true;
}

View File

@ -684,12 +684,15 @@ def MULLI : DForm_2< 7, (outs GPRC:$rD), (ins GPRC:$rA, s16imm:$imm),
def SUBFIC : DForm_2< 8, (outs GPRC:$rD), (ins GPRC:$rA, s16imm:$imm),
"subfic $rD, $rA, $imm", IntGeneral,
[(set GPRC:$rD, (subc immSExt16:$imm, GPRC:$rA))]>;
def LI : DForm_2_r0<14, (outs GPRC:$rD), (ins symbolLo:$imm),
"li $rD, $imm", IntGeneral,
[(set GPRC:$rD, immSExt16:$imm)]>;
def LIS : DForm_2_r0<15, (outs GPRC:$rD), (ins symbolHi:$imm),
"lis $rD, $imm", IntGeneral,
[(set GPRC:$rD, imm16ShiftedSExt:$imm)]>;
let isReMaterializable = 1 in {
def LI : DForm_2_r0<14, (outs GPRC:$rD), (ins symbolLo:$imm),
"li $rD, $imm", IntGeneral,
[(set GPRC:$rD, immSExt16:$imm)]>;
def LIS : DForm_2_r0<15, (outs GPRC:$rD), (ins symbolHi:$imm),
"lis $rD, $imm", IntGeneral,
[(set GPRC:$rD, imm16ShiftedSExt:$imm)]>;
}
}
let PPC970_Unit = 1 in { // FXU Operations.