Implement Transforms/ScalarRepl/phinodepromote.ll, which is an important

case that the C/C++ front-end generates.

llvm-svn: 10761
This commit is contained in:
Chris Lattner 2004-01-12 01:18:32 +00:00
parent 22c7a36cdc
commit fafa2ff2d6
1 changed files with 86 additions and 17 deletions

View File

@ -8,11 +8,11 @@
//===----------------------------------------------------------------------===//
//
// This file promote memory references to be register references. It promotes
// alloca instructions which only have loads and stores as uses. An alloca is
// transformed by using dominator frontiers to place PHI nodes, then traversing
// the function in depth-first order to rewrite loads and stores as appropriate.
// This is just the standard SSA construction algorithm to construct "pruned"
// SSA form.
// alloca instructions which only have loads and stores as uses (or that have
// PHI nodes which are only loaded from). An alloca is transformed by using
// dominator frontiers to place PHI nodes, then traversing the function in
// depth-first order to rewrite loads and stores as appropriate. This is just
// the standard SSA construction algorithm to construct "pruned" SSA form.
//
//===----------------------------------------------------------------------===//
@ -20,6 +20,7 @@
#include "llvm/Analysis/Dominators.h"
#include "llvm/iMemory.h"
#include "llvm/iPHINode.h"
#include "llvm/iOther.h"
#include "llvm/Function.h"
#include "llvm/Constant.h"
#include "llvm/Support/CFG.h"
@ -27,7 +28,8 @@
using namespace llvm;
/// isAllocaPromotable - Return true if this alloca is legal for promotion.
/// This is true if there are only loads and stores to the alloca...
/// This is true if there are only loads and stores to the alloca... of if there
/// is a PHI node using the address which can be trivially transformed.
///
bool llvm::isAllocaPromotable(const AllocaInst *AI, const TargetData &TD) {
// FIXME: If the memory unit is of pointer or integer type, we can permit
@ -36,13 +38,47 @@ bool llvm::isAllocaPromotable(const AllocaInst *AI, const TargetData &TD) {
// Only allow direct loads and stores...
for (Value::use_const_iterator UI = AI->use_begin(), UE = AI->use_end();
UI != UE; ++UI) // Loop over all of the uses of the alloca
if (!isa<LoadInst>(*UI))
if (const StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
if (SI->getOperand(0) == AI)
return false; // Don't allow a store of the AI, only INTO the AI.
} else {
return false; // Not a load or store?
}
if (isa<LoadInst>(*UI)) {
// noop
} else if (const StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
if (SI->getOperand(0) == AI)
return false; // Don't allow a store OF the AI, only INTO the AI.
} else if (const PHINode *PN = dyn_cast<PHINode>(*UI)) {
// We only support PHI nodes in a few simple cases. The PHI node is only
// allowed to have one use, which must be a load instruction, and can only
// use alloca instructions (no random pointers). Also, there cannot be
// any accesses to AI between the PHI node and the use of the PHI.
if (!PN->hasOneUse()) return false;
// Our transformation causes the unconditional loading of all pointer
// operands to the PHI node. Because this could cause a fault if there is
// a critical edge in the CFG and if one of the pointers is illegal, we
// refuse to promote PHI nodes unless they are obviously safe. For now,
// obviously safe means that all of the operands are allocas.
//
// If we wanted to extend this code to break critical edges, this
// restriction could be relaxed, and we could even handle uses of the PHI
// node that are volatile loads or stores.
//
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
if (!isa<AllocaInst>(PN->getIncomingValue(i)))
return false;
// Now make sure the one user instruction is in the same basic block as
// the PHI, and that there are no loads or stores between the PHI node and
// the access.
BasicBlock::const_iterator UI = cast<Instruction>(PN->use_back());
if (!isa<LoadInst>(UI) || cast<LoadInst>(UI)->isVolatile()) return false;
// Scan looking for memory accesses.
for (--UI; !isa<PHINode>(UI); --UI)
if (isa<LoadInst>(UI) || isa<StoreInst>(UI) || isa<CallInst>(UI))
return false;
// If we got this far, we can promote the PHI use.
} else {
return false; // Not a load, store, or promotable PHI?
}
return true;
}
@ -106,8 +142,7 @@ void PromoteMem2Reg::run() {
}
// Calculate the set of read and write-locations for each alloca. This is
// analogous to counting the number of 'uses' and 'definitions' of each
// variable.
// analogous to finding the 'uses' and 'definitions' of each variable.
std::vector<BasicBlock*> DefiningBlocks;
std::vector<BasicBlock*> UsingBlocks;
@ -117,14 +152,48 @@ void PromoteMem2Reg::run() {
// As we scan the uses of the alloca instruction, keep track of stores, and
// decide whether all of the loads and stores to the alloca are within the
// same basic block.
RestartUseScan:
for (Value::use_iterator U =AI->use_begin(), E = AI->use_end(); U != E;++U){
Instruction *User = cast<Instruction>(*U);
if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
// Remember the basic blocks which define new values for the alloca
DefiningBlocks.push_back(SI->getParent());
} else {
} else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
// Otherwise it must be a load instruction, keep track of variable reads
UsingBlocks.push_back(cast<LoadInst>(User)->getParent());
UsingBlocks.push_back(LI->getParent());
} else {
// Because of the restrictions we placed on PHI node uses above, the PHI
// node reads the block in any using predecessors. Transform the PHI of
// addresses into a PHI of loaded values.
PHINode *PN = cast<PHINode>(User);
assert(PN->hasOneUse() && "Cannot handle PHI Node with != 1 use!");
LoadInst *PNUser = cast<LoadInst>(PN->use_back());
std::string PNUserName = PNUser->getName(); PNUser->setName("");
// Create the new PHI node and insert load instructions as appropriate.
PHINode *NewPN = new PHINode(AI->getAllocatedType(), PNUserName, PN);
std::map<BasicBlock*, LoadInst*> NewLoads;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
BasicBlock *Pred = PN->getIncomingBlock(i);
LoadInst *&NewLoad = NewLoads[Pred];
if (NewLoad == 0) // Insert the new load in the predecessor
NewLoad = new LoadInst(PN->getIncomingValue(i),
PN->getIncomingValue(i)->getName()+".val",
Pred->getTerminator());
NewPN->addIncoming(NewLoad, Pred);
}
// Remove the old load.
PNUser->replaceAllUsesWith(NewPN);
PNUser->getParent()->getInstList().erase(PNUser);
// Remove the old PHI node.
PN->getParent()->getInstList().erase(PN);
// Restart our scan of uses...
DefiningBlocks.clear();
UsingBlocks.clear();
goto RestartUseScan;
}
if (OnlyUsedInOneBlock) {