Revert r229622: "[LoopAccesses] Make VectorizerParams global" and others. r229622 brought cyclic dependencies between Analysis and Vector.

r229622: "[LoopAccesses] Make VectorizerParams global"
  r229623: "[LoopAccesses] Stash the report from the analysis rather than emitting it"
  r229624: "[LoopAccesses] Cache the result of canVectorizeMemory"
  r229626: "[LoopAccesses] Create the analysis pass"
  r229628: "[LoopAccesses] Change debug messages from LV to LAA"
  r229630: "[LoopAccesses] Add canAnalyzeLoop"
  r229631: "[LoopAccesses] Add missing const to APIs in VectorizationReport"
  r229632: "[LoopAccesses] Split out LoopAccessReport from VectorizerReport"
  r229633: "[LoopAccesses] Add -analyze support"
  r229634: "[LoopAccesses] Change LAA:getInfo to return a constant reference"
  r229638: "Analysis: fix buildbots"

llvm-svn: 229650
This commit is contained in:
NAKAMURA Takumi 2015-02-18 08:34:47 +00:00
parent ed9eb7209e
commit fa520c5f49
7 changed files with 168 additions and 569 deletions

View File

@ -16,13 +16,11 @@
#define LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
#include "llvm/ADT/EquivalenceClasses.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AliasSetTracker.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Pass.h"
#include "llvm/Support/raw_ostream.h"
namespace llvm {
@ -36,52 +34,30 @@ class SCEV;
/// Optimization analysis message produced during vectorization. Messages inform
/// the user why vectorization did not occur.
class LoopAccessReport {
class VectorizationReport {
std::string Message;
const Instruction *Instr;
protected:
LoopAccessReport(const Twine &Message, const Instruction *I)
: Message(Message.str()), Instr(I) {}
Instruction *Instr;
public:
LoopAccessReport(const Instruction *I = nullptr) : Instr(I) {}
VectorizationReport(Instruction *I = nullptr)
: Message("loop not vectorized: "), Instr(I) {}
template <typename A> LoopAccessReport &operator<<(const A &Value) {
template <typename A> VectorizationReport &operator<<(const A &Value) {
raw_string_ostream Out(Message);
Out << Value;
return *this;
}
const Instruction *getInstr() const { return Instr; }
Instruction *getInstr() { return Instr; }
std::string &str() { return Message; }
const std::string &str() const { return Message; }
operator Twine() { return Message; }
/// \brief Emit an analysis note for \p PassName with the debug location from
/// the instruction in \p Message if available. Otherwise use the location of
/// \p TheLoop.
static void emitAnalysis(const LoopAccessReport &Message,
/// \brief Emit an analysis note with the debug location from the instruction
/// in \p Message if available. Otherwise use the location of \p TheLoop.
static void emitAnalysis(VectorizationReport &Message,
const Function *TheFunction,
const Loop *TheLoop,
const char *PassName);
};
/// \brief Collection of parameters shared beetween the Loop Vectorizer and the
/// Loop Access Analysis.
struct VectorizerParams {
/// \brief Maximum SIMD width.
static const unsigned MaxVectorWidth;
/// \brief VF as overridden by the user.
static unsigned VectorizationFactor;
/// \brief Interleave factor as overridden by the user.
static unsigned VectorizationInterleave;
/// \\brief When performing memory disambiguation checks at runtime do not
/// make more than this number of comparisons.
static const unsigned RuntimeMemoryCheckThreshold;
const Loop *TheLoop);
};
/// \brief Drive the analysis of memory accesses in the loop
@ -100,6 +76,30 @@ struct VectorizerParams {
/// RuntimePointerCheck class.
class LoopAccessInfo {
public:
/// \brief Collection of parameters used from the vectorizer.
struct VectorizerParams {
/// \brief Maximum simd width.
unsigned MaxVectorWidth;
/// \brief VF as overridden by the user.
unsigned VectorizationFactor;
/// \brief Interleave factor as overridden by the user.
unsigned VectorizationInterleave;
/// \\brief When performing memory disambiguation checks at runtime do not
/// make more than this number of comparisons.
unsigned RuntimeMemoryCheckThreshold;
VectorizerParams(unsigned MaxVectorWidth,
unsigned VectorizationFactor,
unsigned VectorizationInterleave,
unsigned RuntimeMemoryCheckThreshold) :
MaxVectorWidth(MaxVectorWidth),
VectorizationFactor(VectorizationFactor),
VectorizationInterleave(VectorizationInterleave),
RuntimeMemoryCheckThreshold(RuntimeMemoryCheckThreshold) {}
};
/// This struct holds information about the memory runtime legality check that
/// a group of pointers do not overlap.
struct RuntimePointerCheck {
@ -120,16 +120,10 @@ public:
void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr,
unsigned DepSetId, unsigned ASId, ValueToValueMap &Strides);
/// \brief No run-time memory checking is necessary.
bool empty() const { return Pointers.empty(); }
/// \brief Decide whether we need to issue a run-time check for pointer at
/// index \p I and \p J to prove their independence.
bool needsChecking(unsigned I, unsigned J) const;
/// \brief Print the list run-time memory checks necessary.
void print(raw_ostream &OS, unsigned Depth = 0) const;
/// This flag indicates if we need to add the runtime check.
bool Need;
/// Holds the pointers that we need to check.
@ -147,17 +141,19 @@ public:
SmallVector<unsigned, 2> AliasSetId;
};
LoopAccessInfo(Loop *L, ScalarEvolution *SE, const DataLayout *DL,
const TargetLibraryInfo *TLI, AliasAnalysis *AA,
DominatorTree *DT, ValueToValueMap &Strides);
LoopAccessInfo(Function *F, Loop *L, ScalarEvolution *SE,
const DataLayout *DL, const TargetLibraryInfo *TLI,
AliasAnalysis *AA, DominatorTree *DT,
const VectorizerParams &VectParams) :
TheFunction(F), TheLoop(L), SE(SE), DL(DL), TLI(TLI), AA(AA), DT(DT),
NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1U),
VectParams(VectParams) {}
/// Return true we can analyze the memory accesses in the loop and there are
/// no memory dependence cycles.
bool canVectorizeMemory() const { return CanVecMem; }
/// no memory dependence cycles. Replaces symbolic strides using Strides.
bool canVectorizeMemory(ValueToValueMap &Strides);
const RuntimePointerCheck *getRuntimePointerCheck() const {
return &PtrRtCheck;
}
RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; }
/// Return true if the block BB needs to be predicated in order for the loop
/// to be vectorized.
@ -165,7 +161,7 @@ public:
DominatorTree *DT);
/// Returns true if the value V is uniform within the loop.
bool isUniform(Value *V) const;
bool isUniform(Value *V);
unsigned getMaxSafeDepDistBytes() const { return MaxSafeDepDistBytes; }
unsigned getNumStores() const { return NumStores; }
@ -176,34 +172,15 @@ public:
/// Returns a pair of instructions where the first element is the first
/// instruction generated in possibly a sequence of instructions and the
/// second value is the final comparator value or NULL if no check is needed.
std::pair<Instruction *, Instruction *>
addRuntimeCheck(Instruction *Loc) const;
/// \brief The diagnostics report generated for the analysis. E.g. why we
/// couldn't analyze the loop.
const Optional<LoopAccessReport> &getReport() const { return Report; }
/// \brief Print the information about the memory accesses in the loop.
void print(raw_ostream &OS, unsigned Depth = 0) const;
/// \brief Used to ensure that if the analysis was run with speculating the
/// value of symbolic strides, the client queries it with the same assumption.
/// Only used in DEBUG build but we don't want NDEBUG-depedent ABI.
unsigned NumSymbolicStrides;
std::pair<Instruction *, Instruction *> addRuntimeCheck(Instruction *Loc);
private:
/// \brief Analyze the loop. Substitute symbolic strides using Strides.
void analyzeLoop(ValueToValueMap &Strides);
/// \brief Check if the structure of the loop allows it to be analyzed by this
/// pass.
bool canAnalyzeLoop();
void emitAnalysis(LoopAccessReport &Message);
void emitAnalysis(VectorizationReport &Message);
/// We need to check that all of the pointers in this list are disjoint
/// at runtime.
RuntimePointerCheck PtrRtCheck;
Function *TheFunction;
Loop *TheLoop;
ScalarEvolution *SE;
const DataLayout *DL;
@ -216,12 +193,8 @@ private:
unsigned MaxSafeDepDistBytes;
/// \brief Cache the result of analyzeLoop.
bool CanVecMem;
/// \brief The diagnostics report generated for the analysis. E.g. why we
/// couldn't analyze the loop.
Optional<LoopAccessReport> Report;
/// \brief Vectorizer parameters used by the analysis.
VectorizerParams VectParams;
};
Value *stripIntegerCast(Value *V);
@ -236,52 +209,6 @@ const SCEV *replaceSymbolicStrideSCEV(ScalarEvolution *SE,
ValueToValueMap &PtrToStride,
Value *Ptr, Value *OrigPtr = nullptr);
/// \brief This analysis provides dependence information for the memory accesses
/// of a loop.
///
/// It runs the analysis for a loop on demand. This can be initiated by
/// querying the loop access info via LAA::getInfo. getInfo return a
/// LoopAccessInfo object. See this class for the specifics of what information
/// is provided.
class LoopAccessAnalysis : public FunctionPass {
public:
static char ID;
LoopAccessAnalysis() : FunctionPass(ID) {
initializeLoopAccessAnalysisPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
/// \brief Query the result of the loop access information for the loop \p L.
///
/// If the client speculates (and then issues run-time checks) for the values
/// of symbolic strides, \p Strides provides the mapping (see
/// replaceSymbolicStrideSCEV). If there is no cached result available run
/// the analysis.
const LoopAccessInfo &getInfo(Loop *L, ValueToValueMap &Strides);
void releaseMemory() override {
// Invalidate the cache when the pass is freed.
LoopAccessInfoMap.clear();
}
/// \brief Print the result of the analysis when invoked with -analyze.
void print(raw_ostream &OS, const Module *M = nullptr) const override;
private:
/// \brief The cache.
DenseMap<Loop *, std::unique_ptr<LoopAccessInfo>> LoopAccessInfoMap;
// The used analysis passes.
ScalarEvolution *SE;
const DataLayout *DL;
const TargetLibraryInfo *TLI;
AliasAnalysis *AA;
DominatorTree *DT;
};
} // End llvm namespace
#endif

View File

@ -281,7 +281,6 @@ void initializeVirtRegRewriterPass(PassRegistry&);
void initializeInstSimplifierPass(PassRegistry&);
void initializeUnpackMachineBundlesPass(PassRegistry&);
void initializeFinalizeMachineBundlesPass(PassRegistry&);
void initializeLoopAccessAnalysisPass(PassRegistry&);
void initializeLoopVectorizePass(PassRegistry&);
void initializeSLPVectorizerPass(PassRegistry&);
void initializeBBVectorizePass(PassRegistry&);

View File

@ -23,16 +23,15 @@
#include "llvm/Transforms/Utils/VectorUtils.h"
using namespace llvm;
#define DEBUG_TYPE "loop-accesses"
#define DEBUG_TYPE "loop-vectorize"
void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message,
const Function *TheFunction,
const Loop *TheLoop,
const char *PassName) {
void VectorizationReport::emitAnalysis(VectorizationReport &Message,
const Function *TheFunction,
const Loop *TheLoop) {
DebugLoc DL = TheLoop->getStartLoc();
if (const Instruction *I = Message.getInstr())
if (Instruction *I = Message.getInstr())
DL = I->getDebugLoc();
emitOptimizationRemarkAnalysis(TheFunction->getContext(), PassName,
emitOptimizationRemarkAnalysis(TheFunction->getContext(), DEBUG_TYPE,
*TheFunction, DL, Message.str());
}
@ -65,7 +64,7 @@ const SCEV *llvm::replaceSymbolicStrideSCEV(ScalarEvolution *SE,
const SCEV *ByOne =
SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true);
DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne
DEBUG(dbgs() << "LV: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne
<< "\n");
return ByOne;
}
@ -110,23 +109,6 @@ bool LoopAccessInfo::RuntimePointerCheck::needsChecking(unsigned I,
return true;
}
void LoopAccessInfo::RuntimePointerCheck::print(raw_ostream &OS,
unsigned Depth) const {
unsigned NumPointers = Pointers.size();
if (NumPointers == 0)
return;
OS.indent(Depth) << "Run-time memory checks:\n";
unsigned N = 0;
for (unsigned I = 0; I < NumPointers; ++I)
for (unsigned J = I + 1; J < NumPointers; ++J)
if (needsChecking(I, J)) {
OS.indent(Depth) << N++ << ":\n";
OS.indent(Depth + 2) << *Pointers[I] << "\n";
OS.indent(Depth + 2) << *Pointers[J] << "\n";
}
}
namespace {
/// \brief Analyses memory accesses in a loop.
///
@ -282,7 +264,7 @@ bool AccessAnalysis::canCheckPtrAtRT(
RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap);
DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *Ptr << '\n');
} else {
CanDoRT = false;
}
@ -319,7 +301,7 @@ bool AccessAnalysis::canCheckPtrAtRT(
unsigned ASi = PtrI->getType()->getPointerAddressSpace();
unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
if (ASi != ASj) {
DEBUG(dbgs() << "LAA: Runtime check would require comparison between"
DEBUG(dbgs() << "LV: Runtime check would require comparison between"
" different address spaces\n");
return false;
}
@ -334,9 +316,9 @@ void AccessAnalysis::processMemAccesses() {
// process read-only pointers. This allows us to skip dependence tests for
// read-only pointers.
DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
DEBUG(dbgs() << "LV: Processing memory accesses...\n");
DEBUG(dbgs() << " AST: "; AST.dump());
DEBUG(dbgs() << "LAA: Accesses:\n");
DEBUG(dbgs() << "LV: Accesses:\n");
DEBUG({
for (auto A : Accesses)
dbgs() << "\t" << *A.getPointer() << " (" <<
@ -472,9 +454,10 @@ public:
typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
MemoryDepChecker(ScalarEvolution *Se, const DataLayout *Dl, const Loop *L)
MemoryDepChecker(ScalarEvolution *Se, const DataLayout *Dl, const Loop *L,
const LoopAccessInfo::VectorizerParams &VectParams)
: SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0),
ShouldRetryWithRuntimeCheck(false) {}
ShouldRetryWithRuntimeCheck(false), VectParams(VectParams) {}
/// \brief Register the location (instructions are given increasing numbers)
/// of a write access.
@ -529,6 +512,9 @@ private:
/// vectorize this loop with runtime checks.
bool ShouldRetryWithRuntimeCheck;
/// \brief Vectorizer parameters used by the analysis.
LoopAccessInfo::VectorizerParams VectParams;
/// \brief Check whether there is a plausible dependence between the two
/// accesses.
///
@ -567,8 +553,8 @@ static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr,
// Make sure that the pointer does not point to aggregate types.
const PointerType *PtrTy = cast<PointerType>(Ty);
if (PtrTy->getElementType()->isAggregateType()) {
DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type"
<< *Ptr << "\n");
DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr <<
"\n");
return 0;
}
@ -576,14 +562,14 @@ static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr,
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
if (!AR) {
DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer "
DEBUG(dbgs() << "LV: Bad stride - Not an AddRecExpr pointer "
<< *Ptr << " SCEV: " << *PtrScev << "\n");
return 0;
}
// The accesss function must stride over the innermost loop.
if (Lp != AR->getLoop()) {
DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " <<
DEBUG(dbgs() << "LV: Bad stride - Not striding over innermost loop " <<
*Ptr << " SCEV: " << *PtrScev << "\n");
}
@ -598,7 +584,7 @@ static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr,
bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask);
bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space "
<< *Ptr << " SCEV: " << *PtrScev << "\n");
return 0;
}
@ -609,7 +595,7 @@ static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr,
// Calculate the pointer stride and check if it is consecutive.
const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
if (!C) {
DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr <<
DEBUG(dbgs() << "LV: Bad stride - Not a constant strided " << *Ptr <<
" SCEV: " << *PtrScev << "\n");
return 0;
}
@ -652,8 +638,7 @@ bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
// Store-load forwarding distance.
const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize;
// Maximum vector factor.
unsigned MaxVFWithoutSLForwardIssues =
VectorizerParams::MaxVectorWidth * TypeByteSize;
unsigned MaxVFWithoutSLForwardIssues = VectParams.MaxVectorWidth*TypeByteSize;
if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues)
MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes;
@ -666,14 +651,13 @@ bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
}
if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) {
DEBUG(dbgs() << "LAA: Distance " << Distance <<
DEBUG(dbgs() << "LV: Distance " << Distance <<
" that could cause a store-load forwarding conflict\n");
return true;
}
if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
MaxVFWithoutSLForwardIssues !=
VectorizerParams::MaxVectorWidth * TypeByteSize)
MaxVFWithoutSLForwardIssues != VectParams.MaxVectorWidth*TypeByteSize)
MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
return false;
}
@ -720,9 +704,9 @@ bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
const SCEV *Dist = SE->getMinusSCEV(Sink, Src);
DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
DEBUG(dbgs() << "LV: Src Scev: " << *Src << "Sink Scev: " << *Sink
<< "(Induction step: " << StrideAPtr << ")\n");
DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
DEBUG(dbgs() << "LV: Distance for " << *InstMap[AIdx] << " to "
<< *InstMap[BIdx] << ": " << *Dist << "\n");
// Need consecutive accesses. We don't want to vectorize
@ -735,7 +719,7 @@ bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
if (!C) {
DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
DEBUG(dbgs() << "LV: Dependence because of non-constant distance\n");
ShouldRetryWithRuntimeCheck = true;
return true;
}
@ -753,7 +737,7 @@ bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
ATy != BTy))
return true;
DEBUG(dbgs() << "LAA: Dependence is negative: NoDep\n");
DEBUG(dbgs() << "LV: Dependence is negative: NoDep\n");
return false;
}
@ -762,7 +746,7 @@ bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
if (Val == 0) {
if (ATy == BTy)
return false;
DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n");
DEBUG(dbgs() << "LV: Zero dependence difference but different types\n");
return true;
}
@ -771,17 +755,17 @@ bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
// Positive distance bigger than max vectorization factor.
if (ATy != BTy) {
DEBUG(dbgs() <<
"LAA: ReadWrite-Write positive dependency with different types\n");
"LV: ReadWrite-Write positive dependency with different types\n");
return false;
}
unsigned Distance = (unsigned) Val.getZExtValue();
// Bail out early if passed-in parameters make vectorization not feasible.
unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
VectorizerParams::VectorizationFactor : 1);
unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
VectorizerParams::VectorizationInterleave : 1);
unsigned ForcedFactor = (VectParams.VectorizationFactor ?
VectParams.VectorizationFactor : 1);
unsigned ForcedUnroll = (VectParams.VectorizationInterleave ?
VectParams.VectorizationInterleave : 1);
// The distance must be bigger than the size needed for a vectorized version
// of the operation and the size of the vectorized operation must not be
@ -789,7 +773,7 @@ bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
if (Distance < 2*TypeByteSize ||
2*TypeByteSize > MaxSafeDepDistBytes ||
Distance < TypeByteSize * ForcedUnroll * ForcedFactor) {
DEBUG(dbgs() << "LAA: Failure because of Positive distance "
DEBUG(dbgs() << "LV: Failure because of Positive distance "
<< Val.getSExtValue() << '\n');
return true;
}
@ -802,7 +786,7 @@ bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
couldPreventStoreLoadForward(Distance, TypeByteSize))
return true;
DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() <<
DEBUG(dbgs() << "LV: Positive distance " << Val.getSExtValue() <<
" with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n');
return false;
@ -847,56 +831,7 @@ bool MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
return true;
}
bool LoopAccessInfo::canAnalyzeLoop() {
// We can only analyze innermost loops.
if (!TheLoop->empty()) {
emitAnalysis(LoopAccessReport() << "loop is not the innermost loop");
return false;
}
// We must have a single backedge.
if (TheLoop->getNumBackEdges() != 1) {
emitAnalysis(
LoopAccessReport() <<
"loop control flow is not understood by analyzer");
return false;
}
// We must have a single exiting block.
if (!TheLoop->getExitingBlock()) {
emitAnalysis(
LoopAccessReport() <<
"loop control flow is not understood by analyzer");
return false;
}
// We only handle bottom-tested loops, i.e. loop in which the condition is
// checked at the end of each iteration. With that we can assume that all
// instructions in the loop are executed the same number of times.
if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
emitAnalysis(
LoopAccessReport() <<
"loop control flow is not understood by analyzer");
return false;
}
// We need to have a loop header.
DEBUG(dbgs() << "LAA: Found a loop: " <<
TheLoop->getHeader()->getName() << '\n');
// ScalarEvolution needs to be able to find the exit count.
const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop);
if (ExitCount == SE->getCouldNotCompute()) {
emitAnalysis(LoopAccessReport() <<
"could not determine number of loop iterations");
DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
return false;
}
return true;
}
void LoopAccessInfo::analyzeLoop(ValueToValueMap &Strides) {
bool LoopAccessInfo::canVectorizeMemory(ValueToValueMap &Strides) {
typedef SmallVector<Value*, 16> ValueVector;
typedef SmallPtrSet<Value*, 16> ValueSet;
@ -913,7 +848,7 @@ void LoopAccessInfo::analyzeLoop(ValueToValueMap &Strides) {
PtrRtCheck.Need = false;
const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
MemoryDepChecker DepChecker(SE, DL, TheLoop);
MemoryDepChecker DepChecker(SE, DL, TheLoop, VectParams);
// For each block.
for (Loop::block_iterator bb = TheLoop->block_begin(),
@ -936,11 +871,10 @@ void LoopAccessInfo::analyzeLoop(ValueToValueMap &Strides) {
LoadInst *Ld = dyn_cast<LoadInst>(it);
if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
emitAnalysis(LoopAccessReport(Ld)
emitAnalysis(VectorizationReport(Ld)
<< "read with atomic ordering or volatile read");
DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
CanVecMem = false;
return;
DEBUG(dbgs() << "LV: Found a non-simple load.\n");
return false;
}
NumLoads++;
Loads.push_back(Ld);
@ -952,17 +886,15 @@ void LoopAccessInfo::analyzeLoop(ValueToValueMap &Strides) {
if (it->mayWriteToMemory()) {
StoreInst *St = dyn_cast<StoreInst>(it);
if (!St) {
emitAnalysis(LoopAccessReport(it) <<
emitAnalysis(VectorizationReport(it) <<
"instruction cannot be vectorized");
CanVecMem = false;
return;
return false;
}
if (!St->isSimple() && !IsAnnotatedParallel) {
emitAnalysis(LoopAccessReport(St)
emitAnalysis(VectorizationReport(St)
<< "write with atomic ordering or volatile write");
DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
CanVecMem = false;
return;
DEBUG(dbgs() << "LV: Found a non-simple store.\n");
return false;
}
NumStores++;
Stores.push_back(St);
@ -977,9 +909,8 @@ void LoopAccessInfo::analyzeLoop(ValueToValueMap &Strides) {
// Check if we see any stores. If there are no stores, then we don't
// care if the pointers are *restrict*.
if (!Stores.size()) {
DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
CanVecMem = true;
return;
DEBUG(dbgs() << "LV: Found a read-only loop!\n");
return true;
}
AccessAnalysis::DepCandidates DependentAccesses;
@ -999,11 +930,10 @@ void LoopAccessInfo::analyzeLoop(ValueToValueMap &Strides) {
if (isUniform(Ptr)) {
emitAnalysis(
LoopAccessReport(ST)
VectorizationReport(ST)
<< "write to a loop invariant address could not be vectorized");
DEBUG(dbgs() << "LAA: We don't allow storing to uniform addresses\n");
CanVecMem = false;
return;
DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
return false;
}
// If we did *not* see this pointer before, insert it to the read-write
@ -1024,10 +954,9 @@ void LoopAccessInfo::analyzeLoop(ValueToValueMap &Strides) {
if (IsAnnotatedParallel) {
DEBUG(dbgs()
<< "LAA: A loop annotated parallel, ignore memory dependency "
<< "LV: A loop annotated parallel, ignore memory dependency "
<< "checks.\n");
CanVecMem = true;
return;
return true;
}
for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
@ -1061,9 +990,8 @@ void LoopAccessInfo::analyzeLoop(ValueToValueMap &Strides) {
// If we write (or read-write) to a single destination and there are no
// other reads in this loop then is it safe to vectorize.
if (NumReadWrites == 1 && NumReads == 0) {
DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
CanVecMem = true;
return;
DEBUG(dbgs() << "LV: Found a write-only loop!\n");
return true;
}
// Build dependence sets and check whether we need a runtime pointer bounds
@ -1079,7 +1007,7 @@ void LoopAccessInfo::analyzeLoop(ValueToValueMap &Strides) {
CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop,
Strides);
DEBUG(dbgs() << "LAA: We need to do " << NumComparisons <<
DEBUG(dbgs() << "LV: We need to do " << NumComparisons <<
" pointer comparisons.\n");
// If we only have one set of dependences to check pointers among we don't
@ -1089,36 +1017,34 @@ void LoopAccessInfo::analyzeLoop(ValueToValueMap &Strides) {
// Check that we did not collect too many pointers or found an unsizeable
// pointer.
if (!CanDoRT ||
NumComparisons > VectorizerParams::RuntimeMemoryCheckThreshold) {
if (!CanDoRT || NumComparisons > VectParams.RuntimeMemoryCheckThreshold) {
PtrRtCheck.reset();
CanDoRT = false;
}
if (CanDoRT) {
DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n");
DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n");
}
if (NeedRTCheck && !CanDoRT) {
emitAnalysis(LoopAccessReport() << "cannot identify array bounds");
DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " <<
emitAnalysis(VectorizationReport() << "cannot identify array bounds");
DEBUG(dbgs() << "LV: We can't vectorize because we can't find " <<
"the array bounds.\n");
PtrRtCheck.reset();
CanVecMem = false;
return;
return false;
}
PtrRtCheck.Need = NeedRTCheck;
CanVecMem = true;
bool CanVecMem = true;
if (Accesses.isDependencyCheckNeeded()) {
DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
DEBUG(dbgs() << "LV: Checking memory dependencies\n");
CanVecMem = DepChecker.areDepsSafe(
DependentAccesses, Accesses.getDependenciesToCheck(), Strides);
MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes();
if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) {
DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
DEBUG(dbgs() << "LV: Retrying with memory checks\n");
NeedRTCheck = true;
// Clear the dependency checks. We assume they are not needed.
@ -1131,20 +1057,18 @@ void LoopAccessInfo::analyzeLoop(ValueToValueMap &Strides) {
TheLoop, Strides, true);
// Check that we did not collect too many pointers or found an unsizeable
// pointer.
if (!CanDoRT ||
NumComparisons > VectorizerParams::RuntimeMemoryCheckThreshold) {
if (!CanDoRT || NumComparisons > VectParams.RuntimeMemoryCheckThreshold) {
if (!CanDoRT && NumComparisons > 0)
emitAnalysis(LoopAccessReport()
emitAnalysis(VectorizationReport()
<< "cannot check memory dependencies at runtime");
else
emitAnalysis(LoopAccessReport()
emitAnalysis(VectorizationReport()
<< NumComparisons << " exceeds limit of "
<< VectorizerParams::RuntimeMemoryCheckThreshold
<< VectParams.RuntimeMemoryCheckThreshold
<< " dependent memory operations checked at runtime");
DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
DEBUG(dbgs() << "LV: Can't vectorize with memory checks\n");
PtrRtCheck.reset();
CanVecMem = false;
return;
return false;
}
CanVecMem = true;
@ -1152,11 +1076,13 @@ void LoopAccessInfo::analyzeLoop(ValueToValueMap &Strides) {
}
if (!CanVecMem)
emitAnalysis(LoopAccessReport() <<
emitAnalysis(VectorizationReport() <<
"unsafe dependent memory operations in loop");
DEBUG(dbgs() << "LAA: We" << (NeedRTCheck ? "" : " don't") <<
DEBUG(dbgs() << "LV: We" << (NeedRTCheck ? "" : " don't") <<
" need a runtime memory check.\n");
return CanVecMem;
}
bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
@ -1168,12 +1094,11 @@ bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
return !DT->dominates(BB, Latch);
}
void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) {
assert(!Report && "Multiple report generated");
Report = Message;
void LoopAccessInfo::emitAnalysis(VectorizationReport &Message) {
VectorizationReport::emitAnalysis(Message, TheFunction, TheLoop);
}
bool LoopAccessInfo::isUniform(Value *V) const {
bool LoopAccessInfo::isUniform(Value *V) {
return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
}
@ -1189,7 +1114,7 @@ static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
}
std::pair<Instruction *, Instruction *>
LoopAccessInfo::addRuntimeCheck(Instruction *Loc) const {
LoopAccessInfo::addRuntimeCheck(Instruction *Loc) {
Instruction *tnullptr = nullptr;
if (!PtrRtCheck.Need)
return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr);
@ -1207,12 +1132,12 @@ LoopAccessInfo::addRuntimeCheck(Instruction *Loc) const {
const SCEV *Sc = SE->getSCEV(Ptr);
if (SE->isLoopInvariant(Sc, TheLoop)) {
DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" <<
DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" <<
*Ptr <<"\n");
Starts.push_back(Ptr);
Ends.push_back(Ptr);
} else {
DEBUG(dbgs() << "LAA: Adding RT check for range:" << *Ptr << '\n');
DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr << '\n');
unsigned AS = Ptr->getType()->getPointerAddressSpace();
// Use this type for pointer arithmetic.
@ -1272,100 +1197,3 @@ LoopAccessInfo::addRuntimeCheck(Instruction *Loc) const {
FirstInst = getFirstInst(FirstInst, Check, Loc);
return std::make_pair(FirstInst, Check);
}
LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
const DataLayout *DL,
const TargetLibraryInfo *TLI, AliasAnalysis *AA,
DominatorTree *DT, ValueToValueMap &Strides)
: TheLoop(L), SE(SE), DL(DL), TLI(TLI), AA(AA), DT(DT), NumLoads(0),
NumStores(0), MaxSafeDepDistBytes(-1U), CanVecMem(false) {
if (canAnalyzeLoop())
analyzeLoop(Strides);
}
void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
if (CanVecMem) {
if (PtrRtCheck.empty())
OS.indent(Depth) << "Memory dependences are safe\n";
else
OS.indent(Depth) << "Memory dependences are safe with run-time checks\n";
}
if (Report)
OS.indent(Depth) << "Report: " << Report->str() << "\n";
// FIXME: Print unsafe dependences
// List the pair of accesses need run-time checks to prove independence.
PtrRtCheck.print(OS, Depth);
OS << "\n";
}
const LoopAccessInfo &LoopAccessAnalysis::getInfo(Loop *L,
ValueToValueMap &Strides) {
auto &LAI = LoopAccessInfoMap[L];
#ifndef NDEBUG
assert((!LAI || LAI->NumSymbolicStrides == Strides.size()) &&
"Symbolic strides changed for loop");
#endif
if (!LAI) {
LAI = llvm::make_unique<LoopAccessInfo>(L, SE, DL, TLI, AA, DT, Strides);
#ifndef NDEBUG
LAI->NumSymbolicStrides = Strides.size();
#endif
}
return *LAI.get();
}
void LoopAccessAnalysis::print(raw_ostream &OS, const Module *M) const {
LoopAccessAnalysis &LAA = *const_cast<LoopAccessAnalysis *>(this);
LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
ValueToValueMap NoSymbolicStrides;
for (Loop *TopLevelLoop : *LI)
for (Loop *L : depth_first(TopLevelLoop)) {
OS.indent(2) << L->getHeader()->getName() << ":\n";
auto &LAI = LAA.getInfo(L, NoSymbolicStrides);
LAI.print(OS, 4);
}
}
bool LoopAccessAnalysis::runOnFunction(Function &F) {
SE = &getAnalysis<ScalarEvolution>();
DL = F.getParent()->getDataLayout();
auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
TLI = TLIP ? &TLIP->getTLI() : nullptr;
AA = &getAnalysis<AliasAnalysis>();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
return false;
}
void LoopAccessAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<ScalarEvolution>();
AU.addRequired<AliasAnalysis>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
AU.setPreservesAll();
}
char LoopAccessAnalysis::ID = 0;
static const char laa_name[] = "Loop Access Analysis";
#define LAA_NAME "loop-accesses"
INITIALIZE_PASS_BEGIN(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(LoopAccessAnalysis, LAA_NAME, laa_name, false, true)
namespace llvm {
Pass *createLAAPass() {
return new LoopAccessAnalysis();
}
}

View File

@ -46,7 +46,6 @@ void llvm::initializeScalarOpts(PassRegistry &Registry) {
initializeJumpThreadingPass(Registry);
initializeLICMPass(Registry);
initializeLoopDeletionPass(Registry);
initializeLoopAccessAnalysisPass(Registry);
initializeLoopInstSimplifyPass(Registry);
initializeLoopRotatePass(Registry);
initializeLoopStrengthReducePass(Registry);

View File

@ -106,19 +106,14 @@ using namespace llvm::PatternMatch;
STATISTIC(LoopsVectorized, "Number of loops vectorized");
STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
static cl::opt<unsigned, true>
VectorizationFactor("force-vector-width", cl::Hidden,
cl::desc("Sets the SIMD width. Zero is autoselect."),
cl::location(VectorizerParams::VectorizationFactor));
unsigned VectorizerParams::VectorizationFactor = 0;
static cl::opt<unsigned>
VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden,
cl::desc("Sets the SIMD width. Zero is autoselect."));
static cl::opt<unsigned, true>
VectorizationInterleave("force-vector-interleave", cl::Hidden,
cl::desc("Sets the vectorization interleave count. "
"Zero is autoselect."),
cl::location(
VectorizerParams::VectorizationInterleave));
unsigned VectorizerParams::VectorizationInterleave = 0;
static cl::opt<unsigned>
VectorizationInterleave("force-vector-interleave", cl::init(0), cl::Hidden,
cl::desc("Sets the vectorization interleave count. "
"Zero is autoselect."));
static cl::opt<bool>
EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
@ -152,10 +147,10 @@ static const unsigned TinyTripCountUnrollThreshold = 128;
/// When performing memory disambiguation checks at runtime do not make more
/// than this number of comparisons.
const unsigned VectorizerParams::RuntimeMemoryCheckThreshold = 8;
static const unsigned RuntimeMemoryCheckThreshold = 8;
/// Maximum simd width.
const unsigned VectorizerParams::MaxVectorWidth = 64;
static const unsigned MaxVectorWidth = 64;
static cl::opt<unsigned> ForceTargetNumScalarRegs(
"force-target-num-scalar-regs", cl::init(0), cl::Hidden,
@ -224,21 +219,6 @@ class LoopVectorizationLegality;
class LoopVectorizationCostModel;
class LoopVectorizeHints;
/// \brief This modifies LoopAccessReport to initialize message with
/// loop-vectorizer-specific part.
class VectorizationReport : public LoopAccessReport {
public:
VectorizationReport(Instruction *I = nullptr)
: LoopAccessReport("loop not vectorized: ", I) {}
/// \brief This allows promotion of the loop-access analysis report into the
/// loop-vectorizer report. It modifies the message to add the
/// loop-vectorizer-specific part of the message.
explicit VectorizationReport(const LoopAccessReport &R)
: LoopAccessReport(Twine("loop not vectorized: ") + R.str(),
R.getInstr()) {}
};
/// InnerLoopVectorizer vectorizes loops which contain only one basic
/// block to a specified vectorization factor (VF).
/// This class performs the widening of scalars into vectors, or multiple
@ -567,11 +547,15 @@ public:
LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, const DataLayout *DL,
DominatorTree *DT, TargetLibraryInfo *TLI,
AliasAnalysis *AA, Function *F,
const TargetTransformInfo *TTI,
LoopAccessAnalysis *LAA)
const TargetTransformInfo *TTI)
: NumPredStores(0), TheLoop(L), SE(SE), DL(DL),
TLI(TLI), TheFunction(F), TTI(TTI), DT(DT), LAA(LAA), LAI(nullptr),
Induction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false) {}
TLI(TLI), TheFunction(F), TTI(TTI), DT(DT), Induction(nullptr),
WidestIndTy(nullptr),
LAI(F, L, SE, DL, TLI, AA, DT,
LoopAccessInfo::VectorizerParams(
MaxVectorWidth, VectorizationFactor, VectorizationInterleave,
RuntimeMemoryCheckThreshold)),
HasFunNoNaNAttr(false) {}
/// This enum represents the kinds of reductions that we support.
enum ReductionKind {
@ -756,19 +740,19 @@ public:
bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); }
/// Returns the information that we collected about runtime memory check.
const LoopAccessInfo::RuntimePointerCheck *getRuntimePointerCheck() const {
return LAI->getRuntimePointerCheck();
LoopAccessInfo::RuntimePointerCheck *getRuntimePointerCheck() {
return LAI.getRuntimePointerCheck();
}
const LoopAccessInfo *getLAI() const {
return LAI;
LoopAccessInfo *getLAI() {
return &LAI;
}
/// This function returns the identity element (or neutral element) for
/// the operation K.
static Constant *getReductionIdentity(ReductionKind K, Type *Tp);
unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); }
unsigned getMaxSafeDepDistBytes() { return LAI.getMaxSafeDepDistBytes(); }
bool hasStride(Value *V) { return StrideSet.count(V); }
bool mustCheckStrides() { return !StrideSet.empty(); }
@ -793,10 +777,10 @@ public:
return (MaskedOp.count(I) != 0);
}
unsigned getNumStores() const {
return LAI->getNumStores();
return LAI.getNumStores();
}
unsigned getNumLoads() const {
return LAI->getNumLoads();
return LAI.getNumLoads();
}
unsigned getNumPredStores() const {
return NumPredStores;
@ -850,11 +834,9 @@ private:
void collectStridedAccess(Value *LoadOrStoreInst);
/// Report an analysis message to assist the user in diagnosing loops that are
/// not vectorized. These are handled as LoopAccessReport rather than
/// VectorizationReport because the << operator of VectorizationReport returns
/// LoopAccessReport.
void emitAnalysis(const LoopAccessReport &Message) {
LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, LV_NAME);
/// not vectorized.
void emitAnalysis(VectorizationReport &Message) {
VectorizationReport::emitAnalysis(Message, TheFunction, TheLoop);
}
unsigned NumPredStores;
@ -873,11 +855,6 @@ private:
const TargetTransformInfo *TTI;
/// Dominator Tree.
DominatorTree *DT;
// LoopAccess analysis.
LoopAccessAnalysis *LAA;
// And the loop-accesses info corresponding to this loop. This pointer is
// null until canVectorizeMemory sets it up.
const LoopAccessInfo *LAI;
// --- vectorization state --- //
@ -899,7 +876,7 @@ private:
/// This set holds the variables which are known to be uniform after
/// vectorization.
SmallPtrSet<Instruction*, 4> Uniforms;
LoopAccessInfo LAI;
/// Can we assume the absence of NaNs.
bool HasFunNoNaNAttr;
@ -989,11 +966,9 @@ private:
bool isConsecutiveLoadOrStore(Instruction *I);
/// Report an analysis message to assist the user in diagnosing loops that are
/// not vectorized. These are handled as LoopAccessReport rather than
/// VectorizationReport because the << operator of VectorizationReport returns
/// LoopAccessReport.
void emitAnalysis(const LoopAccessReport &Message) {
LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, LV_NAME);
/// not vectorized.
void emitAnalysis(VectorizationReport &Message) {
VectorizationReport::emitAnalysis(Message, TheFunction, TheLoop);
}
/// Values used only by @llvm.assume calls.
@ -1046,7 +1021,7 @@ class LoopVectorizeHints {
bool validate(unsigned Val) {
switch (Kind) {
case HK_WIDTH:
return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
return isPowerOf2_32(Val) && Val <= MaxVectorWidth;
case HK_UNROLL:
return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
case HK_FORCE:
@ -1282,7 +1257,6 @@ struct LoopVectorize : public FunctionPass {
TargetLibraryInfo *TLI;
AliasAnalysis *AA;
AssumptionCache *AC;
LoopAccessAnalysis *LAA;
bool DisableUnrolling;
bool AlwaysVectorize;
@ -1300,7 +1274,6 @@ struct LoopVectorize : public FunctionPass {
TLI = TLIP ? &TLIP->getTLI() : nullptr;
AA = &getAnalysis<AliasAnalysis>();
AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
LAA = &getAnalysis<LoopAccessAnalysis>();
// Compute some weights outside of the loop over the loops. Compute this
// using a BranchProbability to re-use its scaling math.
@ -1411,7 +1384,7 @@ struct LoopVectorize : public FunctionPass {
}
// Check if it is legal to vectorize the loop.
LoopVectorizationLegality LVL(L, SE, DL, DT, TLI, AA, F, TTI, LAA);
LoopVectorizationLegality LVL(L, SE, DL, DT, TLI, AA, F, TTI);
if (!LVL.canVectorize()) {
DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
emitMissedWarning(F, L, Hints);
@ -1516,7 +1489,6 @@ struct LoopVectorize : public FunctionPass {
AU.addRequired<ScalarEvolution>();
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.addRequired<AliasAnalysis>();
AU.addRequired<LoopAccessAnalysis>();
AU.addPreserved<LoopInfoWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addPreserved<AliasAnalysis>();
@ -1688,7 +1660,7 @@ int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
}
bool LoopVectorizationLegality::isUniform(Value *V) {
return LAI->isUniform(V);
return LAI.isUniform(V);
}
InnerLoopVectorizer::VectorParts&
@ -3428,7 +3400,7 @@ bool LoopVectorizationLegality::canVectorize() {
collectLoopUniforms();
DEBUG(dbgs() << "LV: We can vectorize this loop" <<
(LAI->getRuntimePointerCheck()->Need ? " (with a runtime bound check)" :
(LAI.getRuntimePointerCheck()->Need ? " (with a runtime bound check)" :
"")
<<"!\n");
@ -3853,11 +3825,7 @@ void LoopVectorizationLegality::collectLoopUniforms() {
}
bool LoopVectorizationLegality::canVectorizeMemory() {
LAI = &LAA->getInfo(TheLoop, Strides);
auto &OptionalReport = LAI->getReport();
if (OptionalReport)
emitAnalysis(VectorizationReport(*OptionalReport));
return LAI->canVectorizeMemory();
return LAI.canVectorizeMemory(Strides);
}
static bool hasMultipleUsesOf(Instruction *I,
@ -5032,7 +5000,6 @@ INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_PASS_DEPENDENCY(LCSSA)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(LoopAccessAnalysis)
INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
namespace llvm {

View File

@ -1,60 +0,0 @@
; RUN: opt -loop-accesses -analyze < %s | FileCheck %s
; FIXME: This is the non-debug version of unsafe-and-rt-checks.ll not
; requiring "asserts". Once we can check memory dependences without -debug,
; we should remove this test.
; Analyze this loop:
; for (i = 0; i < n; i++)
; A[i + 1] = A[i] * B[i] * C[i];
target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-apple-macosx10.10.0"
; CHECK: Report: unsafe dependent memory operations in loop
; CHECK: Run-time memory checks:
; CHECK-NEXT: 0:
; CHECK-NEXT: %arrayidxA_plus_2 = getelementptr inbounds i16* %a, i64 %add
; CHECK-NEXT: %arrayidxB = getelementptr inbounds i16* %b, i64 %storemerge3
; CHECK-NEXT: 1:
; CHECK-NEXT: %arrayidxA_plus_2 = getelementptr inbounds i16* %a, i64 %add
; CHECK-NEXT: %arrayidxC = getelementptr inbounds i16* %c, i64 %storemerge3
@n = global i32 20, align 4
@B = common global i16* null, align 8
@A = common global i16* null, align 8
@C = common global i16* null, align 8
define void @f() {
entry:
%a = load i16** @A, align 8
%b = load i16** @B, align 8
%c = load i16** @C, align 8
br label %for.body
for.body: ; preds = %for.body, %entry
%storemerge3 = phi i64 [ 0, %entry ], [ %add, %for.body ]
%arrayidxA = getelementptr inbounds i16* %a, i64 %storemerge3
%loadA = load i16* %arrayidxA, align 2
%arrayidxB = getelementptr inbounds i16* %b, i64 %storemerge3
%loadB = load i16* %arrayidxB, align 2
%arrayidxC = getelementptr inbounds i16* %c, i64 %storemerge3
%loadC = load i16* %arrayidxC, align 2
%mul = mul i16 %loadB, %loadA
%mul1 = mul i16 %mul, %loadC
%add = add nuw nsw i64 %storemerge3, 1
%arrayidxA_plus_2 = getelementptr inbounds i16* %a, i64 %add
store i16 %mul1, i16* %arrayidxA_plus_2, align 2
%exitcond = icmp eq i64 %add, 20
br i1 %exitcond, label %for.end, label %for.body
for.end: ; preds = %for.body
ret void
}

View File

@ -1,61 +0,0 @@
; RUN: opt -loop-accesses -analyze < %s | FileCheck %s
; RUN: opt -loop-accesses -analyze -debug-only=loop-accesses < %s 2>&1 | FileCheck %s --check-prefix=DEBUG
; REQUIRES: asserts
; Analyze this loop:
; for (i = 0; i < n; i++)
; A[i + 1] = A[i] * B[i] * C[i];
target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-apple-macosx10.10.0"
; CHECK: Report: unsafe dependent memory operations in loop
; DEBUG: LAA: Distance for %loadA = load i16* %arrayidxA, align 2 to store i16 %mul1, i16* %arrayidxA_plus_2, align 2: 2
; DEBUG-NEXT: LAA: Failure because of Positive distance 2
; CHECK: Run-time memory checks:
; CHECK-NEXT: 0:
; CHECK-NEXT: %arrayidxA_plus_2 = getelementptr inbounds i16* %a, i64 %add
; CHECK-NEXT: %arrayidxB = getelementptr inbounds i16* %b, i64 %storemerge3
; CHECK-NEXT: 1:
; CHECK-NEXT: %arrayidxA_plus_2 = getelementptr inbounds i16* %a, i64 %add
; CHECK-NEXT: %arrayidxC = getelementptr inbounds i16* %c, i64 %storemerge3
@n = global i32 20, align 4
@B = common global i16* null, align 8
@A = common global i16* null, align 8
@C = common global i16* null, align 8
define void @f() {
entry:
%a = load i16** @A, align 8
%b = load i16** @B, align 8
%c = load i16** @C, align 8
br label %for.body
for.body: ; preds = %for.body, %entry
%storemerge3 = phi i64 [ 0, %entry ], [ %add, %for.body ]
%arrayidxA = getelementptr inbounds i16* %a, i64 %storemerge3
%loadA = load i16* %arrayidxA, align 2
%arrayidxB = getelementptr inbounds i16* %b, i64 %storemerge3
%loadB = load i16* %arrayidxB, align 2
%arrayidxC = getelementptr inbounds i16* %c, i64 %storemerge3
%loadC = load i16* %arrayidxC, align 2
%mul = mul i16 %loadB, %loadA
%mul1 = mul i16 %mul, %loadC
%add = add nuw nsw i64 %storemerge3, 1
%arrayidxA_plus_2 = getelementptr inbounds i16* %a, i64 %add
store i16 %mul1, i16* %arrayidxA_plus_2, align 2
%exitcond = icmp eq i64 %add, 20
br i1 %exitcond, label %for.end, label %for.body
for.end: ; preds = %for.body
ret void
}