[libc] Enhance ArrayRef + unittests

This patch mostly adds unittests for `ArrayRef` and `MutableArrayRef`, additionnaly:
 - We mimic the behavior of `std::vector` and disallow CV qualified type (`ArrayRef<const X>` is not allowed).
   This is to make sure that the type traits are always valid (e.g. `value_type`, `pointer`, ...).
 - In the previous implementation `ArrayRef` would define `value_type` as `const T` but this is not correct, it should be `T` for both `MutableArrayRef` and `ArrayRef`.
 - We add the `equals` method to ease testing,
 - We define the constructor taking an `Array` outside of the base implementation to ensure we match `const Array<T>&` and not `Array<const T>&` in the case of `ArrayRef`.

Differential Revision: https://reviews.llvm.org/D100732
This commit is contained in:
Guillaume Chatelet 2021-04-21 13:25:24 +00:00
parent ca9b7e2e2f
commit fa404ae43a
3 changed files with 301 additions and 33 deletions

View File

@ -19,3 +19,13 @@ add_libc_unittest(
DEPENDS
libc.utils.CPP.standalone_cpp
)
add_libc_unittest(
arrayref_test
SUITE
libc_cpp_utils_unittests
SRCS
arrayref_test.cpp
DEPENDS
libc.utils.CPP.standalone_cpp
)

View File

@ -0,0 +1,222 @@
//===-- Unittests for ArrayRef --------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "utils/CPP/ArrayRef.h"
#include "utils/UnitTest/Test.h"
namespace __llvm_libc {
namespace cpp {
// The following tests run on both 'ArrayRef' and 'MutableArrayRef'.
using Types = testing::TypeList<ArrayRef<int>, MutableArrayRef<int>>;
TYPED_TEST(LlvmLibcArrayRefTest, ConstructFromElement, Types) {
using value_type = typename ParamType::value_type;
using const_pointer = typename ParamType::const_pointer;
value_type element = 5;
ParamType arrayref(element);
EXPECT_FALSE(arrayref.empty());
EXPECT_EQ(arrayref.size(), 1UL);
EXPECT_EQ(arrayref[0], 5);
EXPECT_EQ((const_pointer)arrayref.data(), (const_pointer)&element);
}
TYPED_TEST(LlvmLibcArrayRefTest, ConstructFromPointerAndSize, Types) {
using value_type = typename ParamType::value_type;
using const_pointer = typename ParamType::const_pointer;
value_type values[] = {1, 2};
ParamType arrayref(values, 2);
EXPECT_FALSE(arrayref.empty());
EXPECT_EQ(arrayref.size(), 2UL);
EXPECT_EQ(arrayref[0], 1);
EXPECT_EQ(arrayref[1], 2);
EXPECT_EQ((const_pointer)arrayref.data(), (const_pointer)values);
}
TYPED_TEST(LlvmLibcArrayRefTest, ConstructFromIterator, Types) {
using value_type = typename ParamType::value_type;
using const_pointer = typename ParamType::const_pointer;
value_type values[] = {1, 2};
ParamType arrayref(&values[0], &values[2]);
EXPECT_FALSE(arrayref.empty());
EXPECT_EQ(arrayref.size(), 2UL);
EXPECT_EQ(arrayref[0], 1);
EXPECT_EQ(arrayref[1], 2);
EXPECT_EQ((const_pointer)arrayref.data(), (const_pointer)&values[0]);
}
TYPED_TEST(LlvmLibcArrayRefTest, ConstructFromCArray, Types) {
using value_type = typename ParamType::value_type;
using const_pointer = typename ParamType::const_pointer;
value_type values[] = {1, 2};
ParamType arrayref(values);
EXPECT_FALSE(arrayref.empty());
EXPECT_EQ(arrayref.size(), 2UL);
EXPECT_EQ(arrayref[0], 1);
EXPECT_EQ(arrayref[1], 2);
EXPECT_EQ((const_pointer)arrayref.data(), (const_pointer)values);
}
TYPED_TEST(LlvmLibcArrayRefTest, ConstructFromLibcArray, Types) {
using value_type = typename ParamType::value_type;
using const_pointer = typename ParamType::const_pointer;
Array<value_type, 2> values = {1, 2};
ParamType arrayref(values);
EXPECT_FALSE(arrayref.empty());
EXPECT_EQ(arrayref.size(), 2UL);
EXPECT_EQ(arrayref[0], 1);
EXPECT_EQ(arrayref[1], 2);
EXPECT_EQ((const_pointer)arrayref.data(), (const_pointer)values.data());
}
TYPED_TEST(LlvmLibcArrayRefTest, Equals, Types) {
using value_type = typename ParamType::value_type;
value_type values[] = {1, 2, 3};
ParamType initial(values);
EXPECT_TRUE(initial.equals(initial));
ParamType shallow_copy(values);
EXPECT_TRUE(initial.equals(shallow_copy));
value_type same_values[] = {1, 2, 3};
EXPECT_TRUE(initial.equals(same_values));
value_type different_values[] = {1, 2, 4};
EXPECT_FALSE(initial.equals(different_values));
}
TYPED_TEST(LlvmLibcArrayRefTest, SliceUnary, Types) {
using value_type = typename ParamType::value_type;
value_type values[] = {1, 2, 3};
ParamType arrayref(values);
{
value_type values[] = {1, 2, 3};
EXPECT_TRUE(arrayref.slice(0).equals(values));
}
{
value_type values[] = {2, 3};
EXPECT_TRUE(arrayref.slice(1).equals(values));
}
{
value_type values[] = {3};
EXPECT_TRUE(arrayref.slice(2).equals(values));
}
{ EXPECT_TRUE(arrayref.slice(3).empty()); }
}
TYPED_TEST(LlvmLibcArrayRefTest, SliceBinary, Types) {
using value_type = typename ParamType::value_type;
value_type values[] = {1, 2, 3};
ParamType arrayref(values);
{
EXPECT_TRUE(arrayref.slice(0, 0).empty());
EXPECT_TRUE(arrayref.slice(1, 0).empty());
EXPECT_TRUE(arrayref.slice(2, 0).empty());
EXPECT_TRUE(arrayref.slice(3, 0).empty());
}
{
value_type values[] = {1};
EXPECT_TRUE(arrayref.slice(0, 1).equals(values));
}
{
value_type values[] = {2};
EXPECT_TRUE(arrayref.slice(1, 1).equals(values));
}
{
value_type values[] = {3};
EXPECT_TRUE(arrayref.slice(2, 1).equals(values));
}
{
value_type values[] = {1, 2};
EXPECT_TRUE(arrayref.slice(0, 2).equals(values));
}
{
value_type values[] = {2, 3};
EXPECT_TRUE(arrayref.slice(1, 2).equals(values));
}
{
value_type values[] = {1, 2, 3};
EXPECT_TRUE(arrayref.slice(0, 3).equals(values));
}
}
TYPED_TEST(LlvmLibcArrayRefTest, DropFront, Types) {
using value_type = typename ParamType::value_type;
value_type values[] = {1, 2, 3};
ParamType arrayref(values);
{
value_type values[] = {1, 2, 3};
EXPECT_TRUE(arrayref.drop_front(0).equals(values));
}
{
value_type values[] = {2, 3};
EXPECT_TRUE(arrayref.drop_front(1).equals(values));
}
{
value_type values[] = {3};
EXPECT_TRUE(arrayref.drop_front(2).equals(values));
}
{ EXPECT_TRUE(arrayref.drop_front(3).empty()); }
}
TYPED_TEST(LlvmLibcArrayRefTest, DropBack, Types) {
using value_type = typename ParamType::value_type;
value_type values[] = {1, 2, 3};
ParamType arrayref(values);
{
value_type values[] = {1, 2, 3};
EXPECT_TRUE(arrayref.drop_back(0).equals(values));
}
{
value_type values[] = {1, 2};
EXPECT_TRUE(arrayref.drop_back(1).equals(values));
}
{
value_type values[] = {1};
EXPECT_TRUE(arrayref.drop_back(2).equals(values));
}
{ EXPECT_TRUE(arrayref.drop_back(3).empty()); }
}
TYPED_TEST(LlvmLibcArrayRefTest, TakeFront, Types) {
using value_type = typename ParamType::value_type;
value_type values[] = {1, 2, 3};
ParamType arrayref(values);
{ EXPECT_TRUE(arrayref.take_front(0).empty()); }
{
value_type values[] = {1};
EXPECT_TRUE(arrayref.take_front(1).equals(values));
}
{
value_type values[] = {1, 2};
EXPECT_TRUE(arrayref.take_front(2).equals(values));
}
{
value_type values[] = {1, 2, 3};
EXPECT_TRUE(arrayref.take_front(3).equals(values));
}
}
TYPED_TEST(LlvmLibcArrayRefTest, TakeBack, Types) {
using value_type = typename ParamType::value_type;
value_type values[] = {1, 2, 3};
ParamType arrayref(values);
{ EXPECT_TRUE(arrayref.take_back(0).empty()); }
{
value_type values[] = {3};
EXPECT_TRUE(arrayref.take_back(1).equals(values));
}
{
value_type values[] = {2, 3};
EXPECT_TRUE(arrayref.take_back(2).equals(values));
}
{
value_type values[] = {1, 2, 3};
EXPECT_TRUE(arrayref.take_back(3).equals(values));
}
}
} // namespace cpp
} // namespace __llvm_libc

View File

@ -10,6 +10,7 @@
#define LLVM_LIBC_UTILS_CPP_ARRAYREF_H
#include "Array.h"
#include "TypeTraits.h" //RemoveCVType
#include <stddef.h> // For size_t.
@ -21,81 +22,116 @@ namespace cpp {
// llvm/ADT/ArrayRef.h. The implementations in this file are of a limited
// functionality, but can be extended in an as needed basis.
namespace internal {
template <typename T> class ArrayRefBase {
template <typename QualifiedT> class ArrayRefBase {
public:
using iterator = T *;
using pointer = T *;
using reference = T &;
using value_type = RemoveCVType<QualifiedT>;
using pointer = value_type *;
using const_pointer = const value_type *;
using reference = value_type &;
using const_reference = const value_type &;
using iterator = const_pointer;
using const_iterator = const_pointer;
using size_type = size_t;
using difference_type = ptrdiff_t;
ArrayRefBase() = default;
// From Array.
template <size_t N>
ArrayRefBase(Array<T, N> &Arr) : Data(Arr.Data), Length(N) {}
// Construct an ArrayRefBase from a single element.
explicit ArrayRefBase(T &OneElt) : Data(&OneElt), Length(1) {}
explicit ArrayRefBase(QualifiedT &OneElt) : Data(&OneElt), Length(1) {}
// Construct an ArrayRefBase from a pointer and length.
ArrayRefBase(pointer Data, size_t Length) : Data(Data), Length(Length) {}
ArrayRefBase(QualifiedT *Data, size_t Length) : Data(Data), Length(Length) {}
// Construct an ArrayRefBase from a range.
ArrayRefBase(iterator Begin, iterator End)
ArrayRefBase(QualifiedT *Begin, QualifiedT *End)
: Data(Begin), Length(End - Begin) {}
// Construct an ArrayRefBase from a C array.
template <size_t N>
constexpr ArrayRefBase(T (&Arr)[N]) : Data(Arr), Length(N) {}
iterator begin() const { return Data; }
iterator end() const { return Data + Length; }
bool empty() const { return Length == 0; }
pointer data() const { return Data; }
constexpr ArrayRefBase(QualifiedT (&Arr)[N]) : Data(Arr), Length(N) {}
QualifiedT *data() const { return Data; }
size_t size() const { return Length; }
reference operator[](size_t Index) const { return Data[Index]; }
auto begin() const { return data(); }
auto end() const { return data() + size(); }
bool empty() const { return size() == 0; }
auto operator[](size_t Index) const { return data()[Index]; }
// slice(n, m) - Chop off the first N elements of the array, and keep M
// elements in the array.
ArrayRefBase<T> slice(size_t N, size_t M) const {
return ArrayRefBase<T>(data() + N, M);
}
auto slice(size_t N, size_t M) const { return ArrayRefBase(data() + N, M); }
// slice(n) - Chop off the first N elements of the array.
ArrayRefBase<T> slice(size_t N) const { return slice(N, size() - N); }
auto slice(size_t N) const { return slice(N, size() - N); }
// Drop the first \p N elements of the array.
ArrayRefBase<T> drop_front(size_t N = 1) const {
return slice(N, size() - N);
}
auto drop_front(size_t N = 1) const { return slice(N, size() - N); }
// Drop the last \p N elements of the array.
ArrayRefBase<T> drop_back(size_t N = 1) const { return slice(0, size() - N); }
auto drop_back(size_t N = 1) const { return slice(0, size() - N); }
// Return a copy of *this with only the first \p N elements.
ArrayRefBase<T> take_front(size_t N = 1) const {
auto take_front(size_t N = 1) const {
if (N >= size())
return *this;
return drop_back(size() - N);
}
// Return a copy of *this with only the last \p N elements.
ArrayRefBase<T> take_back(size_t N = 1) const {
auto take_back(size_t N = 1) const {
if (N >= size())
return *this;
return drop_front(size() - N);
}
// equals - Check for element-wise equality.
bool equals(ArrayRefBase<QualifiedT> RHS) const {
if (Length != RHS.Length)
return false;
auto First1 = begin();
auto Last1 = end();
auto First2 = RHS.begin();
for (; First1 != Last1; ++First1, ++First2) {
if (!(*First1 == *First2)) {
return false;
}
}
return true;
}
private:
pointer Data = nullptr;
QualifiedT *Data = nullptr;
size_t Length = 0;
};
} // namespace internal
template <typename T> using ArrayRef = internal::ArrayRefBase<const T>;
template <typename T> using MutableArrayRef = internal::ArrayRefBase<T>;
template <typename T> struct ArrayRef : public internal::ArrayRefBase<const T> {
private:
static_assert(IsSameV<T, RemoveCVType<T>>,
"ArrayRef must have a non-const, non-volatile value_type");
using Impl = internal::ArrayRefBase<const T>;
using Impl::Impl;
public:
// From Array.
template <size_t N> ArrayRef(const Array<T, N> &Arr) : Impl(Arr.Data, N) {}
};
template <typename T>
struct MutableArrayRef : public internal::ArrayRefBase<T> {
private:
static_assert(
IsSameV<T, RemoveCVType<T>>,
"MutableArrayRef must have a non-const, non-volatile value_type");
using Impl = internal::ArrayRefBase<T>;
using Impl::Impl;
public:
// From Array.
template <size_t N> MutableArrayRef(Array<T, N> &Arr) : Impl(Arr.Data, N) {}
};
} // namespace cpp
} // namespace __llvm_libc