forked from OSchip/llvm-project
parent
30c715b30b
commit
f95d9b99b3
|
@ -103,7 +103,7 @@ static struct PerModuleInfo {
|
|||
|
||||
// Loop over all of the uses of the GlobalValue. The only thing they are
|
||||
// allowed to be is ConstantPointerRef's.
|
||||
assert(OldGV->use_size() == 1 && "Only one reference should exist!");
|
||||
assert(OldGV->hasOneUse() && "Only one reference should exist!");
|
||||
User *U = OldGV->use_back(); // Must be a ConstantPointerRef...
|
||||
ConstantPointerRef *CPR = cast<ConstantPointerRef>(U);
|
||||
|
||||
|
|
|
@ -88,7 +88,7 @@ namespace {
|
|||
static bool isInlinableInst(const Instruction &I) {
|
||||
// Must be an expression, must be used exactly once. If it is dead, we
|
||||
// emit it inline where it would go.
|
||||
if (I.getType() == Type::VoidTy || I.use_size() != 1 ||
|
||||
if (I.getType() == Type::VoidTy || !I.hasOneUse() ||
|
||||
isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) ||
|
||||
isa<LoadInst>(I) || isa<VarArgInst>(I))
|
||||
// Don't inline a load across a store or other bad things!
|
||||
|
|
|
@ -297,7 +297,7 @@ InstrForest::buildTreeForInstruction(Instruction *instr)
|
|||
// is used directly, i.e., made a child of the instruction node.
|
||||
//
|
||||
InstrTreeNode* opTreeNode;
|
||||
if (isa<Instruction>(operand) && operand->use_size() == 1 &&
|
||||
if (isa<Instruction>(operand) && operand->hasOneUse() &&
|
||||
cast<Instruction>(operand)->getParent() == instr->getParent() &&
|
||||
instr->getOpcode() != Instruction::PHINode &&
|
||||
instr->getOpcode() != Instruction::Call)
|
||||
|
|
|
@ -554,7 +554,7 @@ void ISel::SelectPHINodes() {
|
|||
//
|
||||
static SetCondInst *canFoldSetCCIntoBranch(Value *V) {
|
||||
if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
|
||||
if (SCI->use_size() == 1 && isa<BranchInst>(SCI->use_back()) &&
|
||||
if (SCI->hasOneUse() && isa<BranchInst>(SCI->use_back()) &&
|
||||
SCI->getParent() == cast<BranchInst>(SCI->use_back())->getParent()) {
|
||||
const Type *Ty = SCI->getOperand(0)->getType();
|
||||
if (Ty != Type::LongTy && Ty != Type::ULongTy)
|
||||
|
|
|
@ -1271,7 +1271,7 @@ static void RecursiveDelete(ValueMapCache &Cache, Instruction *I) {
|
|||
}
|
||||
|
||||
ValueHandle::~ValueHandle() {
|
||||
if (Operands[0]->use_size() == 1) {
|
||||
if (Operands[0]->hasOneUse()) {
|
||||
Value *V = Operands[0];
|
||||
Operands[0] = 0; // Drop use!
|
||||
|
||||
|
|
|
@ -49,7 +49,7 @@ int SimpleInliner::getInlineCost(CallSite CS) {
|
|||
// If there is only one call of the function, and it has internal linkage,
|
||||
// make it almost guaranteed to be inlined.
|
||||
//
|
||||
if (Callee->use_size() == 1 && Callee->hasInternalLinkage())
|
||||
if (Callee->hasOneUse() && Callee->hasInternalLinkage())
|
||||
InlineCost -= 30000;
|
||||
|
||||
// Add to the inline quality for properties that make the call valuable to
|
||||
|
|
|
@ -379,7 +379,7 @@ static bool isBlockSimpleEnough(BasicBlock *BB) {
|
|||
// Check the common case first: empty block, or block with just a setcc.
|
||||
if (BB->size() == 1 ||
|
||||
(BB->size() == 2 && &BB->front() == BI->getCondition() &&
|
||||
BI->getCondition()->use_size() == 1))
|
||||
BI->getCondition()->hasOneUse()))
|
||||
return true;
|
||||
|
||||
// Check the more complex case now...
|
||||
|
|
|
@ -159,7 +159,7 @@ static unsigned getComplexity(Value *V) {
|
|||
// isOnlyUse - Return true if this instruction will be deleted if we stop using
|
||||
// it.
|
||||
static bool isOnlyUse(Value *V) {
|
||||
return V->use_size() == 1 || isa<Constant>(V);
|
||||
return V->hasOneUse() || isa<Constant>(V);
|
||||
}
|
||||
|
||||
// SimplifyCommutative - This performs a few simplifications for commutative
|
||||
|
@ -238,7 +238,7 @@ static inline Value *dyn_castNotVal(Value *V) {
|
|||
// non-constant operand of the multiply.
|
||||
//
|
||||
static inline Value *dyn_castFoldableMul(Value *V) {
|
||||
if (V->use_size() == 1 && V->getType()->isInteger())
|
||||
if (V->hasOneUse() && V->getType()->isInteger())
|
||||
if (Instruction *I = dyn_cast<Instruction>(V))
|
||||
if (I->getOpcode() == Instruction::Mul)
|
||||
if (isa<Constant>(I->getOperand(1)))
|
||||
|
@ -292,7 +292,7 @@ Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) {
|
|||
|
||||
// Otherwise, if the LHS is not of the same opcode as the root, return.
|
||||
Instruction *LHSI = dyn_cast<Instruction>(LHS);
|
||||
while (LHSI && LHSI->getOpcode() == Opcode && LHSI->use_size() == 1) {
|
||||
while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) {
|
||||
// Should we apply this transform to the RHS?
|
||||
bool ShouldApply = F.shouldApply(LHSI->getOperand(1));
|
||||
|
||||
|
@ -484,7 +484,7 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
|
|||
return BinaryOperator::createNot(Op1);
|
||||
|
||||
if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1))
|
||||
if (Op1I->use_size() == 1) {
|
||||
if (Op1I->hasOneUse()) {
|
||||
// Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
|
||||
// is not used by anyone else...
|
||||
//
|
||||
|
@ -749,7 +749,7 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op,
|
|||
if ((*AndRHS & *OpRHS)->isNullValue()) {
|
||||
// (X ^ C1) & C2 --> (X & C2) iff (C1&C2) == 0
|
||||
return BinaryOperator::create(Instruction::And, X, AndRHS);
|
||||
} else if (Op->use_size() == 1) {
|
||||
} else if (Op->hasOneUse()) {
|
||||
// (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
|
||||
std::string OpName = Op->getName(); Op->setName("");
|
||||
Instruction *And = BinaryOperator::create(Instruction::And,
|
||||
|
@ -767,7 +767,7 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op,
|
|||
if (Together == AndRHS) // (X | C) & C --> C
|
||||
return ReplaceInstUsesWith(TheAnd, AndRHS);
|
||||
|
||||
if (Op->use_size() == 1 && Together != OpRHS) {
|
||||
if (Op->hasOneUse() && Together != OpRHS) {
|
||||
// (X | C1) & C2 --> (X | (C1&C2)) & C2
|
||||
std::string Op0Name = Op->getName(); Op->setName("");
|
||||
Instruction *Or = BinaryOperator::create(Instruction::Or, X,
|
||||
|
@ -778,7 +778,7 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op,
|
|||
}
|
||||
break;
|
||||
case Instruction::Add:
|
||||
if (Op->use_size() == 1) {
|
||||
if (Op->hasOneUse()) {
|
||||
// Adding a one to a single bit bit-field should be turned into an XOR
|
||||
// of the bit. First thing to check is to see if this AND is with a
|
||||
// single bit constant.
|
||||
|
@ -987,7 +987,7 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
|
|||
if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
|
||||
// xor (setcc A, B), true = not (setcc A, B) = setncc A, B
|
||||
if (SetCondInst *SCI = dyn_cast<SetCondInst>(Op0I))
|
||||
if (RHS == ConstantBool::True && SCI->use_size() == 1)
|
||||
if (RHS == ConstantBool::True && SCI->hasOneUse())
|
||||
return new SetCondInst(SCI->getInverseCondition(),
|
||||
SCI->getOperand(0), SCI->getOperand(1));
|
||||
|
||||
|
@ -1026,7 +1026,7 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
|
|||
}
|
||||
|
||||
if (Instruction *Op0I = dyn_cast<Instruction>(Op0))
|
||||
if (Op0I->getOpcode() == Instruction::Or && Op0I->use_size() == 1) {
|
||||
if (Op0I->getOpcode() == Instruction::Or && Op0I->hasOneUse()) {
|
||||
if (Op0I->getOperand(0) == Op1) // (B|A)^B == (A|B)^B
|
||||
cast<BinaryOperator>(Op0I)->swapOperands();
|
||||
if (Op0I->getOperand(1) == Op1) { // (A|B)^B == A & ~B
|
||||
|
@ -1144,7 +1144,7 @@ Instruction *InstCombiner::visitSetCondInst(BinaryOperator &I) {
|
|||
return new SetCondInst(I.getOpcode(), BOp0, NegVal);
|
||||
else if (Value *NegVal = dyn_castNegVal(BOp0))
|
||||
return new SetCondInst(I.getOpcode(), NegVal, BOp1);
|
||||
else if (BO->use_size() == 1) {
|
||||
else if (BO->hasOneUse()) {
|
||||
Instruction *Neg = BinaryOperator::createNeg(BOp1, BO->getName());
|
||||
BO->setName("");
|
||||
InsertNewInstBefore(Neg, I);
|
||||
|
@ -1291,7 +1291,7 @@ Instruction *InstCombiner::visitShiftInst(ShiftInst &I) {
|
|||
|
||||
// If the operand is an bitwise operator with a constant RHS, and the
|
||||
// shift is the only use, we can pull it out of the shift.
|
||||
if (Op0->use_size() == 1)
|
||||
if (Op0->hasOneUse())
|
||||
if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0))
|
||||
if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
|
||||
bool isValid = true; // Valid only for And, Or, Xor
|
||||
|
@ -1533,7 +1533,7 @@ Instruction *InstCombiner::visitCastInst(CastInst &CI) {
|
|||
// propagate the cast into the instruction. Also, only handle integral types
|
||||
// for now.
|
||||
if (Instruction *SrcI = dyn_cast<Instruction>(Src))
|
||||
if (SrcI->use_size() == 1 && Src->getType()->isIntegral() &&
|
||||
if (SrcI->hasOneUse() && Src->getType()->isIntegral() &&
|
||||
CI.getType()->isInteger()) { // Don't mess with casts to bool here
|
||||
const Type *DestTy = CI.getType();
|
||||
unsigned SrcBitSize = getTypeSizeInBits(Src->getType());
|
||||
|
|
|
@ -126,7 +126,7 @@ bool Reassociate::ReassociateExpr(BinaryOperator *I) {
|
|||
// only expression using it...
|
||||
//
|
||||
if (BinaryOperator *LHSI = dyn_cast<BinaryOperator>(LHS))
|
||||
if (LHSI->getOpcode() == I->getOpcode() && LHSI->use_size() == 1) {
|
||||
if (LHSI->getOpcode() == I->getOpcode() && LHSI->hasOneUse()) {
|
||||
// If the rank of our current RHS is less than the rank of the LHS's LHS,
|
||||
// then we reassociate the two instructions...
|
||||
|
||||
|
@ -177,7 +177,7 @@ static Value *NegateValue(Value *V, BasicBlock::iterator &BI) {
|
|||
// we introduce tons of unnecessary negation instructions...
|
||||
//
|
||||
if (Instruction *I = dyn_cast<Instruction>(V))
|
||||
if (I->getOpcode() == Instruction::Add && I->use_size() == 1) {
|
||||
if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
|
||||
Value *RHS = NegateValue(I->getOperand(1), BI);
|
||||
Value *LHS = NegateValue(I->getOperand(0), BI);
|
||||
|
||||
|
@ -242,7 +242,7 @@ bool Reassociate::ReassociateBB(BasicBlock *BB) {
|
|||
Instruction *RHSI = dyn_cast<Instruction>(I->getOperand(1));
|
||||
if (LHSI && (int)LHSI->getOpcode() == I->getOpcode() &&
|
||||
RHSI && (int)RHSI->getOpcode() == I->getOpcode() &&
|
||||
RHSI->use_size() == 1) {
|
||||
RHSI->hasOneUse()) {
|
||||
// Insert a new temporary instruction... (A+B)+C
|
||||
BinaryOperator *Tmp = BinaryOperator::create(I->getOpcode(), LHSI,
|
||||
RHSI->getOperand(0),
|
||||
|
|
Loading…
Reference in New Issue