[MemCpyOptimizer] Simplify API of processStore and processMem* functions

Previously these functions either returned a "changed" flag or a "repeat
instruction" flag, and could also modify an iterator to control which
instruction would be processed next.

Simplify this by always returning a "changed" flag, and handling all of
the "repeat instruction" functionality by modifying the iterator.

No functional change intended except in this case:
// If the source and destination of the memcpy are the same, then zap it.
... where the previous code failed to process the instruction after the
zapped memcpy.

Differential Revision: https://reviews.llvm.org/D81540
This commit is contained in:
Jay Foad 2020-06-10 09:18:56 +01:00
parent 5951ff4512
commit f79e6a8847
2 changed files with 70 additions and 59 deletions

View File

@ -59,12 +59,12 @@ private:
bool processStore(StoreInst *SI, BasicBlock::iterator &BBI);
bool processMemSet(MemSetInst *SI, BasicBlock::iterator &BBI);
bool processMemCpy(MemCpyInst *M, BasicBlock::iterator &BBI);
bool processMemMove(MemMoveInst *M);
bool processMemMove(MemMoveInst *M, BasicBlock::iterator &BBI);
bool performCallSlotOptzn(Instruction *cpy, Value *cpyDst, Value *cpySrc,
uint64_t cpyLen, Align cpyAlign, CallInst *C);
bool processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep);
bool processMemSetMemCpyDependence(MemCpyInst *M, MemSetInst *MDep);
bool performMemCpyToMemSetOptzn(MemCpyInst *M, MemSetInst *MDep);
Instruction *processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep);
Instruction *processMemSetMemCpyDependence(MemCpyInst *M, MemSetInst *MDep);
Instruction *performMemCpyToMemSetOptzn(MemCpyInst *M, MemSetInst *MDep);
bool processByValArgument(CallBase &CB, unsigned ArgNo);
Instruction *tryMergingIntoMemset(Instruction *I, Value *StartPtr,
Value *ByteVal);

View File

@ -501,6 +501,8 @@ static bool moveUp(AliasAnalysis &AA, StoreInst *SI, Instruction *P,
return true;
}
/// If changes are made, return true and set BBI to the next instruction to
/// visit.
bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
if (!SI->isSimple()) return false;
@ -578,7 +580,6 @@ bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
LI->eraseFromParent();
++NumMemCpyInstr;
// Make sure we do not invalidate the iterator.
BBI = M->getIterator();
return true;
}
@ -642,7 +643,7 @@ bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
if (Value *ByteVal = isBytewiseValue(V, DL)) {
if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
ByteVal)) {
BBI = I->getIterator(); // Don't invalidate iterator.
BBI = I->getIterator();
return true;
}
@ -662,7 +663,6 @@ bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
SI->eraseFromParent();
NumMemSetInfer++;
// Make sure we do not invalidate the iterator.
BBI = M->getIterator();
return true;
}
@ -671,13 +671,15 @@ bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
return false;
}
/// If changes are made, return true and set BBI to the next instruction to
/// visit.
bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
// See if there is another memset or store neighboring this memset which
// allows us to widen out the memset to do a single larger store.
if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
MSI->getValue())) {
BBI = I->getIterator(); // Don't invalidate iterator.
BBI = I->getIterator();
return true;
}
return false;
@ -886,12 +888,12 @@ bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpy, Value *cpyDest,
/// We've found that the (upward scanning) memory dependence of memcpy 'M' is
/// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can.
bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M,
MemCpyInst *MDep) {
Instruction *MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M,
MemCpyInst *MDep) {
// We can only transforms memcpy's where the dest of one is the source of the
// other.
if (M->getSource() != MDep->getDest() || MDep->isVolatile())
return false;
return nullptr;
// If dep instruction is reading from our current input, then it is a noop
// transfer and substituting the input won't change this instruction. Just
@ -899,14 +901,14 @@ bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M,
// memcpy(a <- a)
// memcpy(b <- a)
if (M->getSource() == MDep->getSource())
return false;
return nullptr;
// Second, the length of the memcpy's must be the same, or the preceding one
// must be larger than the following one.
ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength());
if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
return false;
return nullptr;
AliasAnalysis &AA = LookupAliasAnalysis();
@ -926,7 +928,7 @@ bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M,
MD->getPointerDependencyFrom(MemoryLocation::getForSource(MDep), false,
M->getIterator(), M->getParent());
if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
return false;
return nullptr;
// If the dest of the second might alias the source of the first, then the
// source and dest might overlap. We still want to eliminate the intermediate
@ -943,20 +945,21 @@ bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M,
// TODO: Is this worth it if we're creating a less aligned memcpy? For
// example we could be moving from movaps -> movq on x86.
IRBuilder<> Builder(M);
Instruction *MC;
if (UseMemMove)
Builder.CreateMemMove(M->getRawDest(), M->getDestAlign(),
MDep->getRawSource(), MDep->getSourceAlign(),
M->getLength(), M->isVolatile());
MC = Builder.CreateMemMove(M->getRawDest(), M->getDestAlign(),
MDep->getRawSource(), MDep->getSourceAlign(),
M->getLength(), M->isVolatile());
else
Builder.CreateMemCpy(M->getRawDest(), M->getDestAlign(),
MDep->getRawSource(), MDep->getSourceAlign(),
M->getLength(), M->isVolatile());
MC = Builder.CreateMemCpy(M->getRawDest(), M->getDestAlign(),
MDep->getRawSource(), MDep->getSourceAlign(),
M->getLength(), M->isVolatile());
// Remove the instruction we're replacing.
MD->removeInstruction(M);
M->eraseFromParent();
++NumMemCpyInstr;
return true;
return MC;
}
/// We've found that the (upward scanning) memory dependence of \p MemCpy is
@ -973,18 +976,18 @@ bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M,
/// memcpy(dst, src, src_size);
/// memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size);
/// \endcode
bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy,
MemSetInst *MemSet) {
Instruction *MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy,
MemSetInst *MemSet) {
// We can only transform memset/memcpy with the same destination.
if (MemSet->getDest() != MemCpy->getDest())
return false;
return nullptr;
// Check that there are no other dependencies on the memset destination.
MemDepResult DstDepInfo =
MD->getPointerDependencyFrom(MemoryLocation::getForDest(MemSet), false,
MemCpy->getIterator(), MemCpy->getParent());
if (DstDepInfo.getInst() != MemSet)
return false;
return nullptr;
// Use the same i8* dest as the memcpy, killing the memset dest if different.
Value *Dest = MemCpy->getRawDest();
@ -1016,14 +1019,14 @@ bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy,
Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize);
Value *MemsetLen = Builder.CreateSelect(
Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff);
Builder.CreateMemSet(
auto *MS = Builder.CreateMemSet(
Builder.CreateGEP(Dest->getType()->getPointerElementType(), Dest,
SrcSize),
MemSet->getOperand(1), MemsetLen, MaybeAlign(Align));
MD->removeInstruction(MemSet);
MemSet->eraseFromParent();
return true;
return MS;
}
/// Determine whether the instruction has undefined content for the given Size,
@ -1055,19 +1058,19 @@ static bool hasUndefContents(Instruction *I, ConstantInt *Size) {
/// When dst2_size <= dst1_size.
///
/// The \p MemCpy must have a Constant length.
bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy,
MemSetInst *MemSet) {
Instruction *MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy,
MemSetInst *MemSet) {
AliasAnalysis &AA = LookupAliasAnalysis();
// Make sure that memcpy(..., memset(...), ...), that is we are memsetting and
// memcpying from the same address. Otherwise it is hard to reason about.
if (!AA.isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource()))
return false;
return nullptr;
// A known memset size is required.
ConstantInt *MemSetSize = dyn_cast<ConstantInt>(MemSet->getLength());
if (!MemSetSize)
return false;
return nullptr;
// Make sure the memcpy doesn't read any more than what the memset wrote.
// Don't worry about sizes larger than i64.
@ -1083,13 +1086,12 @@ bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy,
if (DepInfo.isDef() && hasUndefContents(DepInfo.getInst(), CopySize))
CopySize = MemSetSize;
else
return false;
return nullptr;
}
IRBuilder<> Builder(MemCpy);
Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1), CopySize,
MaybeAlign(MemCpy->getDestAlignment()));
return true;
return Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1),
CopySize, MaybeAlign(MemCpy->getDestAlignment()));
}
/// Perform simplification of memcpy's. If we have memcpy A
@ -1097,40 +1099,49 @@ bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy,
/// B to be a memcpy from X to Z (or potentially a memmove, depending on
/// circumstances). This allows later passes to remove the first memcpy
/// altogether.
/// If changes are made, return true and set BBI to the next instruction to
/// visit.
bool MemCpyOptPass::processMemCpy(MemCpyInst *M, BasicBlock::iterator &BBI) {
// We can only optimize non-volatile memcpy's.
if (M->isVolatile()) return false;
// If the source and destination of the memcpy are the same, then zap it.
if (M->getSource() == M->getDest()) {
++BBI;
MD->removeInstruction(M);
M->eraseFromParent();
return true;
}
// If copying from a constant, try to turn the memcpy into a memset.
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource()))
if (GV->isConstant() && GV->hasDefinitiveInitializer())
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource())) {
if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
if (Value *ByteVal = isBytewiseValue(GV->getInitializer(),
M->getModule()->getDataLayout())) {
IRBuilder<> Builder(M);
Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(),
MaybeAlign(M->getDestAlignment()), false);
auto *MS =
Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(),
MaybeAlign(M->getDestAlignment()), false);
MD->removeInstruction(M);
M->eraseFromParent();
++NumCpyToSet;
BBI = MS->getIterator();
return true;
}
}
}
MemDepResult DepInfo = MD->getDependency(M);
// Try to turn a partially redundant memset + memcpy into
// memcpy + smaller memset. We don't need the memcpy size for this.
if (DepInfo.isClobber())
if (MemSetInst *MDep = dyn_cast<MemSetInst>(DepInfo.getInst()))
if (processMemSetMemCpyDependence(M, MDep))
if (DepInfo.isClobber()) {
if (MemSetInst *MDep = dyn_cast<MemSetInst>(DepInfo.getInst())) {
if (auto *MS = processMemSetMemCpyDependence(M, MDep)) {
BBI = MS->getIterator();
return true;
}
}
}
// The optimizations after this point require the memcpy size.
ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength());
@ -1163,8 +1174,13 @@ bool MemCpyOptPass::processMemCpy(MemCpyInst *M, BasicBlock::iterator &BBI) {
SrcLoc, true, M->getIterator(), M->getParent());
if (SrcDepInfo.isClobber()) {
if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst()))
return processMemCpyMemCpyDependence(M, MDep);
if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst())) {
if (auto *MC = processMemCpyMemCpyDependence(M, MDep)) {
BBI = MC->getIterator();
return true;
}
return false;
}
} else if (SrcDepInfo.isDef()) {
if (hasUndefContents(SrcDepInfo.getInst(), CopySize)) {
MD->removeInstruction(M);
@ -1176,10 +1192,11 @@ bool MemCpyOptPass::processMemCpy(MemCpyInst *M, BasicBlock::iterator &BBI) {
if (SrcDepInfo.isClobber())
if (MemSetInst *MDep = dyn_cast<MemSetInst>(SrcDepInfo.getInst()))
if (performMemCpyToMemSetOptzn(M, MDep)) {
if (auto *MS = performMemCpyToMemSetOptzn(M, MDep)) {
MD->removeInstruction(M);
M->eraseFromParent();
++NumCpyToSet;
BBI = MS->getIterator();
return true;
}
@ -1188,7 +1205,9 @@ bool MemCpyOptPass::processMemCpy(MemCpyInst *M, BasicBlock::iterator &BBI) {
/// Transforms memmove calls to memcpy calls when the src/dst are guaranteed
/// not to alias.
bool MemCpyOptPass::processMemMove(MemMoveInst *M) {
/// If changes are made, return true and set BBI to the next instruction to
/// visit.
bool MemCpyOptPass::processMemMove(MemMoveInst *M, BasicBlock::iterator &BBI) {
AliasAnalysis &AA = LookupAliasAnalysis();
if (!TLI->has(LibFunc_memmove))
@ -1214,6 +1233,7 @@ bool MemCpyOptPass::processMemMove(MemMoveInst *M) {
MD->removeInstruction(M);
++NumMoveToCpy;
BBI = M->getIterator();
return true;
}
@ -1316,28 +1336,19 @@ bool MemCpyOptPass::iterateOnFunction(Function &F) {
// Avoid invalidating the iterator.
Instruction *I = &*BI++;
bool RepeatInstruction = false;
if (StoreInst *SI = dyn_cast<StoreInst>(I))
MadeChange |= processStore(SI, BI);
else if (MemSetInst *M = dyn_cast<MemSetInst>(I))
RepeatInstruction = processMemSet(M, BI);
MadeChange = processMemSet(M, BI);
else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
RepeatInstruction = processMemCpy(M, BI);
MadeChange = processMemCpy(M, BI);
else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I))
RepeatInstruction = processMemMove(M);
MadeChange = processMemMove(M, BI);
else if (auto *CB = dyn_cast<CallBase>(I)) {
for (unsigned i = 0, e = CB->arg_size(); i != e; ++i)
if (CB->isByValArgument(i))
MadeChange |= processByValArgument(*CB, i);
}
// Reprocess the instruction if desired.
if (RepeatInstruction) {
if (BI != BB.begin())
--BI;
MadeChange = true;
}
}
}