Refactor Assume logic into a separate class ConstraintManager.

llvm-svn: 55412
This commit is contained in:
Zhongxing Xu 2008-08-27 14:03:33 +00:00
parent 55310df79c
commit f71b5f39bb
6 changed files with 330 additions and 286 deletions

View File

@ -17,7 +17,7 @@
#include "clang/Analysis/PathSensitive/Store.h" #include "clang/Analysis/PathSensitive/Store.h"
namespace llvm { namespace llvm {
class llvm::BumpPtrAllocator; class BumpPtrAllocator;
class ASTContext; class ASTContext;
} }

View File

@ -0,0 +1,20 @@
#ifndef CONSTRAINT_MANAGER_H
#define CONSTRAINT_MANAGER_H
namespace clang {
class GRState;
class GRStateManager;
class RVal;
class ConstraintManager {
public:
virtual const GRState* Assume(const GRState* St, RVal Cond, bool Assumption,
bool& isFeasible) = 0;
};
ConstraintManager* CreateBasicConstraintManager(GRStateManager& statemgr);
} // end clang namespace
#endif

View File

@ -18,6 +18,7 @@
#include "clang/Analysis/PathSensitive/Environment.h" #include "clang/Analysis/PathSensitive/Environment.h"
#include "clang/Analysis/PathSensitive/Store.h" #include "clang/Analysis/PathSensitive/Store.h"
#include "clang/Analysis/PathSensitive/ConstraintManager.h"
#include "clang/Analysis/PathSensitive/RValues.h" #include "clang/Analysis/PathSensitive/RValues.h"
#include "clang/Analysis/PathSensitive/GRCoreEngine.h" #include "clang/Analysis/PathSensitive/GRCoreEngine.h"
#include "clang/AST/Expr.h" #include "clang/AST/Expr.h"
@ -233,6 +234,7 @@ class GRStateManager {
private: private:
EnvironmentManager EnvMgr; EnvironmentManager EnvMgr;
llvm::OwningPtr<StoreManager> StMgr; llvm::OwningPtr<StoreManager> StMgr;
llvm::OwningPtr<ConstraintManager> ConstraintMgr;
GRState::IntSetTy::Factory ISetFactory; GRState::IntSetTy::Factory ISetFactory;
GRState::GenericDataMap::Factory GDMFactory; GRState::GenericDataMap::Factory GDMFactory;
@ -287,8 +289,11 @@ private:
return SetRVal(St, lval::DeclVal(D), V); return SetRVal(St, lval::DeclVal(D), V);
} }
typedef ConstraintManager* (*ConstraintManagerCreater)(GRStateManager&);
public: public:
GRStateManager(ASTContext& Ctx, StoreManager* stmgr, GRStateManager(ASTContext& Ctx, StoreManager* stmgr,
ConstraintManagerCreater CreateConstraintManager,
llvm::BumpPtrAllocator& alloc, CFG& c, LiveVariables& L) llvm::BumpPtrAllocator& alloc, CFG& c, LiveVariables& L)
: EnvMgr(alloc), : EnvMgr(alloc),
StMgr(stmgr), StMgr(stmgr),
@ -298,7 +303,9 @@ public:
SymMgr(alloc), SymMgr(alloc),
Alloc(alloc), Alloc(alloc),
cfg(c), cfg(c),
Liveness(L) {} Liveness(L) {
ConstraintMgr.reset((*CreateConstraintManager)(*this));
}
~GRStateManager(); ~GRStateManager();
@ -309,6 +316,7 @@ public:
const BasicValueFactory& getBasicVals() const { return BasicVals; } const BasicValueFactory& getBasicVals() const { return BasicVals; }
SymbolManager& getSymbolManager() { return SymMgr; } SymbolManager& getSymbolManager() { return SymMgr; }
LiveVariables& getLiveVariables() { return Liveness; } LiveVariables& getLiveVariables() { return Liveness; }
llvm::BumpPtrAllocator& getAllocator() { return Alloc; }
typedef StoreManager::DeadSymbolsTy DeadSymbolsTy; typedef StoreManager::DeadSymbolsTy DeadSymbolsTy;
@ -440,52 +448,8 @@ public:
// Assumption logic. // Assumption logic.
const GRState* Assume(const GRState* St, RVal Cond, bool Assumption, const GRState* Assume(const GRState* St, RVal Cond, bool Assumption,
bool& isFeasible) { bool& isFeasible) {
return ConstraintMgr->Assume(St, Cond, Assumption, isFeasible);
if (Cond.isUnknown()) {
isFeasible = true;
return St;
} }
if (isa<LVal>(Cond))
return Assume(St, cast<LVal>(Cond), Assumption, isFeasible);
else
return Assume(St, cast<NonLVal>(Cond), Assumption, isFeasible);
}
const GRState* Assume(const GRState* St, LVal Cond, bool Assumption,
bool& isFeasible);
const GRState* Assume(const GRState* St, NonLVal Cond, bool Assumption,
bool& isFeasible);
private:
const GRState* AssumeAux(const GRState* St, LVal Cond, bool Assumption,
bool& isFeasible);
const GRState* AssumeAux(const GRState* St, NonLVal Cond,
bool Assumption, bool& isFeasible);
const GRState* AssumeSymInt(const GRState* St, bool Assumption,
const SymIntConstraint& C, bool& isFeasible);
const GRState* AssumeSymNE(const GRState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible);
const GRState* AssumeSymEQ(const GRState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible);
const GRState* AssumeSymLT(const GRState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible);
const GRState* AssumeSymLE(const GRState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible);
const GRState* AssumeSymGT(const GRState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible);
const GRState* AssumeSymGE(const GRState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible);
}; };
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//

View File

@ -0,0 +1,298 @@
#include "clang/Analysis/PathSensitive/ConstraintManager.h"
#include "clang/Analysis/PathSensitive/GRState.h"
#include "llvm/Support/Compiler.h"
using namespace clang;
namespace {
// BasicConstraintManager only tracks equality and inequality constraints of
// constants and integer variables.
class VISIBILITY_HIDDEN BasicConstraintManager : public ConstraintManager {
typedef llvm::ImmutableMap<SymbolID, GRState::IntSetTy> ConstNotEqTy;
typedef llvm::ImmutableMap<SymbolID, const llvm::APSInt*> ConstEqTy;
GRStateManager& StateMgr;
public:
BasicConstraintManager(GRStateManager& statemgr) : StateMgr(statemgr) {}
virtual const GRState* Assume(const GRState* St, RVal Cond,
bool Assumption, bool& isFeasible);
const GRState* Assume(const GRState* St, LVal Cond, bool Assumption,
bool& isFeasible);
const GRState* AssumeAux(const GRState* St, LVal Cond,bool Assumption,
bool& isFeasible);
const GRState* Assume(const GRState* St, NonLVal Cond, bool Assumption,
bool& isFeasible);
const GRState* AssumeAux(const GRState* St, NonLVal Cond, bool Assumption,
bool& isFeasible);
const GRState* AssumeSymInt(const GRState* St, bool Assumption,
const SymIntConstraint& C, bool& isFeasible);
const GRState* AssumeSymNE(const GRState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible);
const GRState* AssumeSymEQ(const GRState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible);
const GRState* AssumeSymLT(const GRState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible);
const GRState* AssumeSymGT(const GRState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible);
const GRState* AssumeSymGE(const GRState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible);
const GRState* AssumeSymLE(const GRState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible);
};
} // end anonymous namespace
ConstraintManager* clang::CreateBasicConstraintManager(GRStateManager& StateMgr)
{
return new BasicConstraintManager(StateMgr);
}
const GRState* BasicConstraintManager::Assume(const GRState* St, RVal Cond,
bool Assumption, bool& isFeasible) {
if (Cond.isUnknown()) {
isFeasible = true;
return St;
}
if (isa<NonLVal>(Cond))
return Assume(St, cast<NonLVal>(Cond), Assumption, isFeasible);
else
return Assume(St, cast<LVal>(Cond), Assumption, isFeasible);
}
const GRState* BasicConstraintManager::Assume(const GRState* St, LVal Cond,
bool Assumption, bool& isFeasible) {
St = AssumeAux(St, Cond, Assumption, isFeasible);
// TF->EvalAssume(*this, St, Cond, Assumption, isFeasible)
return St;
}
const GRState* BasicConstraintManager::AssumeAux(const GRState* St, LVal Cond,
bool Assumption, bool& isFeasible) {
BasicValueFactory& BasicVals = StateMgr.getBasicVals();
switch (Cond.getSubKind()) {
default:
assert (false && "'Assume' not implemented for this LVal.");
return St;
case lval::SymbolValKind:
if (Assumption)
return AssumeSymNE(St, cast<lval::SymbolVal>(Cond).getSymbol(),
BasicVals.getZeroWithPtrWidth(), isFeasible);
else
return AssumeSymEQ(St, cast<lval::SymbolVal>(Cond).getSymbol(),
BasicVals.getZeroWithPtrWidth(), isFeasible);
case lval::DeclValKind:
case lval::FuncValKind:
case lval::GotoLabelKind:
case lval::StringLiteralValKind:
isFeasible = Assumption;
return St;
case lval::FieldOffsetKind:
return AssumeAux(St, cast<lval::FieldOffset>(Cond).getBase(),
Assumption, isFeasible);
case lval::ArrayOffsetKind:
return AssumeAux(St, cast<lval::ArrayOffset>(Cond).getBase(),
Assumption, isFeasible);
case lval::ConcreteIntKind: {
bool b = cast<lval::ConcreteInt>(Cond).getValue() != 0;
isFeasible = b ? Assumption : !Assumption;
return St;
}
} // end switch
}
const GRState*
BasicConstraintManager::Assume(const GRState* St, NonLVal Cond, bool Assumption,
bool& isFeasible) {
St = AssumeAux(St, Cond, Assumption, isFeasible);
// TF->EvalAssume() does nothing now.
return St;
}
const GRState*
BasicConstraintManager::AssumeAux(const GRState* St,NonLVal Cond,
bool Assumption, bool& isFeasible) {
BasicValueFactory& BasicVals = StateMgr.getBasicVals();
SymbolManager& SymMgr = StateMgr.getSymbolManager();
switch (Cond.getSubKind()) {
default:
assert(false && "'Assume' not implemented for this NonLVal");
case nonlval::SymbolValKind: {
nonlval::SymbolVal& SV = cast<nonlval::SymbolVal>(Cond);
SymbolID sym = SV.getSymbol();
if (Assumption)
return AssumeSymNE(St, sym, BasicVals.getValue(0, SymMgr.getType(sym)),
isFeasible);
else
return AssumeSymEQ(St, sym, BasicVals.getValue(0, SymMgr.getType(sym)),
isFeasible);
}
case nonlval::SymIntConstraintValKind:
return
AssumeSymInt(St, Assumption,
cast<nonlval::SymIntConstraintVal>(Cond).getConstraint(),
isFeasible);
case nonlval::ConcreteIntKind: {
bool b = cast<nonlval::ConcreteInt>(Cond).getValue() != 0;
isFeasible = b ? Assumption : !Assumption;
return St;
}
case nonlval::LValAsIntegerKind:
return AssumeAux(St, cast<nonlval::LValAsInteger>(Cond).getLVal(),
Assumption, isFeasible);
} // end switch
}
const GRState*
BasicConstraintManager::AssumeSymInt(const GRState* St, bool Assumption,
const SymIntConstraint& C, bool& isFeasible) {
switch (C.getOpcode()) {
default:
// No logic yet for other operators.
isFeasible = true;
return St;
case BinaryOperator::EQ:
if (Assumption)
return AssumeSymEQ(St, C.getSymbol(), C.getInt(), isFeasible);
else
return AssumeSymNE(St, C.getSymbol(), C.getInt(), isFeasible);
case BinaryOperator::NE:
if (Assumption)
return AssumeSymNE(St, C.getSymbol(), C.getInt(), isFeasible);
else
return AssumeSymEQ(St, C.getSymbol(), C.getInt(), isFeasible);
case BinaryOperator::GE:
if (Assumption)
return AssumeSymGE(St, C.getSymbol(), C.getInt(), isFeasible);
else
return AssumeSymLT(St, C.getSymbol(), C.getInt(), isFeasible);
case BinaryOperator::LE:
if (Assumption)
return AssumeSymLE(St, C.getSymbol(), C.getInt(), isFeasible);
else
return AssumeSymGT(St, C.getSymbol(), C.getInt(), isFeasible);
} // end switch
}
const GRState*
BasicConstraintManager::AssumeSymNE(const GRState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible) {
// First, determine if sym == X, where X != V.
if (const llvm::APSInt* X = St->getSymVal(sym)) {
isFeasible = (*X != V);
return St;
}
// Second, determine if sym != V.
if (St->isNotEqual(sym, V)) {
isFeasible = true;
return St;
}
// If we reach here, sym is not a constant and we don't know if it is != V.
// Make that assumption.
isFeasible = true;
return StateMgr.AddNE(St, sym, V);
}
const GRState*
BasicConstraintManager::AssumeSymEQ(const GRState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible) {
// First, determine if sym == X, where X != V.
if (const llvm::APSInt* X = St->getSymVal(sym)) {
isFeasible = *X == V;
return St;
}
// Second, determine if sym != V.
if (St->isNotEqual(sym, V)) {
isFeasible = false;
return St;
}
// If we reach here, sym is not a constant and we don't know if it is == V.
// Make that assumption.
isFeasible = true;
return StateMgr.AddEQ(St, sym, V);
}
// These logic will be handled in another ConstraintManager.
const GRState*
BasicConstraintManager::AssumeSymLT(const GRState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible) {
// FIXME: For now have assuming x < y be the same as assuming sym != V;
return AssumeSymNE(St, sym, V, isFeasible);
}
const GRState*
BasicConstraintManager::AssumeSymGT(const GRState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible) {
// FIXME: For now have assuming x > y be the same as assuming sym != V;
return AssumeSymNE(St, sym, V, isFeasible);
}
const GRState*
BasicConstraintManager::AssumeSymGE(const GRState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible) {
// FIXME: Primitive logic for now. Only reject a path if the value of
// sym is a constant X and !(X >= V).
if (const llvm::APSInt* X = St->getSymVal(sym)) {
isFeasible = *X >= V;
return St;
}
isFeasible = true;
return St;
}
const GRState*
BasicConstraintManager::AssumeSymLE(const GRState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible) {
// FIXME: Primitive logic for now. Only reject a path if the value of
// sym is a constant X and !(X <= V).
if (const llvm::APSInt* X = St->getSymVal(sym)) {
isFeasible = *X <= V;
return St;
}
isFeasible = true;
return St;
}

View File

@ -121,7 +121,7 @@ GRExprEngine::GRExprEngine(CFG& cfg, Decl& CD, ASTContext& Ctx,
Liveness(L), Liveness(L),
Builder(NULL), Builder(NULL),
StateMgr(G.getContext(), CreateBasicStoreManager(G.getAllocator(), Ctx), StateMgr(G.getContext(), CreateBasicStoreManager(G.getAllocator(), Ctx),
G.getAllocator(), G.getCFG(), L), CreateBasicConstraintManager, G.getAllocator(), G.getCFG(), L),
SymMgr(StateMgr.getSymbolManager()), SymMgr(StateMgr.getSymbolManager()),
CurrentStmt(NULL), CurrentStmt(NULL),
NSExceptionII(NULL), NSExceptionInstanceRaiseSelectors(NULL), NSExceptionII(NULL), NSExceptionInstanceRaiseSelectors(NULL),

View File

@ -383,241 +383,3 @@ bool GRStateManager::isEqual(const GRState* state, Expr* Ex,
bool GRStateManager::isEqual(const GRState* state, Expr* Ex, uint64_t x) { bool GRStateManager::isEqual(const GRState* state, Expr* Ex, uint64_t x) {
return isEqual(state, Ex, BasicVals.getValue(x, Ex->getType())); return isEqual(state, Ex, BasicVals.getValue(x, Ex->getType()));
} }
//===----------------------------------------------------------------------===//
// "Assume" logic.
//===----------------------------------------------------------------------===//
const GRState* GRStateManager::Assume(const GRState* St, LVal Cond,
bool Assumption, bool& isFeasible) {
St = AssumeAux(St, Cond, Assumption, isFeasible);
return isFeasible ? TF->EvalAssume(*this, St, Cond, Assumption, isFeasible)
: St;
}
const GRState* GRStateManager::AssumeAux(const GRState* St, LVal Cond,
bool Assumption, bool& isFeasible) {
switch (Cond.getSubKind()) {
default:
assert (false && "'Assume' not implemented for this LVal.");
return St;
case lval::SymbolValKind:
if (Assumption)
return AssumeSymNE(St, cast<lval::SymbolVal>(Cond).getSymbol(),
BasicVals.getZeroWithPtrWidth(), isFeasible);
else
return AssumeSymEQ(St, cast<lval::SymbolVal>(Cond).getSymbol(),
BasicVals.getZeroWithPtrWidth(), isFeasible);
case lval::DeclValKind:
case lval::FuncValKind:
case lval::GotoLabelKind:
case lval::StringLiteralValKind:
isFeasible = Assumption;
return St;
case lval::FieldOffsetKind:
return AssumeAux(St, cast<lval::FieldOffset>(Cond).getBase(),
Assumption, isFeasible);
case lval::ArrayOffsetKind:
return AssumeAux(St, cast<lval::ArrayOffset>(Cond).getBase(),
Assumption, isFeasible);
case lval::ConcreteIntKind: {
bool b = cast<lval::ConcreteInt>(Cond).getValue() != 0;
isFeasible = b ? Assumption : !Assumption;
return St;
}
}
}
const GRState* GRStateManager::Assume(const GRState* St, NonLVal Cond,
bool Assumption, bool& isFeasible) {
St = AssumeAux(St, Cond, Assumption, isFeasible);
return isFeasible ? TF->EvalAssume(*this, St, Cond, Assumption, isFeasible)
: St;
}
const GRState* GRStateManager::AssumeAux(const GRState* St, NonLVal Cond,
bool Assumption, bool& isFeasible) {
switch (Cond.getSubKind()) {
default:
assert (false && "'Assume' not implemented for this NonLVal.");
return St;
case nonlval::SymbolValKind: {
nonlval::SymbolVal& SV = cast<nonlval::SymbolVal>(Cond);
SymbolID sym = SV.getSymbol();
if (Assumption)
return AssumeSymNE(St, sym, BasicVals.getValue(0, SymMgr.getType(sym)),
isFeasible);
else
return AssumeSymEQ(St, sym, BasicVals.getValue(0, SymMgr.getType(sym)),
isFeasible);
}
case nonlval::SymIntConstraintValKind:
return
AssumeSymInt(St, Assumption,
cast<nonlval::SymIntConstraintVal>(Cond).getConstraint(),
isFeasible);
case nonlval::ConcreteIntKind: {
bool b = cast<nonlval::ConcreteInt>(Cond).getValue() != 0;
isFeasible = b ? Assumption : !Assumption;
return St;
}
case nonlval::LValAsIntegerKind: {
return AssumeAux(St, cast<nonlval::LValAsInteger>(Cond).getLVal(),
Assumption, isFeasible);
}
}
}
const GRState* GRStateManager::AssumeSymInt(const GRState* St,
bool Assumption,
const SymIntConstraint& C,
bool& isFeasible) {
switch (C.getOpcode()) {
default:
// No logic yet for other operators.
isFeasible = true;
return St;
case BinaryOperator::EQ:
if (Assumption)
return AssumeSymEQ(St, C.getSymbol(), C.getInt(), isFeasible);
else
return AssumeSymNE(St, C.getSymbol(), C.getInt(), isFeasible);
case BinaryOperator::NE:
if (Assumption)
return AssumeSymNE(St, C.getSymbol(), C.getInt(), isFeasible);
else
return AssumeSymEQ(St, C.getSymbol(), C.getInt(), isFeasible);
case BinaryOperator::GE:
if (Assumption)
return AssumeSymGE(St, C.getSymbol(), C.getInt(), isFeasible);
else
return AssumeSymLT(St, C.getSymbol(), C.getInt(), isFeasible);
case BinaryOperator::LE:
if (Assumption)
return AssumeSymLE(St, C.getSymbol(), C.getInt(), isFeasible);
else
return AssumeSymGT(St, C.getSymbol(), C.getInt(), isFeasible);
}
}
//===----------------------------------------------------------------------===//
// FIXME: This should go into a plug-in constraint engine.
//===----------------------------------------------------------------------===//
const GRState*
GRStateManager::AssumeSymNE(const GRState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible) {
// First, determine if sym == X, where X != V.
if (const llvm::APSInt* X = St->getSymVal(sym)) {
isFeasible = *X != V;
return St;
}
// Second, determine if sym != V.
if (St->isNotEqual(sym, V)) {
isFeasible = true;
return St;
}
// If we reach here, sym is not a constant and we don't know if it is != V.
// Make that assumption.
isFeasible = true;
return AddNE(St, sym, V);
}
const GRState*
GRStateManager::AssumeSymEQ(const GRState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible) {
// First, determine if sym == X, where X != V.
if (const llvm::APSInt* X = St->getSymVal(sym)) {
isFeasible = *X == V;
return St;
}
// Second, determine if sym != V.
if (St->isNotEqual(sym, V)) {
isFeasible = false;
return St;
}
// If we reach here, sym is not a constant and we don't know if it is == V.
// Make that assumption.
isFeasible = true;
return AddEQ(St, sym, V);
}
const GRState*
GRStateManager::AssumeSymLT(const GRState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible) {
// FIXME: For now have assuming x < y be the same as assuming sym != V;
return AssumeSymNE(St, sym, V, isFeasible);
}
const GRState*
GRStateManager::AssumeSymGT(const GRState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible) {
// FIXME: For now have assuming x > y be the same as assuming sym != V;
return AssumeSymNE(St, sym, V, isFeasible);
}
const GRState*
GRStateManager::AssumeSymGE(const GRState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible) {
// FIXME: Primitive logic for now. Only reject a path if the value of
// sym is a constant X and !(X >= V).
if (const llvm::APSInt* X = St->getSymVal(sym)) {
isFeasible = *X >= V;
return St;
}
isFeasible = true;
return St;
}
const GRState*
GRStateManager::AssumeSymLE(const GRState* St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible) {
// FIXME: Primitive logic for now. Only reject a path if the value of
// sym is a constant X and !(X <= V).
if (const llvm::APSInt* X = St->getSymVal(sym)) {
isFeasible = *X <= V;
return St;
}
isFeasible = true;
return St;
}