diff --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml b/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml index 80560b9f363b..7cc84620665d 100644 --- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml +++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml @@ -69,7 +69,7 @@ metadata: !LinalgOpMetadata name: matmul_unsigned cpp_class_name: MatmulUnsignedOp doc: |- - Performs a unsigned matrix multiplication of two 2D inputs. + Performs an unsigned matrix multiplication of two 2D inputs. Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output. @@ -1384,14 +1384,14 @@ structured_op: !LinalgStructuredOpConfig is_unsigned_cast: false --- !LinalgOpConfig metadata: !LinalgOpMetadata - name: depthwise_conv1D_nw - cpp_class_name: DepthwiseConv1DNwOp + name: depthwise_conv_1d_nwc_wc + cpp_class_name: DepthwiseConv1DNwcWcOp doc: |- Performs depth-wise 1-D convolution. Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output. Multiplier is set to 1 - which is a special case for most dpethwise convolutions. + which is a special case for most depthwise convolutions. implements: - LinalgConvolutionOpInterface structured_op: !LinalgStructuredOpConfig @@ -1461,14 +1461,14 @@ structured_op: !LinalgStructuredOpConfig is_unsigned_cast: false --- !LinalgOpConfig metadata: !LinalgOpMetadata - name: depthwise_conv2D_nhw - cpp_class_name: DepthwiseConv2DNhwOp + name: depthwise_conv_2d_nhwc_hwc + cpp_class_name: DepthwiseConv2DNhwcHwcOp doc: |- Performs depth-wise 2-D convolution. Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output. Multiplier is set to 1 - which is a special case for most dpethwise convolutions. + which is a special case for most depthwise convolutions. implements: - LinalgConvolutionOpInterface structured_op: !LinalgStructuredOpConfig @@ -1544,8 +1544,8 @@ structured_op: !LinalgStructuredOpConfig is_unsigned_cast: false --- !LinalgOpConfig metadata: !LinalgOpMetadata - name: depthwise_conv2D_nhw_q - cpp_class_name: DepthwiseConv2DNhwQOp + name: depthwise_conv_2d_nhwc_hwc_q + cpp_class_name: DepthwiseConv2DNhwcHwcQOp doc: |- Performs depth-wise 2-D convolution. @@ -1660,8 +1660,8 @@ structured_op: !LinalgStructuredOpConfig is_unsigned_cast: false --- !LinalgOpConfig metadata: !LinalgOpMetadata - name: depthwise_conv2D_nhwc - cpp_class_name: DepthwiseConv2DNhwcOp + name: depthwise_conv_2d_nhwc_hwcm + cpp_class_name: DepthwiseConv2DNhwcHwcmOp doc: |- Performs depth-wise 2-D convolution. @@ -1746,8 +1746,8 @@ structured_op: !LinalgStructuredOpConfig is_unsigned_cast: false --- !LinalgOpConfig metadata: !LinalgOpMetadata - name: depthwise_conv2D_nhwc_q - cpp_class_name: DepthwiseConv2DNhwcQOp + name: depthwise_conv_2d_nhwc_hwcm_q + cpp_class_name: DepthwiseConv2DNhwcHwcmQOp doc: |- Performs depth-wise 2-D convolution. diff --git a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp index 54165266538c..e90d1533b5c0 100644 --- a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp +++ b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp @@ -1230,7 +1230,7 @@ public: loc, resultTy.getShape(), resultETy); if (!isQuantized) { Value conv = rewriter - .create( + .create( loc, linalgConvTy, ValueRange{input, weight}, ValueRange{zeroTensor}, strideAttr, dilationAttr) .getResult(0); @@ -1254,7 +1254,7 @@ public: auto kZpVal = rewriter.create(loc, kZp); Value conv = rewriter - .create( + .create( loc, linalgConvTy, ValueRange{input, weight, iZpVal, kZpVal}, ValueRange{zeroTensor}, strideAttr, dilationAttr) .getResult(0); diff --git a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp index d0db26a1bb3b..3d2f42d174fe 100644 --- a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp +++ b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp @@ -3037,16 +3037,16 @@ LogicalResult matchAndReplaceDepthwiseConv(Operation *operation, Value input, loc, newInitTy, init, collapsedInitDims); Value newConv; - if (isa(operation)) { + if (isa(operation)) { newConv = rewriter - .create( + .create( loc, newInitTy, ValueRange{input, collapsedKernel}, ValueRange{collapsedInit}, stride, dilation) .getResult(0); - } else if (isa(operation)) { + } else if (isa(operation)) { newConv = rewriter - .create( + .create( loc, newInitTy, ValueRange{input, collapsedKernel, iZp, kZp}, ValueRange{collapsedInit}, stride, dilation) .getResult(0); @@ -3062,10 +3062,10 @@ LogicalResult matchAndReplaceDepthwiseConv(Operation *operation, Value input, } struct SimplifyDepthwiseConvOp - : public OpRewritePattern { - using OpRewritePattern::OpRewritePattern; + : public OpRewritePattern { + using OpRewritePattern::OpRewritePattern; - LogicalResult matchAndRewrite(DepthwiseConv2DNhwcOp op, + LogicalResult matchAndRewrite(DepthwiseConv2DNhwcHwcmOp op, PatternRewriter &rewriter) const override { Operation *operation = op.getOperation(); Value input = op.getInputOperand(0)->get(); @@ -3082,10 +3082,10 @@ struct SimplifyDepthwiseConvOp }; struct SimplifyDepthwiseConvQOp - : public OpRewritePattern { - using OpRewritePattern::OpRewritePattern; + : public OpRewritePattern { + using OpRewritePattern::OpRewritePattern; - LogicalResult matchAndRewrite(DepthwiseConv2DNhwcQOp op, + LogicalResult matchAndRewrite(DepthwiseConv2DNhwcHwcmQOp op, PatternRewriter &rewriter) const override { Operation *operation = op.getOperation(); Value input = op.getInputOperand(0)->get(); diff --git a/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py b/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py index 2e6b04118ef1..85bed25febdd 100644 --- a/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py +++ b/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py @@ -310,7 +310,7 @@ def conv_3d_ndhwc_dhwcf( ]) * cast(U, K[D.kd, D.kh, D.kw, D.c, D.f]) @linalg_structured_op -def depthwise_conv1D_nw( +def depthwise_conv_1d_nwc_wc( I=TensorDef(T1, S.N, S.OW * S.SW + S.KW * S.DW, S.IC), K=TensorDef(T2, S.KW, S.IC), O=TensorDef(U, S.N, S.OW, S.IC, output=True), @@ -320,7 +320,7 @@ def depthwise_conv1D_nw( Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output. Multiplier is set to 1 - which is a special case for most dpethwise convolutions. + which is a special case for most depthwise convolutions. """ implements(ConvolutionOpInterface) domain(D.n, D.ow, D.ic, D.kw) @@ -329,7 +329,7 @@ def depthwise_conv1D_nw( cast(U, K[D.kw, D.ic]) @linalg_structured_op -def depthwise_conv2D_nhw( +def depthwise_conv_2d_nhwc_hwc( I=TensorDef(T1, S.N, S.OH * S.SH + S.KH * S.DH, S.OW * S.SW + S.KW * S.DW, S.IC), K=TensorDef(T2, S.KH, S.KW, S.IC), O=TensorDef(U, S.N, S.OH, S.OW, S.IC, output=True), @@ -339,7 +339,7 @@ def depthwise_conv2D_nhw( Numeric casting is performed on the operands to the inner multiply, promoting them to the same data type as the accumulator/output. Multiplier is set to 1 - which is a special case for most dpethwise convolutions. + which is a special case for most depthwise convolutions. """ implements(ConvolutionOpInterface) domain(D.n, D.oh, D.ow, D.ic, D.kh, D.kw) @@ -348,7 +348,7 @@ def depthwise_conv2D_nhw( D.ic]) * cast(U, K[D.kh, D.kw, D.ic]) @linalg_structured_op -def depthwise_conv2D_nhw_q( +def depthwise_conv_2d_nhwc_hwc_q( I=TensorDef(T1, S.N, S.OH * S.SH + S.KH * S.DH, S.OW * S.SW + S.KW * S.DW, S.IC), K=TensorDef(T2, S.KH, S.KW, S.IC), IZp=ScalarDef(I32), @@ -369,7 +369,7 @@ def depthwise_conv2D_nhw_q( (cast(U, K[D.kh, D.kw, D.ic]) - cast(U, KZp))) @linalg_structured_op -def depthwise_conv2D_nhwc( +def depthwise_conv_2d_nhwc_hwcm( I=TensorDef(T1, S.N, S.OH * S.SH + S.KH * S.DH, S.OW * S.SW + S.KW * S.DW, S.IC), K=TensorDef(T2, S.KH, S.KW, S.IC, S.CM), O=TensorDef(U, S.N, S.OH, S.OW, S.IC, S.CM, output=True), @@ -387,7 +387,7 @@ def depthwise_conv2D_nhwc( D.ic]) * cast(U, K[D.kh, D.kw, D.ic, D.cm]) @linalg_structured_op -def depthwise_conv2D_nhwc_q( +def depthwise_conv_2d_nhwc_hwcm_q( I=TensorDef(T1, S.N, S.OH * S.SH + S.KH * S.DH, S.OW * S.SW + S.KW * S.DW, S.IC), K=TensorDef(T2, S.KH, S.KW, S.IC, S.CM), IZp=ScalarDef(I32), diff --git a/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg.mlir b/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg.mlir index c7ddb6bdae5c..d072808b1b47 100644 --- a/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg.mlir +++ b/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg.mlir @@ -1592,7 +1592,7 @@ func @depthwise_conv(%arg0 : tensor<1x7x5x3xf32>, %arg1 : tensor<3x1x3x11xf32>, // CHECK: [[CST0:%.+]] = arith.constant 0 // CHECK: [[FILL:%.+]] = linalg.fill([[CST0]], [[INIT]]) // CHECK: [[OUT:%.+]] = linalg.init_tensor [1, 5, 5, 33] - // CHECK: [[DEPTH:%.+]] = linalg.depthwise_conv2D_nhwc {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<1x7x5x3xf32>, tensor<3x1x3x11xf32>) outs([[FILL]] : tensor<1x5x5x3x11xf32>) + // CHECK: [[DEPTH:%.+]] = linalg.depthwise_conv_2d_nhwc_hwcm {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<1x7x5x3xf32>, tensor<3x1x3x11xf32>) outs([[FILL]] : tensor<1x5x5x3x11xf32>) // CHECK: [[COLLAPSED:%.+]] = linalg.tensor_collapse_shape [[DEPTH]] {{\[}}[0], [1], [2], [3, 4]] // CHECK: [[BIAS:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2, [[COLLAPSED]] : tensor<33xf32>, tensor<1x5x5x33xf32>) outs([[OUT]] : tensor<1x5x5x33xf32>) { // CHECK: ^bb0(%arg3: f32, %arg4: f32, %arg5: f32): // no predecessors @@ -1614,7 +1614,7 @@ func @depthwise_conv_strides(%arg0 : tensor<1x11x9x3xf32>, %arg1 : tensor<3x1x3x // CHECK: [[CST0:%.+]] = arith.constant 0 // CHECK: [[FILL:%.+]] = linalg.fill([[CST0]], [[INIT]]) // CHECK: [[OUT:%.+]] = linalg.init_tensor [1, 5, 5, 33] - // CHECK: [[DEPTH:%.+]] = linalg.depthwise_conv2D_nhwc {dilations = dense<1> : tensor<2xi64>, strides = dense<2> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<1x11x9x3xf32>, tensor<3x1x3x11xf32>) outs([[FILL]] : tensor<1x5x5x3x11xf32>) + // CHECK: [[DEPTH:%.+]] = linalg.depthwise_conv_2d_nhwc_hwcm {dilations = dense<1> : tensor<2xi64>, strides = dense<2> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<1x11x9x3xf32>, tensor<3x1x3x11xf32>) outs([[FILL]] : tensor<1x5x5x3x11xf32>) // CHECK: [[COLLAPSED:%.+]] = linalg.tensor_collapse_shape [[DEPTH]] {{\[}}[0], [1], [2], [3, 4]] // CHECK: [[BIAS:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2, [[COLLAPSED]] : tensor<33xf32>, tensor<1x5x5x33xf32>) outs([[OUT]] : tensor<1x5x5x33xf32>) { // CHECK: ^bb0(%arg3: f32, %arg4: f32, %arg5: f32): // no predecessors @@ -1642,7 +1642,7 @@ func @depthwise_conv_quant(%arg0 : tensor<1x12x12x4xi8>, %arg1 : tensor<3x3x4x12 // CHECK: [[OUT:%.+]] = linalg.init_tensor [1, 12, 12, 512] // CHECK: [[C128:%.+]] = arith.constant -128 // CHECK: [[C42:%.+]] = arith.constant 42 - // CHECK: [[DEPTH:%.+]] = linalg.depthwise_conv2D_nhwc_q {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins([[PAD]], %arg1, [[C128]], [[C42]] : tensor<1x14x14x4xi8>, tensor<3x3x4x128xi8>, i32, i32) outs([[FILL]] : tensor<1x12x12x4x128xi32>) + // CHECK: [[DEPTH:%.+]] = linalg.depthwise_conv_2d_nhwc_hwcm_q {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins([[PAD]], %arg1, [[C128]], [[C42]] : tensor<1x14x14x4xi8>, tensor<3x3x4x128xi8>, i32, i32) outs([[FILL]] : tensor<1x12x12x4x128xi32>) // CHECK: [[COLLAPSED:%.+]] = linalg.tensor_collapse_shape [[DEPTH]] {{\[}}[0], [1], [2], [3, 4]] // CHECK: [[BIAS:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2, [[COLLAPSED]] : tensor<512xi32>, tensor<1x12x12x512xi32>) outs([[OUT]] : tensor<1x12x12x512xi32>) { // CHECK: ^bb0(%arg3: i32, %arg4: i32, %arg5: i32): // no predecessors @@ -1666,7 +1666,7 @@ func @depthwise_conv_quant_dilations(%arg0 : tensor<1x14x14x4xi8>, %arg1 : tenso // CHECK: [[OUT:%.+]] = linalg.init_tensor [1, 10, 10, 512] // CHECK: [[C128:%.+]] = arith.constant -128 // CHECK: [[C42:%.+]] = arith.constant 42 - // CHECK: [[DEPTH:%.+]] = linalg.depthwise_conv2D_nhwc_q {dilations = dense<2> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1, [[C128]], [[C42]] : tensor<1x14x14x4xi8>, tensor<3x3x4x128xi8>, i32, i32) outs([[FILL]] : tensor<1x10x10x4x128xi32>) + // CHECK: [[DEPTH:%.+]] = linalg.depthwise_conv_2d_nhwc_hwcm_q {dilations = dense<2> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1, [[C128]], [[C42]] : tensor<1x14x14x4xi8>, tensor<3x3x4x128xi8>, i32, i32) outs([[FILL]] : tensor<1x10x10x4x128xi32>) // CHECK: [[COLLAPSED:%.+]] = linalg.tensor_collapse_shape [[DEPTH]] {{\[}}[0], [1], [2], [3, 4]] // CHECK: [[BIAS:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2, [[COLLAPSED]] : tensor<512xi32>, tensor<1x10x10x512xi32>) outs([[OUT]] : tensor<1x10x10x512xi32>) { // CHECK: ^bb0(%arg3: i32, %arg4: i32, %arg5: i32): // no predecessors diff --git a/mlir/test/Dialect/Linalg/canonicalize.mlir b/mlir/test/Dialect/Linalg/canonicalize.mlir index aa17f1c56a5d..e938f8c232e4 100644 --- a/mlir/test/Dialect/Linalg/canonicalize.mlir +++ b/mlir/test/Dialect/Linalg/canonicalize.mlir @@ -1095,9 +1095,9 @@ func @dim_of_tiled_loop_result_no_canonicalize(%arg0: tensor, %arg1: te func @depthwise_conv(%arg0: tensor, %arg1: tensor, %arg2: tensor) -> tensor { // CHECK-DAG: %[[KERNEL:.+]] = linalg.tensor_collapse_shape %arg1 {{\[\[}}0], [1], [2, 3]] // CHECK-DAG: %[[INIT:.+]] = linalg.tensor_collapse_shape %arg2 {{\[\[}}0], [1], [2], [3, 4]] - // CHECK-DAG: %[[CONV:.+]] = linalg.depthwise_conv2D_nhw {dilations = dense<1> : tensor<2xi64>, strides = dense<2> : tensor<2xi64>} ins(%arg0, %[[KERNEL]] : tensor, tensor) outs(%[[INIT]] : tensor) + // CHECK-DAG: %[[CONV:.+]] = linalg.depthwise_conv_2d_nhwc_hwc {dilations = dense<1> : tensor<2xi64>, strides = dense<2> : tensor<2xi64>} ins(%arg0, %[[KERNEL]] : tensor, tensor) outs(%[[INIT]] : tensor) // CHECK: %[[OUT:.+]] = linalg.tensor_expand_shape %[[CONV]] {{\[\[}}0], [1], [2], [3, 4]] - %0 = linalg.depthwise_conv2D_nhwc {dilations = dense<1> : tensor<2xi64>, strides = dense<2> : tensor<2xi64>} ins(%arg0, %arg1 : tensor, tensor) outs(%arg2 : tensor) -> tensor + %0 = linalg.depthwise_conv_2d_nhwc_hwcm {dilations = dense<1> : tensor<2xi64>, strides = dense<2> : tensor<2xi64>} ins(%arg0, %arg1 : tensor, tensor) outs(%arg2 : tensor) -> tensor return %0 : tensor } @@ -1108,8 +1108,8 @@ func @depthwise_conv(%arg0: tensor, %arg1: tensor, %ar func @depthwise_conv_q(%arg0: tensor, %arg1: tensor, %arg2: tensor, %arg3 : i32, %arg4 : i32) -> tensor { // CHECK-DAG: %[[KERNEL:.+]] = linalg.tensor_collapse_shape %arg1 {{\[\[}}0], [1], [2, 3]] // CHECK-DAG: %[[INIT:.+]] = linalg.tensor_collapse_shape %arg2 {{\[\[}}0], [1], [2], [3, 4]] - // CHECK-DAG: %[[CONV:.+]] = linalg.depthwise_conv2D_nhw_q {dilations = dense<1> : tensor<2xi64>, strides = dense<2> : tensor<2xi64>} ins(%arg0, %[[KERNEL]], %arg3, %arg4 : tensor, tensor, i32, i32) outs(%[[INIT]] : tensor) + // CHECK-DAG: %[[CONV:.+]] = linalg.depthwise_conv_2d_nhwc_hwc_q {dilations = dense<1> : tensor<2xi64>, strides = dense<2> : tensor<2xi64>} ins(%arg0, %[[KERNEL]], %arg3, %arg4 : tensor, tensor, i32, i32) outs(%[[INIT]] : tensor) // CHECK: %[[OUT:.+]] = linalg.tensor_expand_shape %[[CONV]] {{\[\[}}0], [1], [2], [3, 4]] - %0 = linalg.depthwise_conv2D_nhwc_q {dilations = dense<1> : tensor<2xi64>, strides = dense<2> : tensor<2xi64>} ins(%arg0, %arg1, %arg3, %arg4 : tensor, tensor, i32, i32) outs(%arg2 : tensor) -> tensor + %0 = linalg.depthwise_conv_2d_nhwc_hwcm_q {dilations = dense<1> : tensor<2xi64>, strides = dense<2> : tensor<2xi64>} ins(%arg0, %arg1, %arg3, %arg4 : tensor, tensor, i32, i32) outs(%arg2 : tensor) -> tensor return %0 : tensor } diff --git a/mlir/test/Dialect/Linalg/generalize-named-ops.mlir b/mlir/test/Dialect/Linalg/generalize-named-ops.mlir index 44a3de3f2722..961a31d293b9 100644 --- a/mlir/test/Dialect/Linalg/generalize-named-ops.mlir +++ b/mlir/test/Dialect/Linalg/generalize-named-ops.mlir @@ -49,8 +49,8 @@ func @generalize_matmul_tensor(%A : tensor<16x8xf32>, %B: tensor<8x32xf32>, %C: // ----- -func @depthwise_conv2D_nhwc(%input: memref<2x4x5x2xf32>, %filter: memref<2x2x2x3xf32>, %output: memref<2x3x4x2x3xf32>) { - linalg.depthwise_conv2D_nhwc +func @depthwise_conv_2d_nhwc_hwcm(%input: memref<2x4x5x2xf32>, %filter: memref<2x2x2x3xf32>, %output: memref<2x3x4x2x3xf32>) { + linalg.depthwise_conv_2d_nhwc_hwcm { dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64> } ins(%input, %filter : memref<2x4x5x2xf32>, memref<2x2x2x3xf32>) outs(%output : memref<2x3x4x2x3xf32>) @@ -61,7 +61,7 @@ func @depthwise_conv2D_nhwc(%input: memref<2x4x5x2xf32>, %filter: memref<2x2x2x3 // CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d5, d6, d3, d4)> // CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d1, d2, d3, d4)> -// CHECK: func @depthwise_conv2D_nhwc +// CHECK: func @depthwise_conv_2d_nhwc_hwcm // CHECK: linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]], #[[MAP2]]] @@ -76,8 +76,8 @@ func @depthwise_conv2D_nhwc(%input: memref<2x4x5x2xf32>, %filter: memref<2x2x2x3 // ----- -func @depthwise_conv2D_nhwc(%input: memref<2x4x5x2xf32>, %filter: memref<2x2x2x3xf32>, %output: memref<2x2x3x2x3xf32>) { - linalg.depthwise_conv2D_nhwc +func @depthwise_conv_2d_nhwc_hwcm(%input: memref<2x4x5x2xf32>, %filter: memref<2x2x2x3xf32>, %output: memref<2x2x3x2x3xf32>) { + linalg.depthwise_conv_2d_nhwc_hwcm { dilations = dense<2> : tensor<2xi64>, strides = dense<1> : tensor<2xi64> } ins(%input, %filter : memref<2x4x5x2xf32>, memref<2x2x2x3xf32>) outs(%output : memref<2x2x3x2x3xf32>) @@ -88,7 +88,7 @@ func @depthwise_conv2D_nhwc(%input: memref<2x4x5x2xf32>, %filter: memref<2x2x2x3 // CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d5, d6, d3, d4)> // CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d1, d2, d3, d4)> -// CHECK: func @depthwise_conv2D_nhwc +// CHECK: func @depthwise_conv_2d_nhwc_hwcm // CHECK: linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]], #[[MAP2]]] @@ -103,8 +103,8 @@ func @depthwise_conv2D_nhwc(%input: memref<2x4x5x2xf32>, %filter: memref<2x2x2x3 // ----- -func @depthwise_conv2D_nhw(%input: memref<1x113x113x96xf32>, %filter: memref<3x3x96xf32>, %output: memref<1x56x56x96xf32>) { - linalg.depthwise_conv2D_nhw {dilations = dense<1> : vector<2xi64>, strides = dense<2> : vector<2xi64>} +func @depthwise_conv_2d_nhwc_hwc(%input: memref<1x113x113x96xf32>, %filter: memref<3x3x96xf32>, %output: memref<1x56x56x96xf32>) { + linalg.depthwise_conv_2d_nhwc_hwc {dilations = dense<1> : vector<2xi64>, strides = dense<2> : vector<2xi64>} ins(%input, %filter: memref<1x113x113x96xf32>, memref<3x3x96xf32>) outs(%output: memref<1x56x56x96xf32>) return @@ -114,7 +114,7 @@ func @depthwise_conv2D_nhw(%input: memref<1x113x113x96xf32>, %filter: memref<3x3 // CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d4, d5, d3)> // CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d2, d3)> -// CHECK: func @depthwise_conv2D_nhw +// CHECK: func @depthwise_conv_2d_nhwc_hwc // CHECK: linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]], #[[MAP2]]] diff --git a/mlir/test/Dialect/Linalg/named-ops.mlir b/mlir/test/Dialect/Linalg/named-ops.mlir index cd01b6a0a920..7d574980d63a 100644 --- a/mlir/test/Dialect/Linalg/named-ops.mlir +++ b/mlir/test/Dialect/Linalg/named-ops.mlir @@ -1,94 +1,94 @@ // RUN: mlir-opt -split-input-file -verify-diagnostics %s | FileCheck %s -// CHECK-LABEL: func @depthwise_conv2D_nhwc_tensor -func @depthwise_conv2D_nhwc_tensor(%input: tensor<2x4x5x2xf32>, %filter: tensor<2x2x2x3xf32>) -> tensor<2x3x4x2x3xf32> { +// CHECK-LABEL: func @depthwise_conv_2d_nhwc_hwcm_tensor +func @depthwise_conv_2d_nhwc_hwcm_tensor(%input: tensor<2x4x5x2xf32>, %filter: tensor<2x2x2x3xf32>) -> tensor<2x3x4x2x3xf32> { %zero = arith.constant 0.000000e+00 : f32 %init = linalg.init_tensor [2, 3, 4, 2, 3] : tensor<2x3x4x2x3xf32> %fill = linalg.fill(%zero, %init) : f32, tensor<2x3x4x2x3xf32> -> tensor<2x3x4x2x3xf32> - // CHECK: %{{.+}} = linalg.depthwise_conv2D_nhwc + // CHECK: %{{.+}} = linalg.depthwise_conv_2d_nhwc_hwcm // CHECK-SAME: {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<2x4x5x2xf32>, tensor<2x2x2x3xf32>) // CHECK-SAME: outs(%{{.+}} : tensor<2x3x4x2x3xf32>) - %0 = linalg.depthwise_conv2D_nhwc + %0 = linalg.depthwise_conv_2d_nhwc_hwcm { dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64> } ins(%input, %filter : tensor<2x4x5x2xf32>, tensor<2x2x2x3xf32>) outs(%fill : tensor<2x3x4x2x3xf32>) -> tensor<2x3x4x2x3xf32> return %0 : tensor<2x3x4x2x3xf32> } -// CHECK-LABEL: func @depthwise_conv2D_nhwc_memref -func @depthwise_conv2D_nhwc_memref(%input: memref<2x4x5x2xf32>, %filter: memref<2x2x2x3xf32>, %output: memref<2x3x4x2x3xf32>) { - // CHECK: linalg.depthwise_conv2D_nhwc +// CHECK-LABEL: func @depthwise_conv_2d_nhwc_hwcm_memref +func @depthwise_conv_2d_nhwc_hwcm_memref(%input: memref<2x4x5x2xf32>, %filter: memref<2x2x2x3xf32>, %output: memref<2x3x4x2x3xf32>) { + // CHECK: linalg.depthwise_conv_2d_nhwc_hwcm // CHECK-SAME: {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<2x4x5x2xf32>, memref<2x2x2x3xf32>) // CHECK-SAME: outs(%{{.+}} : memref<2x3x4x2x3xf32>) - linalg.depthwise_conv2D_nhwc + linalg.depthwise_conv_2d_nhwc_hwcm { dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64> } ins(%input, %filter : memref<2x4x5x2xf32>, memref<2x2x2x3xf32>) outs(%output : memref<2x3x4x2x3xf32>) return } -// CHECK-LABEL: func @depthwise_conv1D_nw_tensor -func @depthwise_conv1D_nw_tensor(%input: tensor<1x113x96xf32>, %filter: tensor<3x96xf32>) -> tensor<1x56x96xf32> { +// CHECK-LABEL: func @depthwise_conv_1d_nw_tensor +func @depthwise_conv_1d_nw_tensor(%input: tensor<1x113x96xf32>, %filter: tensor<3x96xf32>) -> tensor<1x56x96xf32> { %init = linalg.init_tensor [1, 56, 96] : tensor<1x56x96xf32> - // CHECK: %{{.+}} = linalg.depthwise_conv1D_nw + // CHECK: %{{.+}} = linalg.depthwise_conv_1d_nw // CHECK-SAME: {dilations = dense<1> : vector<1xi64>, strides = dense<2> : vector<1xi64>} // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<1x113x96xf32>, tensor<3x96xf32>) // CHECK-SAME: outs(%{{.+}} : tensor<1x56x96xf32>) -> tensor<1x56x96xf32> - %0 = linalg.depthwise_conv1D_nw {dilations = dense<1> : vector<1xi64>, strides = dense<2> : vector<1xi64>} + %0 = linalg.depthwise_conv_1d_nwc_wc {dilations = dense<1> : vector<1xi64>, strides = dense<2> : vector<1xi64>} ins(%input, %filter: tensor<1x113x96xf32>, tensor<3x96xf32>) outs(%init: tensor<1x56x96xf32>) -> tensor<1x56x96xf32> return %0: tensor<1x56x96xf32> } -// CHECK-LABEL: func @depthwise_conv2D_nhw_tensor -func @depthwise_conv2D_nhw_tensor(%input: tensor<1x113x113x96xf32>, %filter: tensor<3x3x96xf32>) -> tensor<1x56x56x96xf32> { +// CHECK-LABEL: func @depthwise_conv_2d_nhwc_hwc_tensor +func @depthwise_conv_2d_nhwc_hwc_tensor(%input: tensor<1x113x113x96xf32>, %filter: tensor<3x3x96xf32>) -> tensor<1x56x56x96xf32> { %init = linalg.init_tensor [1, 56, 56, 96] : tensor<1x56x56x96xf32> - // CHECK: %{{.+}} = linalg.depthwise_conv2D_nhw + // CHECK: %{{.+}} = linalg.depthwise_conv_2d_nhwc_hwc // CHECK-SAME: {dilations = dense<1> : vector<2xi64>, strides = dense<2> : vector<2xi64>} // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<1x113x113x96xf32>, tensor<3x3x96xf32>) // CHECK-SAME: outs(%{{.+}} : tensor<1x56x56x96xf32>) -> tensor<1x56x56x96xf32> - %0 = linalg.depthwise_conv2D_nhw {dilations = dense<1> : vector<2xi64>, strides = dense<2> : vector<2xi64>} + %0 = linalg.depthwise_conv_2d_nhwc_hwc {dilations = dense<1> : vector<2xi64>, strides = dense<2> : vector<2xi64>} ins(%input, %filter: tensor<1x113x113x96xf32>, tensor<3x3x96xf32>) outs(%init: tensor<1x56x56x96xf32>) -> tensor<1x56x56x96xf32> return %0: tensor<1x56x56x96xf32> } -// CHECK-LABEL: func @depthwise_conv2D_nhw_memref -func @depthwise_conv2D_nhw_memref(%input: memref<1x113x113x96xf32>, %filter: memref<3x3x96xf32>, %output: memref<1x56x56x96xf32>) { - // CHECK: linalg.depthwise_conv2D_nhw +// CHECK-LABEL: func @depthwise_conv_2d_nhwc_hwc_memref +func @depthwise_conv_2d_nhwc_hwc_memref(%input: memref<1x113x113x96xf32>, %filter: memref<3x3x96xf32>, %output: memref<1x56x56x96xf32>) { + // CHECK: linalg.depthwise_conv_2d_nhwc_hwc // CHECK-SAME: {dilations = dense<1> : vector<2xi64>, strides = dense<2> : vector<2xi64>} // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<1x113x113x96xf32>, memref<3x3x96xf32>) // CHECK-SAME: outs(%{{.+}} : memref<1x56x56x96xf32>) - linalg.depthwise_conv2D_nhw {dilations = dense<1> : vector<2xi64>, strides = dense<2> : vector<2xi64>} + linalg.depthwise_conv_2d_nhwc_hwc {dilations = dense<1> : vector<2xi64>, strides = dense<2> : vector<2xi64>} ins(%input, %filter: memref<1x113x113x96xf32>, memref<3x3x96xf32>) outs(%output: memref<1x56x56x96xf32>) return } -func @depthwise_conv2D_nhwc_tensor_dilated(%input: tensor<2x8x9x2xf32>, %filter: tensor<2x2x2x3xf32>) -> tensor<2x6x7x2x3xf32> { +func @depthwise_conv_2d_nhwc_hwcm_tensor_dilated(%input: tensor<2x8x9x2xf32>, %filter: tensor<2x2x2x3xf32>) -> tensor<2x6x7x2x3xf32> { %zero = arith.constant 0.000000e+00 : f32 %init = linalg.init_tensor [2, 6, 7, 2, 3] : tensor<2x6x7x2x3xf32> %fill = linalg.fill(%zero, %init) : f32, tensor<2x6x7x2x3xf32> -> tensor<2x6x7x2x3xf32> - // CHECK: %{{.+}} = linalg.depthwise_conv2D_nhwc + // CHECK: %{{.+}} = linalg.depthwise_conv_2d_nhwc_hwcm // CHECK-SAME: {dilations = dense<2> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<2x8x9x2xf32>, tensor<2x2x2x3xf32>) // CHECK-SAME: outs(%{{.+}} : tensor<2x6x7x2x3xf32>) - %0 = linalg.depthwise_conv2D_nhwc + %0 = linalg.depthwise_conv_2d_nhwc_hwcm { dilations = dense<2> : tensor<2xi64>, strides = dense<1> : tensor<2xi64> } ins(%input, %filter : tensor<2x8x9x2xf32>, tensor<2x2x2x3xf32>) outs(%fill : tensor<2x6x7x2x3xf32>) -> tensor<2x6x7x2x3xf32> return %0 : tensor<2x6x7x2x3xf32> } -// CHECK-LABEL: func @depthwise_conv2D_nhwc_memref_dilated -func @depthwise_conv2D_nhwc_memref_dilated(%input: memref<2x8x9x2xf32>, %filter: memref<2x2x2x3xf32>, %output: memref<2x6x7x2x3xf32>) { - // CHECK: linalg.depthwise_conv2D_nhwc +// CHECK-LABEL: func @depthwise_conv_2d_nhwc_hwcm_memref_dilated +func @depthwise_conv_2d_nhwc_hwcm_memref_dilated(%input: memref<2x8x9x2xf32>, %filter: memref<2x2x2x3xf32>, %output: memref<2x6x7x2x3xf32>) { + // CHECK: linalg.depthwise_conv_2d_nhwc_hwcm // CHECK-SAME: {dilations = dense<2> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<2x8x9x2xf32>, memref<2x2x2x3xf32>) // CHECK-SAME: outs(%{{.+}} : memref<2x6x7x2x3xf32>) - linalg.depthwise_conv2D_nhwc + linalg.depthwise_conv_2d_nhwc_hwcm { dilations = dense<2> : tensor<2xi64>, strides = dense<1> : tensor<2xi64> } ins(%input, %filter : memref<2x8x9x2xf32>, memref<2x2x2x3xf32>) outs(%output : memref<2x6x7x2x3xf32>) @@ -99,7 +99,7 @@ func @depthwise_conv2D_nhwc_memref_dilated(%input: memref<2x8x9x2xf32>, %filter: func @depthwise_conv_2d_input_nhwc_filter_missing_stride(%input: memref<1x113x113x96xf32>, %filter: memref<3x3x96xf32>, %output: memref<1x56x56x96xf32>) { // expected-error @+1 {{missing indexing map required attribute 'strides'}} - linalg.depthwise_conv2D_nhw {dilations = dense<1> : vector<2xi64>} + linalg.depthwise_conv_2d_nhwc_hwc {dilations = dense<1> : vector<2xi64>} ins(%input, %filter: memref<1x113x113x96xf32>, memref<3x3x96xf32>) outs(%output: memref<1x56x56x96xf32>) return @@ -109,7 +109,7 @@ func @depthwise_conv_2d_input_nhwc_filter_missing_stride(%input: memref<1x113x11 func @depthwise_conv_2d_input_nhwc_filter_missing_dilations(%input: memref<1x113x113x96xf32>, %filter: memref<3x3x96xf32>, %output: memref<1x56x56x96xf32>) { // expected-error @+1 {{missing indexing map required attribute 'dilations'}} - linalg.depthwise_conv2D_nhw {strides = dense<1> : vector<2xi64>} + linalg.depthwise_conv_2d_nhwc_hwc {strides = dense<1> : vector<2xi64>} ins(%input, %filter: memref<1x113x113x96xf32>, memref<3x3x96xf32>) outs(%output: memref<1x56x56x96xf32>) return @@ -119,7 +119,7 @@ func @depthwise_conv_2d_input_nhwc_filter_missing_dilations(%input: memref<1x113 func @depthwise_conv_2d_input_nhwc_filter_wrong_stride_element_type(%input: memref<1x113x113x96xf32>, %filter: memref<3x3x96xf32>, %output: memref<1x56x56x96xf32>) { // expected-error @+1 {{incorrect element type for indexing map required attribute 'strides'}} - linalg.depthwise_conv2D_nhw {dilations = dense<1> : vector<2xi64>, strides = dense<2.0> : vector<2xf32>} + linalg.depthwise_conv_2d_nhwc_hwc {dilations = dense<1> : vector<2xi64>, strides = dense<2.0> : vector<2xf32>} ins(%input, %filter: memref<1x113x113x96xf32>, memref<3x3x96xf32>) outs(%output: memref<1x56x56x96xf32>) return @@ -129,7 +129,7 @@ func @depthwise_conv_2d_input_nhwc_filter_wrong_stride_element_type(%input: memr func @depthwise_conv_2d_input_nhwc_filter_wrong_stride_size(%input: memref<1x113x113x96xf32>, %filter: memref<3x3x96xf32>, %output: memref<1x56x56x96xf32>) { // expected-error @+1 {{incorrect shape for indexing map required attribute 'strides'}} - linalg.depthwise_conv2D_nhw {dilations = dense<1> : vector<2xi64>, strides = dense<2> : vector<3xi64> } + linalg.depthwise_conv_2d_nhwc_hwc {dilations = dense<1> : vector<2xi64>, strides = dense<2> : vector<3xi64> } ins(%input, %filter: memref<1x113x113x96xf32>, memref<3x3x96xf32>) outs(%output: memref<1x56x56x96xf32>) return diff --git a/mlir/test/Dialect/Linalg/vectorize-convolution.mlir b/mlir/test/Dialect/Linalg/vectorize-convolution.mlir index aa3d3f55953c..7afc46db3889 100644 --- a/mlir/test/Dialect/Linalg/vectorize-convolution.mlir +++ b/mlir/test/Dialect/Linalg/vectorize-convolution.mlir @@ -192,8 +192,8 @@ func @conv1d_nwc_4x2x8_memref(%input: memref<4x6x3xf32>, %filter: memref<2x3x8xf // ----- -func @depthwise_conv1d_nwc_3x5x4_memref(%input: memref<3x5x4xf32>, %filter: memref<2x4xf32>, %output: memref<3x2x4xf32>) { - linalg.depthwise_conv1D_nw +func @depthwise_conv1d_nwc_wc_3x5x4_memref(%input: memref<3x5x4xf32>, %filter: memref<2x4xf32>, %output: memref<3x2x4xf32>) { + linalg.depthwise_conv_1d_nwc_wc {dilations = dense<2> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} ins(%input, %filter : memref<3x5x4xf32>, memref<2x4xf32>) outs(%output : memref<3x2x4xf32>) @@ -203,7 +203,7 @@ func @depthwise_conv1d_nwc_3x5x4_memref(%input: memref<3x5x4xf32>, %filter: memr // CHECK: #[[INPUT_MAP:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)> // CHECK: #[[FILTER_MAP:.+]] = affine_map<(d0, d1, d2) -> (d2)> -// CHECK: func @depthwise_conv1d_nwc_3x5x4_memref +// CHECK: func @depthwise_conv1d_nwc_wc_3x5x4_memref // CHECK-SAME: (%[[INPUT:[0-9a-z]+]]: memref<3x5x4xf32>, %[[FILTER:[0-9a-z]+]]: memref<2x4xf32>, %[[OUTPUT:[0-9a-z]+]]: memref<3x2x4xf32>) // CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index