forked from OSchip/llvm-project
This is a partially implemented and currently disabled start of a store
merging optimization. Nothing to see here, hopefully more later :) llvm-svn: 48670
This commit is contained in:
parent
97d496c182
commit
f5d41c67af
|
@ -666,6 +666,7 @@ namespace {
|
|||
bool processLoad(LoadInst* L,
|
||||
DenseMap<Value*, LoadInst*> &lastLoad,
|
||||
SmallVectorImpl<Instruction*> &toErase);
|
||||
bool processStore(StoreInst *SI, SmallVectorImpl<Instruction*> &toErase);
|
||||
bool processInstruction(Instruction* I,
|
||||
ValueNumberedSet& currAvail,
|
||||
DenseMap<Value*, LoadInst*>& lastSeenLoad,
|
||||
|
@ -983,6 +984,161 @@ bool GVN::processLoad(LoadInst *L, DenseMap<Value*, LoadInst*> &lastLoad,
|
|||
return deletedLoad;
|
||||
}
|
||||
|
||||
/// isBytewiseValue - If the specified value can be set by repeating the same
|
||||
/// byte in memory, return the i8 value that it is represented with. This is
|
||||
/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
|
||||
/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
|
||||
/// byte store (e.g. i16 0x1234), return null.
|
||||
static Value *isBytewiseValue(Value *V) {
|
||||
// All byte-wide stores are splatable, even of arbitrary variables.
|
||||
if (V->getType() == Type::Int8Ty) return V;
|
||||
|
||||
// Constant float and double values can be handled as integer values if the
|
||||
// corresponding integer value is "byteable". An important case is 0.0.
|
||||
if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
|
||||
if (CFP->getType() == Type::FloatTy)
|
||||
V = ConstantExpr::getBitCast(CFP, Type::Int32Ty);
|
||||
if (CFP->getType() == Type::DoubleTy)
|
||||
V = ConstantExpr::getBitCast(CFP, Type::Int64Ty);
|
||||
// Don't handle long double formats, which have strange constraints.
|
||||
}
|
||||
|
||||
// We can handle constant integers that are power of two in size and a
|
||||
// multiple of 8 bits.
|
||||
if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
|
||||
unsigned Width = CI->getBitWidth();
|
||||
if (isPowerOf2_32(Width) && Width > 8) {
|
||||
// We can handle this value if the recursive binary decomposition is the
|
||||
// same at all levels.
|
||||
APInt Val = CI->getValue();
|
||||
APInt Val2;
|
||||
while (Val.getBitWidth() != 8) {
|
||||
unsigned NextWidth = Val.getBitWidth()/2;
|
||||
Val2 = Val.lshr(NextWidth);
|
||||
Val2.trunc(Val.getBitWidth()/2);
|
||||
Val.trunc(Val.getBitWidth()/2);
|
||||
|
||||
// If the top/bottom halves aren't the same, reject it.
|
||||
if (Val != Val2)
|
||||
return 0;
|
||||
}
|
||||
return ConstantInt::get(Val);
|
||||
}
|
||||
}
|
||||
|
||||
// Conceptually, we could handle things like:
|
||||
// %a = zext i8 %X to i16
|
||||
// %b = shl i16 %a, 8
|
||||
// %c = or i16 %a, %b
|
||||
// but until there is an example that actually needs this, it doesn't seem
|
||||
// worth worrying about.
|
||||
return 0;
|
||||
}
|
||||
|
||||
/// IsPointerAtOffset - Return true if Ptr1 is exactly provably equal to Ptr2
|
||||
/// plus the specified constant offset. For example, Ptr1 might be &A[42], and
|
||||
/// Ptr2 might be &A[40] and Offset might be 8.
|
||||
static bool IsPointerAtOffset(Value *Ptr1, Value *Ptr2, uint64_t Offset) {
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
/// processStore - When GVN is scanning forward over instructions, we look for
|
||||
/// some other patterns to fold away. In particular, this looks for stores to
|
||||
/// neighboring locations of memory. If it sees enough consequtive ones
|
||||
/// (currently 4) it attempts to merge them together into a memcpy/memset.
|
||||
bool GVN::processStore(StoreInst *SI, SmallVectorImpl<Instruction*> &toErase) {
|
||||
return false;
|
||||
|
||||
if (SI->isVolatile()) return false;
|
||||
|
||||
// There are two cases that are interesting for this code to handle: memcpy
|
||||
// and memset. Right now we only handle memset.
|
||||
|
||||
// Ensure that the value being stored is something that can be memset'able a
|
||||
// byte at a time like "0" or "-1" or any width, as well as things like
|
||||
// 0xA0A0A0A0 and 0.0.
|
||||
Value *ByteVal = isBytewiseValue(SI->getOperand(0));
|
||||
if (!ByteVal)
|
||||
return false;
|
||||
|
||||
TargetData &TD = getAnalysis<TargetData>();
|
||||
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
|
||||
|
||||
// Okay, so we now have a single store that can be splatable. Try to 'grow'
|
||||
// this store by looking for neighboring stores to the immediate left or right
|
||||
// of the store we have so far. While we could in theory handle stores in
|
||||
// this order: A[0], A[2], A[1]
|
||||
// in practice, right now we only worry about cases where stores are
|
||||
// consequtive in increasing or decreasing address order.
|
||||
uint64_t BytesSoFar = TD.getTypeStoreSize(SI->getOperand(0)->getType());
|
||||
unsigned StartAlign = SI->getAlignment();
|
||||
Value *StartPtr = SI->getPointerOperand();
|
||||
SmallVector<StoreInst*, 16> Stores;
|
||||
Stores.push_back(SI);
|
||||
|
||||
BasicBlock::iterator BI = SI; ++BI;
|
||||
for (++BI; !isa<TerminatorInst>(BI); ++BI) {
|
||||
if (isa<CallInst>(BI) || isa<InvokeInst>(BI)) {
|
||||
// If the call is readnone, ignore it, otherwise bail out. We don't even
|
||||
// allow readonly here because we don't want something like:
|
||||
// A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
|
||||
if (AA.getModRefBehavior(CallSite::get(BI)) ==
|
||||
AliasAnalysis::DoesNotAccessMemory)
|
||||
continue;
|
||||
break;
|
||||
} else if (isa<VAArgInst>(BI) || isa<LoadInst>(BI))
|
||||
break;
|
||||
|
||||
// If this is a non-store instruction it is fine, ignore it.
|
||||
StoreInst *NextStore = dyn_cast<StoreInst>(BI);
|
||||
if (NextStore == 0) continue;
|
||||
|
||||
// If this is a store, see if we can merge it in.
|
||||
if (NextStore->isVolatile()) break;
|
||||
|
||||
// Check to see if this stored value is of the same byte-splattable value.
|
||||
if (ByteVal != isBytewiseValue(NextStore->getOperand(0)))
|
||||
break;
|
||||
|
||||
Value *ThisPointer = NextStore->getPointerOperand();
|
||||
unsigned AccessSize = TD.getTypeStoreSize(SI->getOperand(0)->getType());
|
||||
|
||||
// If so, check to see if the store is before the current range or after it
|
||||
// in either case, extend the range, otherwise reject it.
|
||||
if (IsPointerAtOffset(ThisPointer, StartPtr, BytesSoFar)) {
|
||||
// Okay, this extends the stored area on the end, just add to the bytes
|
||||
// so far and remember this store.
|
||||
BytesSoFar += AccessSize;
|
||||
Stores.push_back(SI);
|
||||
continue;
|
||||
}
|
||||
|
||||
if (IsPointerAtOffset(StartPtr, ThisPointer, AccessSize)) {
|
||||
// Okay, the store is before the current range. Reset our start pointer
|
||||
// and get new alignment info etc.
|
||||
BytesSoFar += AccessSize;
|
||||
Stores.push_back(SI);
|
||||
StartPtr = ThisPointer;
|
||||
StartAlign = NextStore->getAlignment();
|
||||
continue;
|
||||
}
|
||||
|
||||
// Otherwise, this store wasn't contiguous with our current range, bail out.
|
||||
break;
|
||||
}
|
||||
|
||||
// If we found less than 4 stores to merge, bail out, it isn't worth losing
|
||||
// type information in llvm IR to do the transformation.
|
||||
if (Stores.size() < 4)
|
||||
return false;
|
||||
|
||||
// Otherwise, we do want to transform this! But not yet. :)
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
/// performCallSlotOptzn - takes a memcpy and a call that it depends on,
|
||||
/// and checks for the possibility of a call slot optimization by having
|
||||
/// the call write its result directly into the destination of the memcpy.
|
||||
|
@ -1187,6 +1343,9 @@ bool GVN::processInstruction(Instruction *I, ValueNumberedSet &currAvail,
|
|||
if (LoadInst* L = dyn_cast<LoadInst>(I))
|
||||
return processLoad(L, lastSeenLoad, toErase);
|
||||
|
||||
if (StoreInst *SI = dyn_cast<StoreInst>(I))
|
||||
return processStore(SI, toErase);
|
||||
|
||||
if (MemCpyInst* M = dyn_cast<MemCpyInst>(I)) {
|
||||
MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
|
||||
|
||||
|
|
Loading…
Reference in New Issue