forked from OSchip/llvm-project
Simplify the code and rearrange it. No major functionality changes here.
llvm-svn: 21759
This commit is contained in:
parent
6dc6672840
commit
f43e974abd
|
@ -12,9 +12,6 @@
|
|||
//
|
||||
// For example: 4 + (x + 5) -> x + (4 + 5)
|
||||
//
|
||||
// Note that this pass works best if left shifts have been promoted to explicit
|
||||
// multiplies before this pass executes.
|
||||
//
|
||||
// In the implementation of this algorithm, constants are assigned rank = 0,
|
||||
// function arguments are rank = 1, and other values are assigned ranks
|
||||
// corresponding to the reverse post order traversal of current function
|
||||
|
@ -23,6 +20,7 @@
|
|||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#define DEBUG_TYPE "reassociate"
|
||||
#include "llvm/Transforms/Scalar.h"
|
||||
#include "llvm/Function.h"
|
||||
#include "llvm/Instructions.h"
|
||||
|
@ -78,35 +76,33 @@ void Reassociate::BuildRankMap(Function &F) {
|
|||
unsigned Reassociate::getRank(Value *V) {
|
||||
if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument...
|
||||
|
||||
if (Instruction *I = dyn_cast<Instruction>(V)) {
|
||||
// If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
|
||||
// we can reassociate expressions for code motion! Since we do not recurse
|
||||
// for PHI nodes, we cannot have infinite recursion here, because there
|
||||
// cannot be loops in the value graph that do not go through PHI nodes.
|
||||
//
|
||||
if (I->getOpcode() == Instruction::PHI ||
|
||||
I->getOpcode() == Instruction::Alloca ||
|
||||
I->getOpcode() == Instruction::Malloc || isa<TerminatorInst>(I) ||
|
||||
I->mayWriteToMemory()) // Cannot move inst if it writes to memory!
|
||||
return RankMap[I->getParent()];
|
||||
Instruction *I = dyn_cast<Instruction>(V);
|
||||
if (I == 0) return 0; // Otherwise it's a global or constant, rank 0.
|
||||
|
||||
unsigned &CachedRank = ValueRankMap[I];
|
||||
if (CachedRank) return CachedRank; // Rank already known?
|
||||
|
||||
// If not, compute it!
|
||||
unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
|
||||
for (unsigned i = 0, e = I->getNumOperands();
|
||||
i != e && Rank != MaxRank; ++i)
|
||||
Rank = std::max(Rank, getRank(I->getOperand(i)));
|
||||
|
||||
DEBUG(std::cerr << "Calculated Rank[" << V->getName() << "] = "
|
||||
<< Rank+1 << "\n");
|
||||
|
||||
return CachedRank = Rank+1;
|
||||
}
|
||||
|
||||
// Otherwise it's a global or constant, rank 0.
|
||||
return 0;
|
||||
unsigned &CachedRank = ValueRankMap[I];
|
||||
if (CachedRank) return CachedRank; // Rank already known?
|
||||
|
||||
// If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
|
||||
// we can reassociate expressions for code motion! Since we do not recurse
|
||||
// for PHI nodes, we cannot have infinite recursion here, because there
|
||||
// cannot be loops in the value graph that do not go through PHI nodes.
|
||||
//
|
||||
if (I->getOpcode() == Instruction::PHI ||
|
||||
I->getOpcode() == Instruction::Alloca ||
|
||||
I->getOpcode() == Instruction::Malloc || isa<TerminatorInst>(I) ||
|
||||
I->mayWriteToMemory()) // Cannot move inst if it writes to memory!
|
||||
return RankMap[I->getParent()];
|
||||
|
||||
// If not, compute it!
|
||||
unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
|
||||
for (unsigned i = 0, e = I->getNumOperands();
|
||||
i != e && Rank != MaxRank; ++i)
|
||||
Rank = std::max(Rank, getRank(I->getOperand(i)));
|
||||
|
||||
DEBUG(std::cerr << "Calculated Rank[" << V->getName() << "] = "
|
||||
<< Rank+1 << "\n");
|
||||
|
||||
return CachedRank = Rank+1;
|
||||
}
|
||||
|
||||
|
||||
|
@ -175,7 +171,7 @@ bool Reassociate::ReassociateExpr(BinaryOperator *I) {
|
|||
// version of the value is returned, and BI is left pointing at the instruction
|
||||
// that should be processed next by the reassociation pass.
|
||||
//
|
||||
static Value *NegateValue(Value *V, BasicBlock::iterator &BI) {
|
||||
static Value *NegateValue(Value *V, Instruction *BI) {
|
||||
// We are trying to expose opportunity for reassociation. One of the things
|
||||
// that we want to do to achieve this is to push a negation as deep into an
|
||||
// expression chain as possible, to expose the add instructions. In practice,
|
||||
|
@ -196,52 +192,76 @@ static Value *NegateValue(Value *V, BasicBlock::iterator &BI) {
|
|||
// inserted dominate the instruction we are about to insert after them.
|
||||
//
|
||||
return BinaryOperator::create(Instruction::Add, LHS, RHS,
|
||||
I->getName()+".neg",
|
||||
cast<Instruction>(RHS)->getNext());
|
||||
I->getName()+".neg", BI);
|
||||
}
|
||||
|
||||
// Insert a 'neg' instruction that subtracts the value from zero to get the
|
||||
// negation.
|
||||
//
|
||||
return BI = BinaryOperator::createNeg(V, V->getName() + ".neg", BI);
|
||||
return BinaryOperator::createNeg(V, V->getName() + ".neg", BI);
|
||||
}
|
||||
|
||||
/// isReassociableOp - Return true if V is an instruction of the specified
|
||||
/// opcode and if it only has one use.
|
||||
static bool isReassociableOp(Value *V, unsigned Opcode) {
|
||||
return V->hasOneUse() && isa<Instruction>(V) &&
|
||||
cast<Instruction>(V)->getOpcode() == Opcode;
|
||||
}
|
||||
|
||||
/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
|
||||
/// only used by an add, transform this into (X+(0-Y)) to promote better
|
||||
/// reassociation.
|
||||
static Instruction *BreakUpSubtract(Instruction *Sub) {
|
||||
// Reject cases where it is pointless to do this.
|
||||
if (Sub->getType()->isFloatingPoint())
|
||||
return 0; // Floating point adds are not associative.
|
||||
|
||||
// Don't bother to break this up unless either the LHS is an associable add or
|
||||
// if this is only used by one.
|
||||
if (!isReassociableOp(Sub->getOperand(0), Instruction::Add) &&
|
||||
!isReassociableOp(Sub->getOperand(1), Instruction::Add) &&
|
||||
!(Sub->hasOneUse() &&isReassociableOp(Sub->use_back(), Instruction::Add)))
|
||||
return 0;
|
||||
|
||||
// Convert a subtract into an add and a neg instruction... so that sub
|
||||
// instructions can be commuted with other add instructions...
|
||||
//
|
||||
// Calculate the negative value of Operand 1 of the sub instruction...
|
||||
// and set it as the RHS of the add instruction we just made...
|
||||
//
|
||||
std::string Name = Sub->getName();
|
||||
Sub->setName("");
|
||||
Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
|
||||
Instruction *New =
|
||||
BinaryOperator::createAdd(Sub->getOperand(0), NegVal, Name, Sub);
|
||||
|
||||
// Everyone now refers to the add instruction.
|
||||
Sub->replaceAllUsesWith(New);
|
||||
Sub->eraseFromParent();
|
||||
|
||||
DEBUG(std::cerr << "Negated: " << *New);
|
||||
return New;
|
||||
}
|
||||
|
||||
|
||||
/// ReassociateBB - Inspect all of the instructions in this basic block,
|
||||
/// reassociating them as we go.
|
||||
bool Reassociate::ReassociateBB(BasicBlock *BB) {
|
||||
bool Changed = false;
|
||||
for (BasicBlock::iterator BI = BB->begin(); BI != BB->end(); ++BI) {
|
||||
|
||||
DEBUG(std::cerr << "Reassociating: " << *BI);
|
||||
if (BI->getOpcode() == Instruction::Sub && !BinaryOperator::isNeg(BI)) {
|
||||
// Convert a subtract into an add and a neg instruction... so that sub
|
||||
// instructions can be commuted with other add instructions...
|
||||
//
|
||||
// Calculate the negative value of Operand 1 of the sub instruction...
|
||||
// and set it as the RHS of the add instruction we just made...
|
||||
//
|
||||
std::string Name = BI->getName();
|
||||
BI->setName("");
|
||||
Instruction *New =
|
||||
BinaryOperator::create(Instruction::Add, BI->getOperand(0),
|
||||
BI->getOperand(1), Name, BI);
|
||||
|
||||
// Everyone now refers to the add instruction...
|
||||
BI->replaceAllUsesWith(New);
|
||||
|
||||
// Put the new add in the place of the subtract... deleting the subtract
|
||||
BB->getInstList().erase(BI);
|
||||
|
||||
BI = New;
|
||||
New->setOperand(1, NegateValue(New->getOperand(1), BI));
|
||||
|
||||
Changed = true;
|
||||
DEBUG(std::cerr << "Negated: " << *New /*<< " Result BB: " << BB*/);
|
||||
}
|
||||
// If this is a subtract instruction which is not already in negate form,
|
||||
// see if we can convert it to X+-Y.
|
||||
if (BI->getOpcode() == Instruction::Sub && !BinaryOperator::isNeg(BI))
|
||||
if (Instruction *NI = BreakUpSubtract(BI)) {
|
||||
Changed = true;
|
||||
BI = NI;
|
||||
}
|
||||
|
||||
// If this instruction is a commutative binary operator, and the ranks of
|
||||
// the two operands are sorted incorrectly, fix it now.
|
||||
//
|
||||
if (BI->isAssociative()) {
|
||||
DEBUG(std::cerr << "Reassociating: " << *BI);
|
||||
BinaryOperator *I = cast<BinaryOperator>(BI);
|
||||
if (!I->use_empty()) {
|
||||
// Make sure that we don't have a tree-shaped computation. If we do,
|
||||
|
|
Loading…
Reference in New Issue