forked from OSchip/llvm-project
[APInt] Use isSubsetOf, intersects, and bit counting methods to reduce temporary APInts
This patch uses various APInt methods to reduce temporary APInt creation. This should be all of the unrelated cleanups that got buried in D32376(creating a KnownBits struct) as well as some pointed out by Simon during the review of that. Plus a few improvements to use counting instead of masking. I've left out any places where we do something like (KnownZero & KnownOne) != 0 as I plan to add a helper method to KnownBits to ask that question and didn't want to thrash that code an additional time. Differential Revision: https://reviews.llvm.org/D32495 llvm-svn: 301338
This commit is contained in:
parent
b3b3c29c87
commit
f3dbd17d0a
|
@ -1376,8 +1376,7 @@ static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0,
|
|||
// If all valid bits in the shift amount are known zero, the first operand is
|
||||
// unchanged.
|
||||
unsigned NumValidShiftBits = Log2_32_Ceil(BitWidth);
|
||||
APInt ShiftAmountMask = APInt::getLowBitsSet(BitWidth, NumValidShiftBits);
|
||||
if ((KnownZero & ShiftAmountMask) == ShiftAmountMask)
|
||||
if (KnownZero.countTrailingOnes() >= NumValidShiftBits)
|
||||
return Op0;
|
||||
|
||||
return nullptr;
|
||||
|
@ -3372,7 +3371,7 @@ static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
|
|||
APInt LHSKnownOne(BitWidth, 0);
|
||||
computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, Q.DL, /*Depth=*/0, Q.AC,
|
||||
Q.CxtI, Q.DT);
|
||||
if (((LHSKnownZero & *RHSVal) != 0) || ((LHSKnownOne & ~(*RHSVal)) != 0))
|
||||
if (LHSKnownZero.intersects(*RHSVal) || !LHSKnownOne.isSubsetOf(*RHSVal))
|
||||
return Pred == ICmpInst::ICMP_EQ ? ConstantInt::getFalse(ITy)
|
||||
: ConstantInt::getTrue(ITy);
|
||||
}
|
||||
|
|
|
@ -1934,12 +1934,12 @@ bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
|
|||
// The sign bit of X is set. If some other bit is set then X is not equal
|
||||
// to INT_MIN.
|
||||
computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
|
||||
if ((KnownOne & Mask) != 0)
|
||||
if (KnownOne.intersects(Mask))
|
||||
return true;
|
||||
// The sign bit of Y is set. If some other bit is set then Y is not equal
|
||||
// to INT_MIN.
|
||||
computeKnownBits(Y, KnownZero, KnownOne, Depth, Q);
|
||||
if ((KnownOne & Mask) != 0)
|
||||
if (KnownOne.intersects(Mask))
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -2056,7 +2056,7 @@ bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
|
|||
const Query &Q) {
|
||||
APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
|
||||
computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
|
||||
return (KnownZero & Mask) == Mask;
|
||||
return Mask.isSubsetOf(KnownZero);
|
||||
}
|
||||
|
||||
/// For vector constants, loop over the elements and find the constant with the
|
||||
|
@ -4289,7 +4289,7 @@ static bool isTruePredicate(CmpInst::Predicate Pred,
|
|||
APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
|
||||
computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT);
|
||||
|
||||
if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB)
|
||||
if (CA->isSubsetOf(KnownZero) && CB->isSubsetOf(KnownZero))
|
||||
return true;
|
||||
}
|
||||
|
||||
|
|
|
@ -1393,7 +1393,7 @@ static Instruction *foldCttzCtlz(IntrinsicInst &II, InstCombiner &IC) {
|
|||
// zero, this value is constant.
|
||||
// FIXME: This should be in InstSimplify because we're replacing an
|
||||
// instruction with a constant.
|
||||
if ((Mask & KnownZero) == Mask) {
|
||||
if (Mask.isSubsetOf(KnownZero)) {
|
||||
auto *C = ConstantInt::get(IT, APInt(BitWidth, NumMaskBits));
|
||||
return IC.replaceInstUsesWith(II, C);
|
||||
}
|
||||
|
|
|
@ -453,11 +453,11 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
|
|||
|
||||
// If we are known to be adding/subtracting zeros to every bit below
|
||||
// the highest demanded bit, we just return the other side.
|
||||
if ((DemandedFromOps & RHSKnownZero) == DemandedFromOps)
|
||||
if (DemandedFromOps.isSubsetOf(RHSKnownZero))
|
||||
return I->getOperand(0);
|
||||
// We can't do this with the LHS for subtraction.
|
||||
if (I->getOpcode() == Instruction::Add &&
|
||||
(DemandedFromOps & LHSKnownZero) == DemandedFromOps)
|
||||
DemandedFromOps.isSubsetOf(LHSKnownZero))
|
||||
return I->getOperand(1);
|
||||
}
|
||||
|
||||
|
|
|
@ -4380,7 +4380,7 @@ static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
|
|||
SmallVector<ConstantInt *, 8> DeadCases;
|
||||
for (auto &Case : SI->cases()) {
|
||||
APInt CaseVal = Case.getCaseValue()->getValue();
|
||||
if ((CaseVal & KnownZero) != 0 || (CaseVal & KnownOne) != KnownOne ||
|
||||
if (KnownZero.intersects(CaseVal) || !KnownOne.isSubsetOf(CaseVal) ||
|
||||
(CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
|
||||
DeadCases.push_back(Case.getCaseValue());
|
||||
DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal << " is dead.\n");
|
||||
|
|
|
@ -331,8 +331,7 @@ bool Vectorizer::isConsecutiveAccess(Value *A, Value *B) {
|
|||
APInt KnownZero(BitWidth, 0);
|
||||
APInt KnownOne(BitWidth, 0);
|
||||
computeKnownBits(OpA, KnownZero, KnownOne, DL, 0, nullptr, OpA, &DT);
|
||||
KnownZero &= ~APInt::getHighBitsSet(BitWidth, 1);
|
||||
if (KnownZero != 0)
|
||||
if (KnownZero.countTrailingZeros() < (BitWidth - 1))
|
||||
Safe = true;
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in New Issue